9 From Pyret to Python
|
9.1 From Pyret to Python
|
9.1.1 Expressions, Functions, and Types
|
9.1.2 Returning Values from Functions
|
9.1.3 Examples and Test Cases
|
9.1.4 An Aside on Numbers
|
9.1.5 Conditionals
|
9.1.6 Creating and Processing
Lists
|
9.1.6.1 Filters, Maps, and Friends
|
9.1.7 Data with Components
|
9.1.7.1 Accessing Fields within Dataclasses
|
9.1.8 Traversing Lists
|
9.1.8.1 Introducing For Loops
|
9.1.8.2 An Aside on Order of Processing List Elements
|
9.1.8.3 Using For Loops in Functions that Produce Lists
|
9.1.8.4 Summary: The List-Processing Template for Python
|
9.2 Dictionaries
|
9.2.1 Creating and Using a Dictionary
|
9.2.2 Searching Through the Values in a Dictionary
|
9.2.3 Dictionaries with More Complex Values
|
9.2.4 Dictionaries versus Dataclasses
|
Summary
|
9.3 Arrays
|
9.3.1 Two Memory Layouts for Ordered Items
|
9.3.2 Iterating Partly through an Ordered Datum
|
10 Tables in Python via Pandas
|
10.1 Introduction to Pandas
|
10.1.1 Pandas Table Basics
|
10.1.1.1 Core Datatypes: DataFrame and Series
|
10.1.1.2 Creating and Loading DataFrames
|
10.1.1.3 Using Labels and Indices to Access Cells
|
10.1.2 Filtering Rows
|
10.1.3 Cleaning and Normalizing Data
|
10.1.3.1 Clearing out unknown values
|
10.1.3.2 Repairing Values and Column Types
|
10.1.4 Computing New Columns
|
10.1.5 Aggregating and Grouping Columns
|
10.1.6 Wide Versus Tall Data
|
Converting Between Wide and Tall Data
|
10.1.7 Plotting Data
|
10.1.8 Takeaways
|
10.2 Reshaping Tables
|
10.2.1 Binning Rows
|
10.2.2 Wide versus Tall Datasets
|