
Linking Types for

Multi-Language Software

Have Your Cake and Eat It Too

Daniel Patterson and Amal Ahmed
SNAPL 2017

Listener

Protocol Parser

Web Server

Spam System

…

…

Stateful DSL

Terminating CFG DSL

Declarative Data-driven DSL

Multi-Language System

Protocol Parser Listener

Terminating DSL Stateful DSL

Web Server

???

C
O

M
PILE

Protocol Parser Listener

Common Target Common Target
Linking

C
O

M
PILE

How are DSLs
represented in target?Can we instead allow

reasoning at source level?

Does Nontermination Leak?

Linking types are about raising
programmer reasoning back to the

source level

Refactoring is reasoning about equivalence

How to reason in while linking with ?

(simply-typed
lambda calculus)

(extended with
ML references)

In a Simpler Setting

Reasoning About Refactoring

Should be okay because

Fully abstract
compilers preserve

equivalences

What about linking with ?

When linked with , no longer equivalent!

but

Is this refactoring correct?

It depends on what it is linked with!

Programmer should be able to specify
which they want, so that the compiler

can be fully abstract!

with linking types extension

Type and effect systems, e.g., F*, Koka

Allows Programmers To Write Both

Refactoring: Pure Inputs

Ill-typed, since f requires pure code

Well-typed, since f accepts impure code

Refactoring: Impure Inputs

Minimal Annotation Burden

must provide default translation

Stepping Back…

Correct Compilation of Components

es

et e′t

! eS ≈ eT=⇒

specifies behaviors
compiled code may

be linked with

es

et e′t

! eS ≈ eT=⇒

specifies behaviors
compiled code may

be linked with

- Compositional CompCert
- SepCompCert
- Pilsner

e′s

expressible in S

Correct Compilation of Components

Correct Compilation: Multi-Language

es

et e′t

! eS ≈ eT=⇒

specifies behaviors
compiled code may

be linked with

Verified Compilers for
a Multi-Language
World [SNAPL’15]

inexpressible in S
!

Correct Compilation: Multi-Language

es

et e′t

! eS ≈ eT=⇒

inexpressible in S
!

Problem: programmer cannot
reason at source level!

Fully Abstract Compilation?

RustML Java

Target

Language specifications are incomplete!
Don’t account for linking

C FFI unsafe JNI
escape
hatches

Rethink PL Design with Linking Types

RustML Java
C FFI unsafe JNI

escape
hatches

Design linking types extensions that
support safe interoperability with other

languages

PL Design, Linking Types

RustML Scheme
continuations

affine

fine-grained
capabilities

Only need linking types extensions to
interact with behavior inexpressible in

your language.

PL Design, Linking Types, Compilers

LLVM

Typed IR

RustML Scheme
continuations

affine

fine-grained
capabilitiesFully

abstract
compilers

! ! !
type & effect

Gallina

PL Design, Linking Types, Compilers

RustML Scheme
continuations

affine

fine-grained
capabilities

Gallina

! ! ! !pure

+ pure
+ dependent types

LLVM

Typed IR

Fully
abstract
compilers

Linking Types

• Programmers can reason in almost their
source languages, even when building
multi-language software.

• Compilers can be fully abstract, yet support
multi-language linking.

Extra slides

Bigger Picture: Linking Types & Compilers

Parsing DSL

General-purpose
Language

Terminating
Extension

Typed Target

fully abstract

fully abstract

Bigger Picture: Evolution

Parsing DSL

General-purpose
Language

Terminating
Extension

Linear
Extension

Linear File/IO DSL

Typed Target

fully abstract

fully abstract

Extended Typed Target

fully abstract

fully abstract

fully abstract

Pure Language DSL with recursion + exceptions

Recursion
Extension

Bigger Picture: Behavior Not Features

All exceptions must be caught

Typed Target

fully abstract fully abstract

Only need linking types extensions to interact
with behavior inexpressible in your language.

Bigger Picture

DSL with while DSL with recursion DSL with state

Typed Target

State can only be used
for back-patching

No extension needed if behavior
can be represented, even if

surface features are different.

Fully abstract compilers for
languages with linking types

Allow programmers to reason in
“almost” their source language.

But still link with code
inexpressible in their language.

DSL a DSL b DSL c DSL d

Vision of many domain specific languages

With Racket / Turnstile (POPL’17), each DSL can be
typed, but for interaction need to reason about untyped

code after expansion.

With Haskell/Scala, DSL types are encoded in host type
system, so for interaction need to deal with (complex)

encoding in the host language.

With linking types and fully abstract
compilers, programmers need only reason

in the DSL they are using.

PL Design and Compilers

Assembly

RustML Java

C

Linking with existing languages

ML Rust Low-levelTerminating

Richly Typed Intermediatelinking
medium

Linear
LT ext

Term.
LT ext

Low-level
LT ext

reflect features in
appropriate way

We shouldn’t have to annotate

default translation

A multi-language system:

Centralized medical appointment scheduler

Booking interface (Ruby)

Interface to legacy
software (C)

Secure confidential data
processor (Coq extraction)

Scheduler backend/database (Rust) Provider interface (Racket)

Booking interface (Ruby)

Secure confidential data
processor (Coq extraction)

Interface to legacy
software (C)

Scheduler backend/database (Rust) Provider interface (Racket)

How do we allow this:

But still reason (almost) in ?

Without accounting for linking, language
specifications are incomplete!

How do programmers reason about this?

Scheduler backend/database (Rust) Provider interface (Racket)

Problem: C-FFI does not respect Rust’s memory invariants,
so Racket can violate Rust programmers reasoning.

Scheduler backend/
database (Assembly)

Provider interface
(Racket Bytecode)C-FFI

C
O

M
PILE

Problem: Coq extractions remove proof obligations,
so can be called with invalid arguments.

Interface to legacy
software (C)

Secure confidential data
processor (Coq extraction)

C
O

M
PILE

How do programmers reason about this?

LinkerInterface to legacy
software (Assembly)

Secure confidential data processor
(Assembly)

Fully abstract compilation

Programmers can reason in
their own language.

What if the other language can do
things inexpressible in this source?

Linking types allow programmers to reason
about programs in the presence of linking.

When are these equivalent?

• Building fully abstract compilers
• Effect masking (to limit annotation)
• Designing richly typed intermediate

languages

Challenges for linking types

• Languages may have multiple linking
types extensions, which programmers
can opt-in to depending on needs.

• Fully abstract compilers from linking types
extended languages to rich target
language that is medium for linking —
regular compilers can be used beyond.

More Details

• Language specification includes linking
• Low burden — opt-in annotations
• Extensions reflect features in natural way
• Multiple extensions for same language
• Backwards compatible compilers

Benefits of linking types

And we shouldn’t be able to write new programs.

What we can do is change equivalences

Let’s live in a world where programmers
can use many (typed) languages, each

suited to the task at hand.

Turnstile, a metalanguage for
creating typed embedded languages.
Stephen Chang, Alex Knauth, Ben Greenman.
POPL 2017

Maybe programmers should even be
able to easily create them:

These are types that describe
behavior that does not exist in

our language.

These types let us statically
reason about linking.

Linking types allow our tools to provide
cross-language type errors.

