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Our approach

• Single step interpreter.

• Syntax directed typechecker.

• Parser / Pretty Printer that matches

paper (modulo super/subscripts, greek

letters).

• Web frontend with an editor, all

examples from paper,

forwards/backwards stepper.
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Our approach: Typechecker
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custom error messages for parse failures.

These work really well!
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Take our work!

A member of our lab re-used the code for a

gradual typing paper to appear in ICFP17.

• Made artifact in a week (may have

decided to create after acceptance).

• Was able to re-use overall architecture

and most of the web frontend.

• Good feedback — other researchers

excited to play around with examples.
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Questions?

https://dbp.io/artifacts/funtal

https://github.com/dbp/funtal

https://dbp.io/pubs/2017/funtal.pdf


