
Artifacts for Semantics:

An OCaml Experiment

Daniel Patterson and Gabriel Scherer

June 2, 2017

Northeastern University



Goals for Semantic Artifacts

Our paper:

We wanted an artifact that was:

• easy for researchers to write.

• didn’t require reader to install software.

• matched syntax of paper.



Goals for Semantic Artifacts

Our paper:

We wanted an artifact that was:

• easy for researchers to write.

• didn’t require reader to install software.

• matched syntax of paper.



Goals for Semantic Artifacts

Our paper:

We wanted an artifact that was:

• easy for researchers to write.

• didn’t require reader to install software.

• matched syntax of paper.



Goals for Semantic Artifacts

Our paper:

We wanted an artifact that was:

• easy for researchers to write.

• didn’t require reader to install software.

• matched syntax of paper.



Non-goals (though okay if happen)

We weren’t trying to:

• increase trust in results (i.e., machine

assisted proofs).

• aid in experimenting with language

semantics.



Non-goals (though okay if happen)

We weren’t trying to:

• increase trust in results (i.e., machine

assisted proofs).

• aid in experimenting with language

semantics.



Non-goals (though okay if happen)

We weren’t trying to:

• increase trust in results (i.e., machine

assisted proofs).

• aid in experimenting with language

semantics.



Our approach

• Single step interpreter.

• Syntax directed typechecker.

• Parser / Pretty Printer that matches

paper (modulo super/subscripts, greek

letters).

• Web frontend with an editor, all

examples from paper,

forwards/backwards stepper.



Our approach

• Single step interpreter.

• Syntax directed typechecker.

• Parser / Pretty Printer that matches

paper (modulo super/subscripts, greek

letters).

• Web frontend with an editor, all

examples from paper,

forwards/backwards stepper.



Our approach

• Single step interpreter.

• Syntax directed typechecker.

• Parser / Pretty Printer that matches

paper (modulo super/subscripts, greek

letters).

• Web frontend with an editor, all

examples from paper,

forwards/backwards stepper.



Our approach

• Single step interpreter.

• Syntax directed typechecker.

• Parser / Pretty Printer that matches

paper (modulo super/subscripts, greek

letters).

• Web frontend with an editor, all

examples from paper,

forwards/backwards stepper.



Our approach

• Single step interpreter.

• Syntax directed typechecker.

• Parser / Pretty Printer that matches

paper (modulo super/subscripts, greek

letters).

• Web frontend with an editor, all

examples from paper,

forwards/backwards stepper.



Our approach: Interpreter

Translation reduction relation to OCaml.



Our approach: Typechecker

Translate typing judgments to OCaml.

Made syntax directed with annotations & local inference.



Our approach: Parser / Printer

• Use Menhir to write grammar, with

custom error messages for parse failures.

These work really well!

• PPrint for pretty printer. Low effort for

quite good printing!



Our approach: Parser / Printer

• Use Menhir to write grammar, with

custom error messages for parse failures.

These work really well!

• PPrint for pretty printer. Low effort for

quite good printing!



Our approach: Web

• One html page with CodeMirror editor.

• js_of_ocaml for the UI and to compile

parser, pretty printer, interpreter,

typechecker to Javascript.

• 42 lines of hand-written javascript, for

syntax highlighting (9 lines) and type

error highlighting.



Our approach: Web

• One html page with CodeMirror editor.

• js_of_ocaml for the UI and to compile

parser, pretty printer, interpreter,

typechecker to Javascript.

• 42 lines of hand-written javascript, for

syntax highlighting (9 lines) and type

error highlighting.



Our approach: Web

• One html page with CodeMirror editor.

• js_of_ocaml for the UI and to compile

parser, pretty printer, interpreter,

typechecker to Javascript.

• 42 lines of hand-written javascript, for

syntax highlighting (9 lines) and type

error highlighting.



Demo



Take our work!

A member of our lab re-used the code for a

gradual typing paper to appear in ICFP17.

• Made artifact in a week (may have

decided to create after acceptance).

• Was able to re-use overall architecture

and most of the web frontend.

• Good feedback — other researchers

excited to play around with examples.



Take our work!

A member of our lab re-used the code for a

gradual typing paper to appear in ICFP17.

• Made artifact in a week (may have

decided to create after acceptance).

• Was able to re-use overall architecture

and most of the web frontend.

• Good feedback — other researchers

excited to play around with examples.



Take our work!

A member of our lab re-used the code for a

gradual typing paper to appear in ICFP17.

• Made artifact in a week (may have

decided to create after acceptance).

• Was able to re-use overall architecture

and most of the web frontend.

• Good feedback — other researchers

excited to play around with examples.



Take our work!

A member of our lab re-used the code for a

gradual typing paper to appear in ICFP17.

• Made artifact in a week (may have

decided to create after acceptance).

• Was able to re-use overall architecture

and most of the web frontend.

• Good feedback — other researchers

excited to play around with examples.



Questions?

https://dbp.io/artifacts/funtal

https://github.com/dbp/funtal

https://dbp.io/pubs/2017/funtal.pdf


