A Systematic Approach To Teaching

Daniel Patterson

Every student creates their own understanding of the material presented to them. My goal as a
teacher is thus two-fold: first, to create an environment that has the support and structure to
carry out that creation and second, to provide them with engaging and challenging material that
they will use to build up that understanding. Running parallel to that learning process, and more
opaque to the student, is assessment of how consistent their understanding is with what I hope for
them to learn. For each, there are student-facing aspects and instructor-only aspects.

An Environment for Learning: Student-facing At Northeastern University, I designed and taught
an upper level course on verified compilers, in which students both learned how to use a proof
assistant and then proved a series of small compiler transformations correct. I was very conscious
that learning how to use a proof assistant is quite difficult, even for advanced students, all of whom
had been programming for several years and some for much longer. This difficulty stems from the
fact that, despite veneer (tactics, automation, etc), what underlies the type of proof assistants that I
was using are dependently typed core languages, and building up huge dependently typed terms (as
any non-trivial proof will be) is very hard, even for experienced functional programmers. Indeed, it
can be as if learning to program again.

Understanding the challenge that students would have and the possible frustration that could
result informed various aspects of the course design: first, that the vast majority of class time would
be spent working in pairs on proofs, with me floating around to get people unstuck. Working in pairs
made it a more dynamic experience, but also more productive, as both members of the pair would
have to run out of ideas before the pair got stuck. At the end of each class, one group would present
their work, allowing others to see an alternative approach. This class structure allowed students
to practice by doing but also see a possible solution, all while having expert assistance available.
In a pattern appropriate for advanced classes, I relegated traditional lecture material to readings
that accompanied problem sets, with traditional office hours available. The second intervention
was that I encouraged splitting out parts of proofs and continuing on, both modeling that during
in-class demonstrations and structuring grading to encourage it in homework assignments. While
quantitative results from small classes are difficult, qualitative results—in the form of surveys—
confirmed that the class work was strongly appreciated, with nearly all the students successfully
tackling the difficult material.

An Environment for Learning: Instructor-only In any class, students attend lectures, participate
in class, do assignments as they receive them, etc. They experience, necessarily, only what is visible
to them, and in larger classes, they may interact with many different members of a course staff. In the
accelerated version of the first semester class at Northeastern University, [oversaw two TAs (head
TAs), five tutors (regular TAs), and two graders (TAs that do not hold office hours). A significant
aspect of that job was ensuring consistency. I did this in grading of homework assignments, for
which I both wrote rubrics and also, along with the two TAs, reviewed the grading of the other seven.
But even less visibly, it involved ensuring that all the staff, during labs, office hours, and online,
maintained the balance of being helpful without just giving answers, i.e., creating an environment
in which students are challenged and can learn, not merely an environment where any question they
have will be answered.

In my own class, which was small and had no supporting staff, I was careful to set up structures
that would be conducive to students having support but working independently. For example, I
created a student-only discussion forum where I explicitly declared I would not participate, to allow
peer support without any expectation that responses would be correct or canonical. Supplementing
that, I set up a broadcast-only mailing list, so that students could email me questions, and if they
warranted correction to the whole class, I could share them, but that otherwise the presence of the
question was invisible to others. This setup provided support without encouraging students to reach
out until they had gotten truly stuck, an important goal given the challenging material.

Engaging and Challenging Material: Student-facing My second role is to provide material that
by engaging with students build up their understanding. In the accelerated intro class at Northeastern,
I design a semester long project in which students built a tile-based game, which began as a single
player game and later became multiplayer by connecting their clients to a server. Unfortunately,
features of the framework we used made aspects of the client-server interaction difficult to introspect
and made debugging the second part frustrating. While successfully interacting with classmates in
the open world game was fun and rewarding, in the future I would be sure that the experience was
either easier to debug, or structured in a different way so as to avoid the necessary debugging.

As another example of challenging material, I also wrote and delivered a lecture for the same
introductory class where, after having used an untyped language throughout the semester, I livecoded
a simple system to enforce (at runtime) some of the types they had been writing in comments. The
lecture was highly dynamic—all typing I did driven by their input—and the eventual payoff so
rewarding that the students applauded.

Engaging and Challenging Material: Instructor-only While students view assignments as
one-after-another, perhaps related or perhaps not to previous material, the reality is that both the
sequencing and what goes into them is of critical importance. While lectures or readings may
provide students a surface level understanding, only by engaging with assignments will they actually
build a deep understanding, and thus the assignments should be thought of as an entirely separate
parallel presentation of the content of the class: they must encompass all of the important material,
must build upon one another in reasonable increments, and must have enough of a balance between
interest and difficulty to push students.

In the accelerated intro class at Northeastern, the tile-based game that I designed mirrored
the students’ increasing familiarity with data structures throughout the single player version. The
conversion to the multiplayer version, while initially daunting, was actually an exercise in refactoring,
where nearly all functionality could be re-used, with only small additions that distinguished between
input from the keyboard and input from the network to identify which player was moving or acting.

In my course on verified compilers, providing engaging and challenging material primarily
involved designing exercises, both for in class work and for homework. These exercises were
the substance that students used to build their capacity both in theorem proving and compiler
verification. For the course, we were using a common proof technique within the research literature
called simulations, for which there were many complex examples, but nothing simple. What I came
up with, which does constant folding only in the leaves of syntax trees (e.g., 2 + (2 + 2) compiles to
2 + 4, not 6), included all the parts of a simulation proof while remaining very concise, thus could
be used by the students as a mental model throughout the rest of the semester.

Assessment The final role that I have as a teacher is to assess students. This is usually taken as
synonymous with exams and homework, but I take a slightly different view: courses must have some

2

core content that a successful participant in the course will be able to understand. The course may,
and indeed most likely will, have plenty of additional content that students might learn, and each
students’ understanding of that material will vary. The purpose of assessment must be to determine
whether students have sufficiently built an understanding of core content—and the possibility of the
assessments being imperfect at capturing that must be acknowledged! This imperfection is more
than just the possibility of inconsistency across course staff, but indeed that the very nature of the
assessment may be flawed.

For example, while timed exams may be necessary for the sake of pragmatism (they can
generally cover simpler material and still get some sense of an individuals’ knowledge), even if
graded perfectly there are reasons to doubt their quality: some students work poorly under time
constraints, and even worse, they are often done under different contexts than any realistic (whether
academic or industry) setting. For example, in the introductory programming classes at Northeastern,
while assignments are done using an interactive development environment, in exams programs are
usually written on paper. One reason for exams is to avoid plagiarism, but if we take plagiarism as
simply an input that assessment should be designed with awareness of, rather than something that
should be allowed to override other design constraints, we may come up with better alternatives.

Consider adapting the strategy of “code walks” used in some courses at Northeastern to exams
as follows: an exam would take place over a set period of time, say 24 or 48 hours. At the end of the
period, there is a several hour block (the normal “exam block™) during which a random selection
of students (say, 10%), on submission of their exam, will be asked to come and explain (“walk
through™) their code in person, with the grade dependent not on what they submitted but rather
on their explanation of the submission. The long period to work on the exam allows students to
take more time and use the programming environment they are familiar with while they develop
their solutions. The code walk, by being applied stochastically, requires a comparatively small
amount of staff time. It also should be relatively easy for students who did the exam: they explain
the solution that they worked on over last day or two, but it provides a strong (psychological) check
on academic code violations, as the randomness means that there is no way to predict if you will
be in that pool. Finally, if a student is able to submit work they did not do and yet explain it with
confidence, then they clearly understand the material, and thus the actual pedagogical loss to such
plagiarism is minimal. One risk to this, of course, is that someone could get stressed out explaining
their own code — this should be mitigated by having the “code walk™ activity not be something
that only shows up in the context of exams, as indeed, the process of explaining code is a critical
skill that students should learn regardless. I explore this not only as a potential real idea, but as a
demonstration of the type of systematic approach that I bring to teaching.

Courses I Can Teach I’m most drawn to introductory sequences, as that is where the interven-
tions that we make have the strongest impact, both positive and negative. Much as in buildings,
foundations matter. As interested as I am in teaching them, I am also interested in helping to evolve
them in a systematic way. I can also teach discrete math, logic courses, theory of computation, and
would be open to learning how to teach any other first or second year course as well. Of course, |
can also teach courses from my research area, spanning across compilers, programming languages,
formal verification, type systems, etc. Finally, a particular topic of interest is software development:
before grad school, I started and spent several years running a company primarily working on legacy
code bases, an experience not unlike what many aspiring software developers will encounter, and
I’m interested in how to better prepare students for the reality of legacy code, debugging, etc.

