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Abstract
This paper describes FEEDBOT, an open-source formative assess-
ment tool leveraging large language models (LLMs) to provide
structured, high-level feedback on design-oriented programming
assignments. Designed to address the limitations of traditional auto-
grading and overcome scaling challenges of formative assessment,
FEEDBOT uses an existing pedagogical framework to provide tar-
geted but limited actionable feedback. Early results demonstrate
measurable improvements in student performance in a large in-
troductory computer science course, while avoiding the pitfall of
providing too much assistance that more unstructured tools com-
monly encounter. Although this experience report focuses on a
particular implementation, we believe that FEEDBOT (and its gen-
eral approach) is adaptable to many other contexts.

CCS Concepts
• Applied computing → Education; • Computing methodolo-
gies → Artificial intelligence.
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1 Introduction
Formative assessment [4] is important for learning and thus reduc-
ing education inequities [2, 12]. However, in large classes, providing
iterative feedback by hand quickly becomes unmanageable. Exist-
ing automated grading systems (primarily unit-test-based) partially
mitigate this but restrict assignment variety and feedback granu-
larity. FEEDBOT leverages large language models (LLMs) to offer
high-level, structured feedback on diverse, design-oriented pro-
gramming tasks in an introductory computer science course. By
integrating the Design Recipe [6, 16], which structures problems
into sequential steps, FEEDBOT identifies the first problematic step

This work is licensed under a Creative Commons Attribution 4.0 International License.
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and provides limited but actionable hints. This approach preserves
student agency by not revealing solutions.

Briefly, the Design Recipe proceeds as follows: data design is
accomplished by (1) identifying the values that make up the data, (2)
describing (in a comment) how the data will be used in the program,
(3) writing down examples of the data, and (4) constructing an
example function "template" showing how the data might be used.
Function design is done by (1) describing the input and output types
of the function, (2) writing down a concise statement (in English)
of what the function does, (3) writing example function uses (test
cases), and (4) implementing the function.

Since FEEDBOT knows whether a given problem is a data design
problem or a function design problem, its task is to: (1) assess
whether all four steps have been completed satisfactorily and if
not, (2) identify the first step that needs work. Since the steps are
intentionally sequential, the first step with issues is the ideal place
for a student to begin improving their work. Additionally, since
the steps are granular yet general, the mere identification of that
step strikes a good balance of giving students guidance without
giving them so much assistance that they do not learn from doing
the work on their own. While FEEDBOT is not bound to the Design
Recipe, its success is certainly due to the sequential and granular
nature of this pedagogical framework, and likely without it the tool
would have similar struggles to other tools in this space.

1.1 Contributions
This paper presents the following contributions:

(1) Tool Design: Introduces FEEDBOT, an open-source LLM-
based system for structured feedback on design-oriented
assignments.

(2) Pedagogical Integration: Demonstrates how the Design
Recipe [6] helps guide the feedback process.

(3) Evaluation of Effectiveness: Presents initial evidence
suggesting that FEEDBOT usage correlates with higher
performance.

(4) Scalability and Reproducibility: Explores how FEED-
BOT scales to large courses, with notes on adoption and
adaptation challenges.

1.2 Structure of paper
The remainder of this paper is structured as follows:

• §2:RelatedWork explores existing literature on formative
assessments, autograding systems, and the use of LLMs in
education, identifying gaps that FEEDBOT addresses.

• §3: Implementation outlines the design, methodology,
and key features of the tool.

https://orcid.org/0009-0006-6748-4902
https://orcid.org/0009-0009-2854-7554
https://orcid.org/0009-0004-7294-7495
https://orcid.org/0000-0002-2116-8684
https://doi.org/10.1145/3724363.3729063
https://doi.org/10.1145/3724363.3729063
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3724363.3729063


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands Zhu et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

• §4: Findings and Results presents both quantitative and
qualitative analyses of FEEDBOT ’s effectiveness.

• §5: Conclusion summarizes key contributions, findings,
and directions for future work.

FEEDBOT is open source, available at https://github.com/NUFeedBot.

2 Related Work
The potential of generative AI technologies, particularly large lan-
guage models (LLMs), in enhancing teaching and learning prac-
tices has been increasingly recognized. Baidoo-Anu and Owusu
Ansah [1] explored the application of ChatGPT in promoting educa-
tion, highlighting its role in fostering accessibility and engagement
in classrooms through personalized interactions and immediate
feedback mechanisms.

Mastery learning, introduced by Bloom [4], provides a theoreti-
cal foundation for formative assessment approaches, focusing on
achieving mastery of topics through iterative improvement. Build-
ing upon these principles, Felleisen et al. [6] introduced the Design
Recipe, a structured methodology that guides students in problem
solving and program design. The Design Recipe’s focus on concrete-
ness fading, a method reviewed systematically by Fyfe et al. [7],
demonstrates the educational benefits of gradually transitioning
from concrete to abstract representations in teaching programming
concepts.

Recent research has evaluated the effectiveness of LLMs in sup-
porting students’ learning processes. Hellas et al. [9] analyzed how
LLMs respond to beginner programmers’ help requests, finding po-
tential in their ability to scaffold learning but identifying challenges
in addressing misconceptions.

Garcia et al. [8] and Lionelle et al. [14] emphasized the scalabil-
ity of LLM-driven feedback in large courses, introducing grading
frameworks that balance formative and summative assessment
needs.

Ren et al. [15] provided insights into the types of help students
seek during TA office hours, a study that informed the integra-
tion of structured feedback mechanisms in tools like FEEDBOT.
Complementing this, Tuson and Hickey [18] proposed mastery-
based grading systems with specifications (specs) grading, aligning
assessments with well-defined, modular learning outcomes.

There have also been many LLM-powered tools developed. Code-
Help, developed by Liffiton et al. [13, 17], leverages LLMs to provide
scalable support with embedded guardrails to ensure pedagogical
alignment. This tool was further studied by Denny et al. [5] (in a
limited, 13 day period), where they collected qualitative feedback
from students. Highlights from the aforementioned tools support
the design of FEEDBOT– that AI assistants should guide students
where to work but should not solve problems for them. Unlike
FEEDBOT, CodeHelp provides open-ended feedback and thus is
somewhat prone to assisting too much (partially addressed by in-
troducing keyword blacklists). This is, of course, a trade-off, as
FEEDBOT does not have a mechanism to explain concepts, which
a more general "AI Assistant" clearly would have.

A similar tool is CodeAid [11], which adopts the strategy of only
explaining in terms of pseudocode, but still explains in high levels
of detail how to solve problems, and thus possibly stands in for
student learning, unlike FEEDBOT. Giving solutions as pseudocode

and leaving the only learning task a translation to real code seems
a real detriment.

Bassner et al. [3] built Iris, which allows open-ended questions
but filters them using extensive prompting via a similar strategy as
FEEDBOT to ensure that the output does not contain solutions or
too much help. It is a much heavier weight solution, as it requires
integration into an interactive learning platform, and unlike FEED-
BOT, which suggests a place where a student has made a mistake,
Iris doesn’t provide assistance outside of what students explicitly
ask for.

Jacobs and Jaschke [10] built Tutor Kai, which gives feedback on
programming tasks, but with single functions and with extensive
feedback. Perhaps partly due to the model (GPT-4) or partly due
to the level of detail in the feedback (unlike FEEDBOT, which
simply identifies a step in the Design Recipe where a mistake occurs,
Tutor Kai describes exactly what is wrong, and if there are multiple
mistakes, describes all), the authors ran into problems where the
tool produced hallucinations and mistakes.

While these (and many other) tools use LLMs, most provide
nearly unaltered output from LLMs, even with extensive prompt
engineering, which often means that there are risks of providing
too much help to students. This is very different from FEEDBOT,
where the feedback is intentionally very limited: while the out-
put from the model is extensive, we include a delimiter and then
an extremely short response after it, and only display the latter
to students. Because FEEDBOT fits into an existing pedagogical
framework that is highly structured, it can refer students back to
the step of the design process they should focus on with minimal
additional help. Thus, it can use the LLM to identify where a student
should focus their work, rather than telling them what to do, or
even what exactly is wrong, since the step to focus on should allow
them to do their own reasoning.

3 Implementation
FEEDBOT uses OpenAI’s o1-mini to analyze student submissions
and provide feedback aligned with the Design Recipe framework.
FEEDBOT has been prototyped using Racket’s Teaching Languages,
but is not tied to Racket. It does, however, rely upon the structured
and sequential approach of the Design Recipe, and in order to be
adapted to a different pedagogical approach, a similar structure
would have to be identified. This is because the primary feedback
is pointing students to which step in the process they should focus
their attention on.

3.1 Prototyping
Initial experiments were conducted using the OpenAI API (first
with GPT-4-turbo-preview, and later with GPT-4o and o1-mini
when those models became available). Experiments assessed the
feasibility of using commercial LLMs to provide actionable feed-
back on student programming assignments. They demonstrated
the models’ capability to understand student code in the Racket
Teaching Languages, identify deviations from reference solutions,
and generate feedback aligned with high-level design principles.

The prompt was refined iteratively to provide more accurate and
consistent feedback. Many components align with known “best
practices” in prompt engineering, including:

https://github.com/NUFeedBot
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• providing a persona for the LLM (“You are FeedBot...”)
• providing a clear step-by-step process
• requesting chain-of-thought output (this was particularly

effective in improving consistency, since it separated the
tasks of code analysis and feedback writing)

For testing, we designed a system to generate responses with
multiple prompts, multiple times per prompt, and present them
side-by-side. This allowed direct analysis of differences in quality
and replicability between prompt iterations.

These experiments utilized the Design Recipe framework[6].
This structured methodology not only facilitates effective feedback
but also aligns with the types of assistance students typically seek
from teaching assistants. While the experiments focused on the
Beginning Student Language dialect of Racket, the findings suggest
that the approach could be extended to other languages like Python
or Java, though additional structuringmay be required for providing
similar pedagogically sound feedback in those contexts.

While the results from closed-source models are variable, we did
notice a consistent problem with GPT-4o where it would occasion-
ally not notice type signatures despite them being present. This
issue, which we identified during the final round of testing right
at the beginning of the semester, motivated the switch to o1-mini
(which was released right at that time), which did not have the
same weakness.

3.2 Prompt Structure
For each question, the final prompt was structured as follows:

We found this structure provides reasonably accurate feedback,
particularly due to the chain-of-reasoning style prompting, even
though the particular LLM we used (OpenAI’s o1-mini) already
claimed to be a "reasoning model". We did make a few minor
tweaks/additions to the prompt during the semester as we encoun-
tered some misleading feedback, but the structure of the prompt
was unchanged. The refinement step asks the model to provide

output after a delimiter, and we only provide the post-delimiter
output to the student.

3.3 Demonstration
In this subsection, we show an example problem and the raw output
that the prompt produces. Note, importantly, that after giving ex-
tensive feedback, it inserts a delimiter and provides a very concise
summary of only the first issue, which is what is shown to the
student. While this was very reliable, we also included additional
failsafes like stripping markdown code from the output (as any
code it outputs is a bug, and code always appears inside markdown
code marks).

This problem, which appeared in HW7 (see §4 for the array of
assignments we ran the tool on) occurred during an assignment
where students were tasked with manipulating survey data. The
task involved converting a list of student responses containing
names into an anonymized list without names, adhering to struc-
tured design principles. Below is an example of a submission and
the feedback generated by FEEDBOT using our standard prompt:

Submission.

(define-struct student/v4 [age demographic legacy?])
;; A student/v4 is a:
;; (make-student/v4 Integer String Boolean)
;; - age: The age of the student
;; - demographic: The ethnicity of the student
;; - legacy?: Whether the student is a legacy student or not

(define STUDENT1 (make-student/v4 19 "White" #false))
(define STUDENT2

(make-student/v4 20 "Black or African American"
#true))

;; anonymize: [Listof student/v4] -> [Listof student/v4]
;; Removes names from the list of students
(check-expect (anonymize '()) '())
(check-expect (anonymize (list STUDENT1 STUDENT2))

(list STUDENT1 STUDENT2))

(define (anonymize students)
(cond

[(empty? students) '()]
[else
(cons (make-student/v4

(student/v4-age (first students))
(student/v4-demographic (first students))
(student/v4-legacy? (first students)))

(anonymize (rest students)))]))

Feedback. Running FEEDBOT on the above submission, which has a
dependency on a prior problem (where the non-anonymized student
was defined as student/v3) results in the following response, with
what comes after the delimiter (======) shown to students:
### PART 1:
1. Signature for anonymize

(a) No
(b) The signature in [Student Code] does not correctly
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reflect the required input and output types.
2. Purpose Statement for anonymize

(a) No
(b) It is satisfactorily completed in [Student Code].

3. Tests for anonymize
(a) No
(b) Only two tests are provided; at least three are
required.

4. Function Body for anonymize
(a) No
(b) It is satisfactorily completed in [Student Code].

======
The signature for `anonymize` does not correctly represent
the function's input and output types as required.
Please revise it to match the problem statement.

Before we consider the summary (after the ======), note that in
order to avoid issues where the model missed instructor provided
parts, part (a) asked the model to locate the step outside student
code, and only if it was absent, to proceed with (b), feedback on the
student code. Since the above problem had students complete all
four steps, all part (a) responses are No.

We highlight two important parts of the summary. First, not only
is the identification of the problem correct – the type signature is in-
correct, since the input should have been a [Listof student/v3]
(what they defined previously, which had names), rather than the
anonymized definition ([Listof student/v4]), FEEDBOT did not
tell them exactly what was wrong. Instead, it pointed them to the
signature step, so the student would still work on their own to
figure out exactly what the signature should be. Second, note that
while FEEDBOT identified that the student should have included
more test cases, it did not provide that feedback at all, since it had
already identified an earlier step with an issue.

3.4 Dependencies
A key element that allows FEEDBOT to work on real assignments
is that it supports problems that depend on one another. As in the
above example, sometimes in one problem students would design a
data definition, and then later use it in another problem. While we
wanted to provide isolated feedback for each problem to increase
precision, problem dependencies need to be dealt with, and simply
providing the entire assignment for a single piece of feedback is
not a great idea. Not only would this reduce the likelihood of good
feedback, as the model would have to reason about much more
code at once, but while errors on earlier steps of the Design Recipe
should result in no feedback on later steps, we did not want errors
on earlier problems to affect the feedback on later problems.

Thismeant that while we ran one query per problem,we included
dependencies where necessary and included in the prompt that only
the current problem should receive feedback.

This necessitates splitting the assignment submission files, which
were ordinary text files, using particular comment delimiters (ar-
bitrarily chosen as ;;!, given ; begins a line comment in Racket)
into individual problems, where each problem has a description
and student-produced code in response. We then used a second
delimiter ";;!! Write your response below" to distinguish problem

descriptions from student-produced responses, which allows us to
extract just the student code, and prevent student modifications
of the assignment, which occasionally happened, from interfering
with our feedback.

An example outline of an assignment is shown below:

;;!Problem 1
Problem 1 overall description

;;!Part A
Problem 1, part A description
;;!! Write your response below
...student response...

;;!Part B
Problem 1, part B description
;;!! Write your response below
...student response...

;;!Problem 2
Problem 2 description
;;!! Write your response below
...student response...

To track problem types and determine which problems would
get feedback from FEEDBOT, each assignment has a manually cre-
ated JSON file that specified, among other things, the problem
dependencies for each problem. Problems are described by paths,
which are ordered sequences of strings following the special ;;!
delimiter. For the example above, the paths for the problems would
be ["Problem 1", "Part A"], ["Problem 1", "Part B"] and
["Problem 2"]. Each problem then has an optional list of depen-
dent problems that the LLM requires to fully understand the prob-
lem. For instance, in the example above ["Problem 1", "Part A"]
may be listed as a dependency of ["Problem 1", "Part B"].

3.5 Other Metadata
In addition to the problem paths, each problem is categorized as
either a Data Design (DD) or Function Design (FD) task. We crafted
specific prompts for each category, explaining what each of these
"recipes" are and the expected steps that a student is required to
complete for each type of problem.

Finally, problems have optional "grading notes", which allow
us to include problem-specific feedback instructions. These notes
are particularly helpful for problems where certain parts of the
recipe are predefined or omitted. For example, if a problem includes
a signature and purpose statement, students are only required to
complete the tests and implementation steps. The default prompts
assume all recipe steps must be completed, leading the LLM to
request omitted steps due to how strongly we prompt it to ensure
the student includes all steps. Reiterating that certain parts of the
recipe can be omitted in the grading note for these types of prob-
lems helped resolve this issue. This also helped resolve occasional
oddities, like when the model got confused about a struct field name
ending in a ? and thought uses of it were for an unimplemented
function.
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3.6 Integration into Gradescope
While the feedback from FEEDBOT was entirely unrelated to grad-
ing, we used the submission & autograder mechanism from Grade-
scope in order to handle student submissions. When a student
submitted an assignment, in addition to ordinary autograder tests
that ran before the assignment deadline, we would run the client
for FEEDBOT, which was responsible for extracting problems and
generating prompts according to §3.2. It would then submit those
to the FEEDBOT server, which existed externally in order to defer
actually running the LLM queries until students went to view the
output. This was a serious cost savings, given that only around half
of students viewed the results of FEEDBOT. The server also had
buttons that allowed students to give feedback on the quality of
response (see §4.1 for results from those). Once the prompt was
submitted to the FEEDBOT server, it returned a URL that was dis-
played in the autograder output. When students visited the link,
they would see a loading page while the query was run, and around
10 seconds later would get the feedback.

Partly to control cost, and partly because we wanted students to
spend time thinking about the feedback before resubmitting, we
implemented both a cooldown period and an overall rate limit. For
our implementation, we only ran FEEDBOT if it had not been run
in the last hour (other submissions could have occurred), and only
ran a total of 5 submissions per assignment.

We tried to implement both using Gradescope metadata, only
finding out after the semester ended that the unreliability was due
to them not implementing the metadata on past submissions.

4 Findings and Results
The bulk of the development on FEEDBOTwas done over the spring
and summer preceding the semester whose results we are describ-
ing. While that testing was done with other models, the actual use
of FEEDBOT that this experience report describes was all done
with OpenAI’s o1-mini. Due to integration details unrelated to
FEEDBOT, including being unsure whether we wanted to provide
the feedback from the very beginning of semester, we didn’t intro-
duce FEEDBOT until partway through the semester. We also ran it
for one assignment with the results only visible to TAs in order to
identify any remaining bugs in the tool or, more likely, prompt. As
a result, we used it fully on seven homework assignments, in an
introductory programming course with around 500 students.

4.1 Quantitative Analysis
Since the manual grading that captures the design skills that FEED-
BOT was intended to aid with only happened after the assignment
deadline (and only a single time), measuring the impact of FEED-
BOT is challenging. We can, however, segment students on each
assignment based on whether they viewed the output of the tool
(at least once) and those that did not.

From that initial analysis, we find (see Table 1; counts of students
are in parentheses) that those that used FEEDBOT did notably better
in almost every assignment where it was available. The outlier to
this phenomenon, HW9, where the difference was only 2.3%, was
an assignment where we included signatures & purpose statements
(the first two parts of the design process) as part of the assignment,
so students only had to write tests & implementations, both of

Table 1: Average Scores of Students

HW Never Viewed Viewed At Least Once Delta

HW6 81.4% (340) 90.7% (179) +9.3%
HW7 79.3% (232) 87.4% (283) +8.1%
HW8 86.5% (261) 91.1% (240) +4.6%
HW9 93.6% (301) 95.9% (211) +2.3%
HW10 88.5% (230) 93.9% (283) +5.4%
HW11 83.5% (288) 90.6% (218) +7.1%
HW12 72.3% (240) 82.2% (212) +9.9%

which were assessed by a traditional autograder and visible at the
same time as the results from FEEDBOT. Thus, we expect that the
additional help that students got from FEEDBOT was minimal.

One potential threat to validity in this analysis is that students
who use FEEDBOT may be students who are stronger, and thus the
assistance from FEEDBOTmight be marginal. To try to address this,
we used the aggregate performance on HW1-4, where FEEDBOT
was not available (HW5 had partial availability, so was eliminated
from both sections), to segment students into four quartiles of even
size. While usage of FEEDBOT was consistently highest in the top
quartile, the improvement of scores showed up across the spectrum,
and was indeed often most notable in the lowest quartile, showing
that FEEDBOT was beneficial even to lower performing students,
provided they actually used it. These results are shown in Table 2.
In that table, for each quartile (Quartile 1 is lowest performing,
Quartile 4 highest) the average score from those that didn’t use
FEEDBOT and the average from those that did, and in parentheses
the percent of that quartile that used FEEDBOT.

Another potential threat is that students in the lowest quar-
tile may include those who simply did not submit one or more of
the early homeworks. Because quartile membership is based on
cumulative performance across HW1-4, a student who received
zeros on one or two assignments but completed others could still
land in Quartile 1 despite showing moderate performance on the
assignments they completed. We opted not to exclude such stu-
dents entirely because their scores and submission patterns are
still pertinent to the question of who benefits from FEEDBOT us-
age. Nevertheless, we acknowledge that outliers of this nature may
affect the quartile analyses, and in a more formal study, filtering
or separate analyses (e.g., excluding students who submitted no
work at all for early homeworks) could help isolate the effect of
FEEDBOT from non-submission effects.

A final threat is that usage of FEEDBOT may be correlated to
motivated students across all quartiles. Students who had weak
early scores may have improved due to hard work unrelated to
FEEDBOT. Unfortunately, our data does not allow us to challenge
this assumption.

There is one other place we can look for quantitative feedback:
debugging feedback built into the tool. In order to identify issues
with FEEDBOT, we included a mechanism where users could rate
any piece of feedback as "Very Helpful", "Somewhat Helpful", and
"Not Helpful". A total of 1357 responses were collected (around 5.3%
of the total possible). Of those, 63% chose "Very Helpful", 15% chose
"Somewhat Helpful", and 22% chose "Not Helpful".
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Table 2: Effect of FEEDBOT Usage by Performance In Class

HW Quartile 1 Scores (Usage) Quartile 2 Scores (Usage) Quartile 3 Scores (Usage) Quartile 4 Scores (Usage)

HW6 65.5% → 80.0% (14%) 82.5% → 89.5% (30%) 87.6% → 91.2% (40%) 93.0% → 94.5% (46%)
HW7 70.5% → 79.5% (24%) 80.5% → 82.5% (53%) 86.3% → 88.4% (60%) 84.5% → 93.0% (69%)
HW8 73.5% → 76.4% (18%) 82.9% → 86.2% (41%) 88.8% → 94.4% (57%) 92.4% → 95.3% (59%)
HW9 88.6% → 88.1% (16%) 93.8% → 95.3% (33%) 96.6% → 97.1% (50%) 97.0% → 97.5% (54%)
HW10 84.4% → 90.3% (27%) 87.6% → 92.0% (49%) 90.7% → 94.4% (62%) 93.4% → 96.3% (68%)
HW11 72.7% → 86.0% (16%) 84.5% → 84.6% (43%) 87.4% → 93.0% (45%) 91.3% → 94.7% (54%)
HW12 62.3% → 71.7% (22%) 74.5% → 82.7% (38%) 76.9% → 82.2% (44%) 84.3% → 86.6% (51%)

While 22% is notable, manual review of the "Not Helpful" ratings
reveals nuance. In particular, we found that 37% of those "useless"
responses were associated with errors in the student submission
that FEEDBOT correctly identified. This suggests that a portion
of the negative feedback was due to students’ misunderstandings,
rather than issues with the tool’s functionality. This is, indeed,
one possible risk in the design of FEEDBOT: since the feedback is
very limited, and relies upon the student to identify where in the
identified step there is a mistake, it is possible that students will
not understand the feedback that is given. This is obviously com-
pounded by the fact that occasionally the tool was, indeed, wrong!
But the same can be true of nearly any intervention, including
traditional teaching assistants!

An additional 4% of the "Not Helpful" ratings were due to a
bug caused by a misconfiguration of dependencies, which had to
be configured before assignment release (see §3.4). We corrected
those once we noticed, but any submissions that had already been
processed included erroneous complaints by FEEDBOT about ref-
erences to unbound identifiers. Removing those 41% reduces the
total number of unhelpful comments to around 13%.

While there could be similar errors in "Helpful" feedback, with-
out being able to see what students changed in response to the
feedback, it’s hard to determine if the feedback was indeed erro-
neously helpful, so we do not attempt to quantify this.

A potential critique of this work is the lack of a direct comparison
against a simpler intervention, such as merely pointing students
to the Design Recipe and asking them to confirm for themselves
that each step was completed. Indeed, that simpler approach char-
acterized the first four homework assignments (HW1-4), where we
consistently reminded students to verify the alignment with each
step of the Design Recipe on their own. However, we believe that
the structured and automatic nature of FEEDBOT’s feedback (i.e.,
diagnosing which step is problematic) offers clearer guidance than
self-diagnosis.

4.2 Qualitative Feedback
Around 30% of students gave feedback about the use of FEEDBOT
alongside other general anonymous feedback for the course. Of
those, 71% reported using FEEDBOT on most assignments, and over
90% used it at least once. Additionally, 83% of those that used it said
the feedback was either very or sometimes helpful, and another
5% indicated that FEEDBOT always told them their code was fine,
and they didn’t get later deductions. This reinforces the notion that
FEEDBOT has almost a 90% success rate.

In free response, many students complained about the rate limit-
ing of the tool, which indirectly confirms utility.While the "cooldown"
period was an additional mechanism to ensure that students still
did independent work, the hard upper limit on the number of sub-
missions was primarily for budgeting reasons. Both, however, were
somewhat inflexible, as they did not allow the student to determine
on which submissions they wanted feedback. We intend to change
how this is done in the future, in order to have the rate limiting
be enforced based on the submissions students view, rather than
what they submit, which would alleviate many of the complaints
(e.g., that by the time they had submitted something they wanted
feedback on, they had used up all their submissions).

4.3 Future Work
Expanding Language / Pedagogic Framework Support: We plan on
using FEEDBOT in other contexts, to see how tied to the Design
Recipe its success is.
Conducting Studies: As an experience report, we clearly are only
reporting on our experience with this tool. Among many potential
things to study, it would be interesting to know the changes that
happened after viewing the responses, and to code them to see if
they were connected to FEEDBOT.
Better Rate Limiting: Not only allowing students to choose which
submissions to get feedback on (see §3.6), but also exploring an
adaptive feedback system that adjusts the frequency of feedback
based on individual student performance to improve equity.
Adding Clarifications: While we don’t want to turn FEEDBOT into
a chatbot, adding some limited ability to ask for clarification on
feedback may improve the cases of students not understanding
correct feedback.

5 Conclusion
In this experience report, we have described a new open source tool
called FEEDBOT that can be used to provide formative feedback
on design-oriented programming assignments. It uses LLMs to
provide structured, limited, but actionable feedback, addressing key
challenges in large-class settings. We have shown that even in this
restricted form, it can assist students.
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