
Semantic Encapsulation using Linking Types
Daniel Patterson

dbp@dbpmail.net
Northeastern University

Boston, MA, USA

Andrew Wagner

Northeastern University

Boston, MA, USA

ahwagner@ccs.neu.edu

Amal Ahmed

amal@ccs.neu.edu
Northeastern University

Boston, MA, USA

Abstract
Interoperability pervades nearly all mainstream language

implementations, as most systems leverage subcomponents

written in different languages. And yet, such linking can

expose a language to foreign behaviors that are internally in-

expressible, which poses a serious threat to safety invariants

and programmer reasoning. To preserve such invariants, a

language may try to add features to limit the reliance on

external libraries, but endless extensions can obscure the

core abstractions the language was designed to provide.

In this paper, we outline an approach that encapsulates

foreign code in a sound way—i.e., without disturbing the

invariants promised by types of the core language. First, one

introduces novel linking types that characterize the behaviors
of foreign libraries that are inexpressible in the core language.

To reason about the soundness of linking, one constructs a

realizability model that captures the meaning of both core

types and linking types as sets of target-language terms.

Using this model, one can formally prove when foreign be-

havior is encapsulated; that is, unobservable to core code.

We show one way to discharge such proofs automatically

by augmenting the compiler to insert verified encapsulation
wrappers around components that use foreign libraries.

Inspired by existing approaches to FFIs, we develop a pair

of case studies that extend a pure, functional language: one

extension for state, and another for exceptions. The first

allows us to implement mutable references via a library,

whereas the second allows us to implement try and catch
as library functions. Both extensions and the overall system

are proven sound using logical relations that use realizability

techniques.

CCS Concepts: • Software and its engineering→ Gen-
eral programming languages.

Keywords: language interoperability, linking, type sound-
ness, semantics, logical relations

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

TyDe ’23, September 4, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0299-0/23/09.

https://doi.org/10.1145/3609027.3609405

ACM Reference Format:
Daniel Patterson, Andrew Wagner, and Amal Ahmed. 2023. Seman-

tic Encapsulation using Linking Types. In Proceedings of the 8th
ACM SIGPLAN International Workshop on Type-Driven Development
(TyDe ’23), September 4, 2023, Seattle, WA, USA. ACM, New York,

NY, USA, 15 pages. https://doi.org/10.1145/3609027.3609405

1 Introduction
Languages cannot exist in isolation. Foreign function inter-

faces (FFIs) are a critical feature of nearly all mainstream

languages as they underpin core libraries and runtimes, and

facilitate the construction of large systems with components

written in different languages. For example, a recent study of

Rust [5] found that themost common justification for unsafe
code—which is itself more common than one might hope—is

interoperability. For the sake of illustration, consider Fig-

ure 1, which defines a simple binding to C’s signal function
in Rust and in Haskell. In C, signal has the signature void
(*signal(int signum, void (*handler)(int)))(int):
it takes a signal identifier and a function pointer to a handler,

installs the handler to respond to that signal from now on,

and returns a function pointer to the previous handler for

that signal.

Looking beyond surface-level differences, there are no-

table similarities between the FFIs provided by these lan-

guages. Both (Rust L2–6, Haskell L2–3) import the foreign

function signal from libc, specifying where to find the

function and which ABI to use. In both cases, the program-

mer is responsible for ascribing a type to the foreign function,

and the compiler will not check that it is accurate. We also

(Rust L10-11, Haskell L9-12) demonstrate the mechanism for

a core function to be passed dynamically to foreign code.

The most interesting lines are in the middle (Rust L7–9,

Haskell L4-8). As per the FFI guidelines for both languages

[21, 27, 47], we hide the “raw” foreign function from clients

and instead export a safe wrapper around it. Wrappers have

two primary responsibilities: (i) to marshal data between

idiomatic core types and foreign types (e.g., extern fn and

usize, or -> and FunPtr); and (ii) to encapsulate foreign be-
haviors in a way that preserves the standard expectations of

the core language. The former, while tricky, is generally well-

understood, but the latter is murky at best. Both languages

provide a mechanism to indicate that something “inherently

unsafe” [21] is occuring (unsafe and IO), and the compiler

will even complain when these mechanisms are omitted. But

14

https://doi.org/10.1145/3609027.3609405
https://doi.org/10.1145/3609027.3609405

TyDe ’23, September 4, 2023, Seattle, WA, USA Daniel Patterson, Andrew Wagner, and Amal Ahmed

1type Handler = extern "C" fn(i32) -> ();

2#[link(name = "c")]

3extern "C" {

4#[link_name = "signal"]

5fn c_signal(s: i32 , h: usize) -> usize;
6}

7fn signal(s: i32 , h: Handler) -> usize {

8unsafe { c_signal(s, h as usize) }

9}

10extern "C" fn print_sig(s: i32) {

11println!("{0}", s); }

(a) Rust
1type Handler = CInt -> IO ()

2foreign import ccall "signal.h␣signal" cSignal

3:: CInt -> FunPtr Handler -> IO CInt

4signal :: Int -> Handler -> IO Int
5signal s h = do
6h <- mkHandler h;

7r <- cSignal (fromIntegral s) h

8return $ fromIntegral r

9foreign import ccall "wrapper" mkHandler

10:: Handler -> IO (FunPtr Handler)

11printSig :: Handler

12printSig = putStrLn . show

(b) Haskell

Figure 1. Using signal.h from libc via the FFI.

short of some rules of thumb and best practices, the pro-

grammer has little guidance on how to actually reason about
unsafety.

In fact, this isn’t only a problem for programmers—it’s

a problem for language designers as well. Indeed, the pro-
cess of linking with foreign code often invalidates one of

the key safety theorems of many languages: type soundness.

Typically, if a language is proven sound at all, the proof will

almost certainly exclude the FFI. Unfortunately, this means

that the soundness theorem is only a crude approximation

of reality, as nearly all programs have FFI calls somewhere

in their stack. But it is not obvious exactly how to incorpo-

rate the FFI into a soundness theorem, since the prevailing

technique for proving type soundness is a syntactic progress

and preservation proof. Such a proof shows that types are

preserved by reduction, and if the language in question is not

self-contained, then the proof must account for the behavior

of the foreign code, too.

This is precisely what Matthews and Findler [40] set out

to address with multi-language semantics, which is defined

to account for the behaviors of two languages, say core lan-

guage L and foreign language F. Interoperation between

these languages is mediated by a boundary, 𝜏 LLF 𝜏F𝑒F, which

enables foreign code 𝑒F : 𝜏F to be used in an L context

that expects code of type 𝜏L. Boundaries play the role of,

e.g, unsafe above, but because the semantics incorporates

both constituent languages, it is not unsafe, but rather well-
specified. Unfortunately, it is impractical to design a multi-

language semantics for every pair of interacting languages.

Even worse, it is unrealistic to expect an L programmer to

also know all the foreign languages F1, . . . , F𝑛 in which their

libraries were written. Indeed, the most serious limitation

of a multi-language semantics is that L programmers can-

not benefit from the extra expressive power of F unless they

write embedded F programs themselves. This multi-language

approach would require, for example, Rust programmers to

write embedded C code in order to use C libraries.

Instead, we want to adopt the style of existing FFIs, as

shown in Figure 1, which allows programmers to leverage the

power of the foreign language while continuing to program

only in their language. Over the course of this paper, we will

show how to develop a sound FFI for a language that does not
yet have away to linkwith foreign code.Wewill demonstrate

the approach using a pure
1
functional language, FunLang. As

motivation, suppose that a FunLang programmer wants use

a foreign library for exceptions. That is, they wish to import

procedures throw and catch and use them in a FunLang
program, e:

import(throw : ?, catch : ?) e
The problem is that there are no types in our pure lan-

guage that can faithfully account for the effectful behavior

of throw and catch. FunLang types 𝜏 permit and prohibit

certain behavior, even after compilation to our stateful tar-

get StackLang which has control effects. Specifically, they

require extensional purity: that the only behaviors allowed

are those that do not have any observable effects (other than

divergence). Thus, even when we link with an exceptions li-

brary, we want to ensure that any term with a FunLang type
𝜏 does not produce any uncaught exceptions. A traditional

multi-language semantics would forbid us from using throw
and catch directly in FunLang; we would instead be forced

to write a subprogram in a foreign, impure language and

then export the resulting value.

To reconcile the problems with using foreign, inexpress-

ible behavior directly within our own language, we build

upon a position paper by two of the authors ([48]), which

proposed linking types. The core idea is that language design-
ers augment their language with types so that programmers

can annotate exactly where foreign behaviors are introduced

into their programs. This is not unlike the FFIs in Figure 1,

where extra types (e.g., FunPtr and CInt) or qualifiers (e.g.,
extern) are added specifically to address foreign code. That

paper’s vision was to build fully abstract compilers that sup-

port linking with target programs that are inexpressible in

the source.

In this paper, we apply the linking types idea to a more

grounded but useful goal: proving type soundness in the

presence of foreign functions. To do so, we require a way to

connect source-level linking types to the target-level library

code that they describe. We do this using realizability models,
1
Throughout this paper, when we say “pure language” we mean a language

with no effects other than divergence.

15

Semantic Encapsulation using Linking Types TyDe ’23, September 4, 2023, Seattle, WA, USA

which interpret source types as sets of target terms. Our tar-

get in this paper, StackLang, has mutable state and control

effects. In recent work, Patterson et al. [49] employ realiz-

ability models to verify the soundness of multi-language

semantics. This paper takes that idea a step futher by de-

signing realizability models for both core source types as

well as linking types, and by implementing encapsulation
boundaries that wrap components using foreign code (much

like signal wraps c_signal in Figure 1).

Unencapsulatable Behaviors. Our approach relies upon be-

ing able to prove that uses of foreign code actually can be

encapuslated. There are certain behaviors that cannot be

encapsulated, or for which encapsulation would defeat their

very purpose. For example, if we wish to add file I/O to our

pure language, we must decide either to revise our notion of

purity (i.e., the meaning of types) or revise the mechanics

of I/O (e.g., transactions or monads). This is a question for

language designers, and not what our paper addresses.

Rather, our contribution is an approach to sound linking;
that is, linking that does preserve the meaning of core types.

Prior work by Patterson et al. [49] showed how to achieve

this when the foreign code could itself be given a core type.

This work shows how to achieve this when the foreign code

cannot be given a core type, but the linking code—that is, the
core-language code that directly calls foreign functions—can

be encapsulated in a way that earns it a true core type. The

approach accounts for the common case in which uses of a

foreign library are carefully isolated and unobservable by the

rest of the program, as in Figure 1, and gives an accounting

for how such uses can be proved sound.

Linking Types and Encapsulation Boundaries. At a high

level, our approach looks a lot like the FFIs in Figure 1, but

we patch the “escape hatches” (e.g., unsafe) that threaten
the validity of FunLang’s type soundness theorem. Whereas

uses of an FFI are often accompanied by scary compiler

warnings and comments like, “trust me, it works,” we want
the language to formally account for the behavior of linked

components even if they are written in a more expressive

target. To do so, we extend FunLangwith linking types 𝜏 that
precisely characterize the inexpressible foreign behaviors

that we want to link with. In this way, foreign behaviors

become logically expressible in FunLang, even if they are

not actually implementable in FunLang. Importantly, each

linking type can be lowered ↓𝜏 back to an FunLang-language
type 𝜏 . Note that we can design multiple such extensions for

a single language: e.g., for FunLangwe can design extensions
that separately add mutable state, exceptions, or first-class

control, or an extension that adds them in some combination.

Next, to facilitate the interaction between core and ex-

tended programs, we include a boundary term, {e}↓𝜏 , that
delineates the linking code from the rest of the core pro-

gram. Here, e is a program that may, e.g., throw and catch

exceptions in the course of producing a 𝜏 . The boundary

means its result may be used at core type ↓𝜏 in the rest of the

program. Like unsafe, we stress that adding this boundary
is a one-time change one must make to FunLang; the same

boundary term can be reused by any linking types extension.

The boundary acts as a syntactic cue for the typechecker to

switch to a linking types extension, much like, e.g., Rust’s

compiler is more liberal inside of unsafe.
Returning to soundness, a boundary is not only a cue for

the typechecker, but may be for the compiler as well. Indeed,
boundaries can have runtime significance. In particular, we

need to ensure that the code inside can be used safely at ↓𝜏 .
One way to do that is for every extended type 𝜏 , define a

target-level encapsulation wrapper, *𝜏+, which dynamically

enforces that its argument behave like a ↓𝜏 . In place of dy-

namic checks, one could instead construct specialized proofs

on a case-by-case basis; our approach certainly admits this

mode of use (c.f., [32]). However, we find that many guide-

lines for FFI use [21, 47] already encourage a very defensive

style of programming that sports an abundance of checks, so

in this presentation we opt to automate where possible. Prov-

ing soundness relies on these wrappers masking all foreign

behaviors, which requires that we can characterize when a

target term behaves like a core type 𝜏 . We do this by building

semantic models indexed by source types 𝜏 and 𝜏 but inhab-

ited by target terms. These so-called realizability models,

described shortly, are a key ingredient to the approach.

Contributions. This paper demonstrates how to encapsu-

late foreign code, imported via an FFI, in a sound way—i.e.,

without disturbing the invariants promised by types of the

core language. First, we introduce linking types that charac-
terize the behaviors of foreign libraries that are inexpressible

in the core language (Sections 4 and 5). We also develop en-
capsulation wrappers that are placed around all components

using foreign libraries, which are demarcated by syntactic

boundaries. Next, to show linking is sound, we build a re-
alizability model that captures the meaning of both core

types and linking types as sets of target-language terms. Us-

ing this model, we formally prove when foreign behavior is

encapsulated; that is, unobservable to core code.

To demonstrate the viability of this approach as a way of

importing and encapsulating foreign behavior, we present

two case studies, each of which extends a pure functional lan-

guage, FunLang. In the first case study, we develop a linking

types extension for state, giving FunLang access to mutable

references via a library. Then, in the second case study, we

develop a linking types extension that also adds exceptions,

giving FunLang access to try and catch as library functions.
The core language and both linking-types extensions are

proven sound via logical relations that use realizability tech-

niques. Crucially, the realizability model for the core lan-

guage, FunLang, can be defined before extensions are even

considered, which means that it does not require the seman-

tic complexity (e.g., Kripke worlds, biorthogonality [3, 17])

16

TyDe ’23, September 4, 2023, Seattle, WA, USA Daniel Patterson, Andrew Wagner, and Amal Ahmed

Base Types 𝜏 := unit | bool | int Imports I := f : 𝜏 | f : 𝜏, I
Types 𝜏 := 𝜏 | 𝛼 | 𝜏 × 𝜏 | 𝜏 + 𝜏 Programs P := e | import(I) e

| `𝛼.𝜏 | (𝜏, . . . , 𝜏) → 𝜏

⊢ P : 𝜏
·; · ⊢ e : 𝜏

⊢ e : 𝜏

I; · ⊢ e : 𝜏

⊢ import(I) e : 𝜏
. . .

I; Γ ⊢ e : 𝜏
x : 𝜏 ∈ I; Γ

I; Γ ⊢ x : 𝜏
. . .

Figure 2. Syntax & static semantics for FunLang.

of the extended models for state and exceptions. As we show,

the encapsulation wrappers account for this gap in com-

plexity and provide sufficient semantic encapsulation to be

able to run impure code under a boundary while preserving

extensional purity.

We structure our paper into two halves. After introducing

our languages (§2) and a statement of type soundness (§3),

we first show how one implements linking types extensions

for state (§4) and state+exceptions (§5) and after, sketch how

one verifies their soundness (§6). The technical appendix

[51] includes complete language semantics, definitions, and

proofs, some of which are elided in this paper.

2 Setting the Stage
2.1 A Functional Language
Our core source language, FunLang is a standard pure, eager,
functional languagewith imports. It sports both iso-recursive

types (with fold/unfold) and recursive functions, as well as
sums, products, and simple base types (unit, int, bool). We

present an excerpt of the syntax (typeset in blue typewriter
font) and static semantics in Fig. 2. Despite the definition-

like syntax, functions are still anonymous expressions; the

function’s name is only bound in its body, for recursive calls.

For simplicity, the language does not have polymorphism,

but the feature is compatible with the models and techniques

that we are using (c.f., Patterson et al. [49]).

As a running example program, we’ll use a fan favorite:

fun fib(n : int){ if n < 1 { 0 } {
if n = 1 { 1 } { fib(n + −1) + fib(n + −2) } }}

While one could certainly define a standard operational

semantics for FunLang, we will not do so here. Instead, like

many real languages, the observable semantics is defined by

a particular implementation; in this case, via compilation to

a stack-based target language, StackLang.

2.2 A Stack Language
Our target, StackLang, is untyped and stack-based, and is

derived from Kleffner [33], which in turn derives features

from Levy [38]. It is significantly more expressive than our

source language, as target languages often are. On the other

hand, it is not especially low-level; it permits aggregate val-

ues and suspended computations (thunks) on the stack. An

excerpt of the syntax and semantics is in Fig. 3, typeset in

black typewriter font. The small-step operational semantics

is defined as a relation on program configurations ⟨H # S #P⟩,
which are triples of a heap, stack, and program.

Values are placed on the stack with push. The binary op-

erators add, less?, and equal? operate on the two integers

at the top of the stack. The if0 instruction conditions on the

integer at the top of the stack and executes the first branch if

it is zero, and the second branch otherwise. Despite its syn-

tax, lam x.P is not a value, but a computation (as in Levy’s

Call-By-Push-Value [38]) that substitutes the top value on

the stack for x inside P. On the other hand, the value thunk P
is a suspended computation, so thunk lam x.P is analogous

to a traditional lambda value. The call instruction takes the

thunk P at the top of the stack and forces its computation,

placing P at the head of the program. As expected, fix per-
forms a fixpointing operation: it takes the thunk at the top
of the stack and re-suspends it for recursive calls, and then

forces one copy of its computation. Both idx and len oper-

ate on the array value at the top of the stack. Instructions

alloc, read,write, and free perform standard heap operations,

where any StackLang value can be stored in the heap. To-

gether, shift k P and reset provide delimited control [16, 18]:

shift captures the continuation until the next reset and substi-
tutes it for k in P. The getlocs instruction provides reflective

access to the heap: it takes the thunk lam and the value v
at the top of the stack and maps the computation over all

locations used in v (overline indicating a sequence). While

this particular primitive is somewhat specialized to our case

study, it can easily be implemented in most low-level lan-

guages, and some targets even provide similar abstractions

for implementing GCs (e.g., [31, 55]). Unsurprisingly, noop
does nothing. Finally, fail c terminates execution with the

given error code. Every instruction with a type invariant on

the stack uses fail Type when that invariant is not met, pro-

ducing a dynamic type error (we ellide many here; see [51]).

Other errors (Mem, Idx,Ctrl) are for unrecoverable prob-

lems that may be acceptable results according to a soundness

theorem.

2.3 A Compiler for FunLang
Figure 4 presents a compiler from FunLang to StackLang,
which also establishes the working operational semantics

of FunLang. A base value is compiled to push v, where v
is a target-level encoding of the value. Note that we use 0
both for true (to match if0) and unit. In a typical functional

language, like FunLang, the values constitute a subset of

the expressions, and evaluation stops at values. However, in

StackLang, evaluation only stops on the empty program, and

we consider the value on the top of the stack to be the result.

So, whereas v is the simplest FunLang program, push v is,
by analogy, the simplest StackLang program.

17

Semantic Encapsulation using Linking Types TyDe ’23, September 4, 2023, Seattle, WA, USA

Stack S := v, . . . , v | Fail c Error Code c := Type | Idx | Mem | Ctrl
Progr. P := · | i;P Value v := n | thunk P | ℓ | [v, . . .]
Instr. i := push v | add | less? | equal? | if0 P P | lam x.P | call | fix

| idx | len | alloc | read | write | free | shift k P | reset
| getlocs | noop | fail c
⟨H # S # push v;P⟩ → ⟨H # S, v # P⟩ (S ≠ Fail c)

⟨H # Fail c # push v;P⟩ → ⟨H # Fail c # fail Type⟩
⟨H # S, v # lam x.P1;P2 ⟩ → ⟨H # S # [x ↦→ v]P1;P2 ⟩

⟨H # S, thunk P1 # call;P2 ⟩ → ⟨H # S # P1;P2 ⟩
⟨H # S, tnk P1 # fix;P2 ⟩ → ⟨H # S, tnk(psh(tnk P1), fix) # P1;P2 ⟩

⟨H # S, [vi]i<n,m # idx;P⟩ → ⟨H # S, vm # P⟩ (m ∈ [0, n])
⟨H # S, [vi]i<n,m # idx;P⟩ → ⟨H # S # fail Idx⟩ (m ∉ [0, n])

⟨H # S, v # alloc;P⟩ → ⟨H ⊎ {ℓ ↦→ v} # S, ℓ # P⟩
⟨H ⊎ {ℓ ↦→ v} # S, ℓ # read;P⟩ → ⟨H ⊎ {ℓ ↦→ v} # S, v # P⟩

⟨H ⊎ {ℓ ↦→ _ } # S, ℓ, v # write;P⟩ → ⟨H ⊎ {ℓ ↦→ v} # S # P⟩
⟨H ⊎ {ℓ ↦→ _ } # S, ℓ # free;P⟩ → ⟨H # S # P⟩

⟨H # S, ℓ # free;P⟩ → ⟨H # S # fail Mem⟩ (ℓ ∉ dom(H))
⟨H; S; shift k P1;P2;

. . . ; reset;P3 ⟩
→ ⟨H # S # [k ↦→ thunk P2; . . .]P1;P3 ⟩

(reset ∉ P2; . . .)
⟨H # S # shift k P1;P2 ⟩ → ⟨H # S # fail Ctrl⟩ (reset ∉ P2)

⟨H # S # reset;P⟩ → ⟨H # S # P⟩
⟨H; S, thunk lam l.P1, v;

getlocs;P2 ⟩
→ ⟨H # S, ℓ # lam l.P1;P2 ⟩

(ℓ = flocs(v))
⟨H # S # fail c;P⟩ → ⟨H # Fail c # ·⟩

Figure 3. Syntax and operational semantics for StackLang

For if, we compile the discriminant e (denoted e+), which,
according to e’s type, should be a program fragment that

terminates with a (compiled) boolean at the top of the stack.

Thus, the (dynamic) type invariant for if0 should be satisfied,
and it can proceed with (the compilation of) the appropriate

branch. The compilation of the binary operators is similar.

inl and inr are slightly different because the result value

needs to be tagged. We use arrays to store the tag, 0 or 1,
along with the payload. To move the payload value off of the

stack and into an array, we use lam, which, as described ear-

lier, is an instruction (not a value) that performs substitution

with the value at the top of the stack. Pairs and projections

are compiled similarly.

Compiling match is conceptually like compiling if, but
its definition is more involved because one must destruct

tagged values. e+ should produce a tagged value at the top of
the stack, so we copy it with the macro DUP (defined at the

bottom of the figure), project out the payload (at index 1),
SWAP the top two elements of the stack, and finally project

out the tag. Now, we are ready to condition on the tag and,

in the branches, substitute the payload.

In theory, one could entirely erase any remnant of the

recursive operators fold and unfold. Indeed, we do just

that for fold. However, for reasons that will become clear

in §6, we introduce a noop in the compilation of unfold.
In short, unfold produces an expression at a potentially

larger type, which threatens the well-foundedness of our

semantic model, as it is defined inductively over types. To

reconcile this, we employ a standard trick and stratify the

model, which requires that unfold+ take this extra step.

e⇝ e+

() ⇝ push 0
true/false ⇝ push 0/1
if e {e1 } {e2 } ⇝ e+; if0 (e1+) (e2+)
n ⇝ push n
e1 < / = / + e2 ⇝ e1

+
; e2

+
; less?/equal?/add

x ⇝ push x
inl/inr e ⇝ e+; lam x.(push [0/1, x])
match e x{e1 } y{e2 } ⇝ e+;DUP; push 1; idx; SWAP; push 0; idx;

if0 (lam x.e1+) (lam y.e2+)
fold e ⇝ e+

unfold e ⇝ e+; noop
(e1, e2) ⇝ e1

+
; e2

+
; lam x2 .lam x1 .(push [x1, x2])

fst/snd e ⇝ e+; push 0/1; idx
fun f(x1 : 𝜏1, . . . , xn : 𝜏2) {e}⇝ push (thunk push (thunk lam f.

lam xn lam x1 .e+), fix)
e(e1, . . . , en) ⇝ e+; e1

+
; SWAP; . . . ; en

+
; SWAP; call

SWAP ≜ lam x.lam y.(push x; push y) DROP ≜ lam x.()
DUP ≜ lam x.(push x; push x)

Figure 4. Compiler from FunLang to StackLang

All that remains are funs and application. For functions,

fix does most of the heavy lifting. A compiled fun is a thunk
that first pushes a thunk corresponding to the body (taking

itself as the first argument, f), and then invokes fix. The
result of fix will be to perform the fixpoint, passing itself as

that first argument. The arguments are in reverse order so

that effects (only divergence, for now) are observed left-to-

right. Application is conceptually straightforward; the only

subtelty is that the compiled function (e+) needs to be at the

top of the stack in order to be called, but it needs to run first
for a left-to-right evaluation order. Since StackLang does not
have a built-in for indexing into the stack, we shuffle the

function to the front as we evaluate the arguments.

3 What Is Type Soundness?
So far, we have used the term type soundness somewhat

loosely. In this paper, we aim to prove theorems with the

following shape:

Definition 3.1 (Type Soundness, roughly). For any well-

typed term of type 𝜏 , no matter how many steps it takes:

1. it can take another step; or

2. it is an acceptable error (e.g., divide-by-zero); or

3. it is a value v of type 𝜏 .

Although “type soundness” is a ubiquitous idea, its con-

crete definition varies widely by language or by paper. Some

definitions insist on termination and strengthen clause 1, or

include additional components like a heap. Naturally, dif-

ferent definitions specialize clause 2 to an appropriate class

of errors. Meanwhile, some definitions weaken the type re-

quirement on clause 3, such that termination at any value is

sufficient. Indeed, there is no single definition of type sound-

ness and we stress the importance of identifying exactly

what is suitable for one’s language.

18

TyDe ’23, September 4, 2023, Seattle, WA, USA Daniel Patterson, Andrew Wagner, and Amal Ahmed

In this paper, we prove semantic type soundness using

logical relations. The particular variety of logical relations

we use are called realizability models because they specify

which sets of target terms realize (or behave like) which

source types. While our formal proofs (included in [51])

use more sophisticated models, here we provide simplified

excerpts as a glimpse of our approach.

VJunitK = {0}
VJintK = {n}
VJ𝜏1 × 𝜏2K = {[v1, v2] | v1 ∈ VJ𝜏1K ∧ v2 ∈ VJ𝜏2K}
VJ𝜏1 → 𝜏2K = {thunk lam x.P | ∀v ∈ VJ𝜏1K . [x ↦→ v]P ∈ EJ𝜏2K}

EJ𝜏K = {P | ∀HH′ S S′. (⟨H # S # P⟩ ∗→ ⟨H′ # S′ # ·⟩) 1

⇒ (S′ = Fail c) 2 ∨ ∃v. (S′ = S, v ∧ v ∈ VJ𝜏K) 3 }

The value relation,VJ𝜏K, is indexed by FunLang types but
inhabited by StackLang values. In particular,VJ𝜏K contains

all those StackLang values v that behave like a 𝜏 . Consistent
with our compiler (§2.3), VJunitK contains only 0, while
VJintK contains all target integers n. The most interesting

case isVJ𝜏1 → 𝜏2K, which contains all programs of the form

thunk lam x.P that map well-typed inputs to well-typed out-

puts. In particular, for any input v ∈ VJ𝜏1K, [x ↦→ v]P should

be a computation in EJ𝜏2K.
The expression relation, EJ𝜏K, is indexed by FunLang types

but is inhabited by StackLang computations. Notice that EJ𝜏K
is defined to preciselymatch our definition of type soundness.

For clarity, we annotate each component of the predicate

with its relevant clause from Def. 3.1. Of critical importance

is theway that EJ𝜏K treats the heap,H. Since FunLang is pure,
it should not impose any conditions on the heap whatsoever.

Indeed, a P only behaves like a 𝜏 if it does so regardless of
the heap it is run with. At the same time, we only insist on

extensional purity: ephemeral uses of state during the course

of a computation are permitted, so long as the final value is

independent from the heap (which is true of allVJ𝜏K values,
by definition).

Since the model captures our notion of soundness by de-

sign, proving soundness for our implementation amounts

to showing that the compilation e+ of any well-typed term

⊢ e : 𝜏 satisfies the model: e+ ∈ EJ𝜏K. What we will explore

next is how to preserve soundness in the presence of im-

pure, foreign behavior introduced by code that calls external

libraries. The value in using realizability models as a reason-

ing tool is that they suggest a clear strategy: we must find a

way to encapsulate such code so that it satisfies the model.

4 Linking with State
With a source, target, and compiler in hand, we are now

ready to tackle the central problem of this paper: how to

safely encapsulate inexpressible behavior.

The fib program from §2.1 is a classic example of unnec-

essary exponential computation. A standard trick taught in

most undergraduate curricula is to use memoization, which

Base Types 𝜏 := unit | bool | int
Core Type 𝜏 := 𝛼 | 𝜏 | 𝜏 × 𝜏 | 𝜏 + 𝜏 | `𝛼.𝜏 | (𝜏, . . . , 𝜏) → 𝜏

Ext. Type 𝜏 := 𝜏 | 𝜏 × 𝜏 | 𝜏 + 𝜏 | `𝛼.𝜏 | (𝜏, . . . , 𝜏) G#→ 𝜏 | ref 𝜏

x : 𝜏 ∈ Γ

Γ ⊢S x : 𝜏

Γ, f : (𝜏) → 𝜏′, x : 𝜏 ⊢S e : 𝜏′

Γ ⊢S fun f(x : 𝜏) {e} : (𝜏) → 𝜏′

Γ ⊢S e : (𝜏1, . . . , 𝜏n)
G#→ 𝜏′ Γ ⊢S ei : 𝜏i

Γ ⊢S e(e1, . . . , en) : 𝜏′
IE ⊎ ↑Γ ⊢E e : 𝜏

I; Γ ⊢ {e}E↓𝜏 : ↓𝜏

Figure 5. Linking types for state and a generic boundary

traditionally requires mutable state. As a quick reminder, the

strategy is to store intermediate results in a table so that later

computations can reuse them without recomputation. In our

example (see Fig. 8), the table maps inputs n to their outputs

fastfib(n), so that each fastfib(n) is only computed once.

What we want is to link with a mutable reference library

providing alloc, read, and write functions, but because

FunLang was deliberately designed without state in mind,

any FunLang types we assign to them would necessarily be

imprecise! Thus, our type system—and, crucially, our sound-

ness proof—has no way to accurately account for them.

APrincipledApproach. Onemight be tempted to approx-
imate foreign behavior with existing types; e.g., ref 𝜏 ∼ int,
read : (int) → 𝜏 , write : (int, 𝜏) → unit, etc. Indeed, this
is what many FFIs do. However, introducing such impreci-

sion into our types makes them less useful for reasoning

about programs. Moreover, it poses a direct threat to sound-

ness; in this case, a programmer can easily pass a “bad” in-

teger to read/write. Instead, our approach starts by giving

these foreign functions precise types, with which we can then
work backwards through the implementation and the sound-

ness proof. We demonstrate how to do this in a systematic

way that applies to a wide variety of features.

The first step, and core idea, is to introduce new linking
types that can describe foreign behavior. In Fig. 5, we present

the extension for state, where extended language features

are typeset in pink bold font and extended metatheory is

distinguished with the S marker. We add a reference type,

ref 𝜏 , without any introduction or elimination forms, since

only foreign code can manipulate references. We also replace

our function type with a pair of modal arrows, where
#→

types pure functions and

 → types stateful functions. We use

G#→ when the particular mode is unimportant.

With this linking types extension, we can import a muta-

ble reference library at a more precise type. Since FunLang
does not have polymorphism, we pick a concrete type 𝜏 when

we import them:

import(alloc : 𝜏
 → ref 𝜏, read : (ref 𝜏) → 𝜏, . . .) . . .

19

Semantic Encapsulation using Linking Types TyDe ’23, September 4, 2023, Seattle, WA, USA

𝜏 ↑𝜏 ↓𝜏
𝜏 𝜏 𝜏

𝜏1 × 𝜏2 ↑𝜏1 × ↑𝜏2 ↓𝜏1 × ↓𝜏2
𝜏1 + 𝜏2 ↑𝜏1 + ↑𝜏2 ↓𝜏1 + ↓𝜏2
`𝛼.𝜏 `𝛼.↑𝜏 `𝛼.↓𝜏
(𝜏1, . . . , 𝜏n)→𝜏 ′ (↑𝜏1, . . . , ↑𝜏n)

#→↑𝜏 ′ see below

𝜏 ↓≜
(𝜏1, . . . , 𝜏n)

G#→ 𝜏 ′ (↓𝜏1, . . . , ↓𝜏n)→↓𝜏 ′
ref 𝜏 unit

Figure 6. Lift and lower functions for state extension

*ref 𝜏+ ≜ free; push 0
*(𝜏1, . . . , 𝜏n)

 → 𝜏 ′+ ≜ push (thunk lam l.push l; free); getlocs
*𝜏+ ≜ · for any other 𝜏

ALLOC ≜ thunk push (thunk lam falloc.lam f.push f; alloc); fix
READ ≜ thunk push (thunk lam fread.lam r.push r; read); fix
WRITE ≜ thunk push (thunk lam fwrite.lam f.lam r.push r;

push f;write; push 0); fix

Figure 7. State boundary enforcement & target library code

Notice that the linking types extension is purely static; it
does not introduce any new term-level syntax. So, intuitively,
core programs should be usable inside of extended programs,

and pure extended programs should be usable inside of core

programs. To make this intuition precise, we specify a pair

of type-level metafunctions, lift and lower. Lift, denoted ↑𝜏 ,
maps a core type to an extended type, while lower, denoted,

↓𝜏 maps an extended type to a core type.
2
The definitions

of lift and lower for the state extension are given in Fig. 6.

Note that core arrows → are lifted to pure arrows

#→ in the

extension, which is why we did not include an introduction

form for

#→ in Fig. 5: it suffices to build a core function and

lift it! Since references cannot be used directly inside core

code, lowering simply erases them. The only truly surprising

case is that impure arrows are lowered to core arrows; this

surely seems unsound, which we will address shortly.

To facilitate the interaction between core and extended

programs, we rely on a generic boundary term, {e}E↓𝜏 , that
delineates between linking code—in extension 𝐸—and the

rest of the core program (Fig. 5). Here, e is a stateful program
whose result is a 𝜏 when typechecked with the extension

S, which means it can be used at type ↓𝜏 in the rest of the

program. The boundary acts as a syntactic cue for the type-

checker to switch to an extension before entering the body.

To do so, the typechecker extracts imports relevant to the ex-

tension and lifts every binding from the typing context. This

mechanism allows us to, for example, define top-level core

functions and use them as pure functions under S boundaries.
A well-formedness judgment disallows different extensions

from being mixed in a single import binding.

2
The notation is inspired by the adjoint logic of Pfenning and Griffith [54].

Next, for every extended type 𝜏 , we define a target-level

encapsulation wrapper, *𝜏+, which is code that dynamically

enforces that its argument behave like a ↓𝜏 . While the formal

proofs are in [51], here we give an intuitive explanation of

the wrappers for state, which are defined in Fig. 7. Recall that

only two types had non-obvious lower definitions: ref 𝜏 and

 →. The former we decided to erase, and the latter we suspi-

ciously mapped to the pure arrow. The wrappers for these

types justify those decisions because they give a strategy for

encapsulating stateful behavior from the rest of the program.

If a boundary returns a ref 𝜏 , we free its location in memory

and return a semantic unit. If a boundary returns an impure

function, we use getlocs to free any memory held by that

function. In both cases, purity is enforced by indirection: if

the memory associated with these terms is used outside of

the boundary (which is a side-effect), then a memory trap

(fail Mem)
3
halts the program. All other linking types 𝜏 need

no dynamic wrapper.

In Fig. 7, we also provide a StackLang implementation of

a mutable reference library. While the full relation and proof

showing this safe is in [51], intuitively, the functions be-

have as one would expect (N.B., they account for the calling

convention of FunLang).

The Whole Picture. With all the pieces of the state ex-

tension in place, we return our attention to the fastfib
example, defined in Fig. 8. To start, we import our foreign

functions, alloc, read, and write, specialized to int
 → int

payloads so that we can store our memotable. In the body

of fastfib, we immediately enter an S boundary so that we

may use the foreign imports. We alloc an empty table, mtbl,
initialized to return a sentinal value, −1, on any input. Next,

we define the helper function mutfib, which does most of

the heavy lifting. For any input x that is not a base case,

mutfib begins by checking if x is in mtbl. If it is, it returns
the result. Otherwise, it computes a fresh output and stores

it in mtbl before returning it. At the top-level, mutfib is

invoked on the input to fastfib. Note that whereas memo-

ized functions can sometimes see speed-ups across top-level

calls, here, different top-level calls to fastfib are encapsu-
lated from one another; i.e., the table is dropped across calls.

Naturally, one could write batched-input variant.

5 Exceptions
The key guarantee of a linking types extension is sound
encapsulation, not only from core code, but from other ex-

tensions as well. Indeed, one can use different extensions in

different parts of the same program. In this section, we de-

velop another example: an extension for exceptional control

flow. However, since encapsulated code needs to be isolated

3
We consider memory traps an acceptable error in our definition of

soundness.

20

TyDe ’23, September 4, 2023, Seattle, WA, USA Daniel Patterson, Andrew Wagner, and Amal Ahmed

import(alloc : ((int) #→ int) → ref ((int) #→ int),
read : (ref ((int) #→ int)) → ((int) #→ int),
write : (ref ((int) #→ int), ((int) #→ int)) → unit)

fun fastfib(y : int){
{let mtbl = alloc(fun f(n : int){−1}) in
fun mutfib(x : int){
if x = 0 {0}{if x = 1{1}{
let m = read(mtbl) in
if m(x) = −1{
let r = mutfib(x + −1) + mutfib(x + −2) in
let _ = write(mtbl, fun f(n){if n = x{r}{m(x)}}) in
r

}{m(x)}
}

}(y)}S
int

}

Figure 8. Example: fibonacci memoized with state

from other parts of the program, we cannot have a single

boundary with multiple extensions active simultaneously.

To freely interleave control flow andmutable state, we take

the state extension from the previous section as a starting

point for this new extension. While it may feel unsatisfying

that these features cannot be teased apart and composed,

we imagine that many practical linking types extensions

reallywould bundle multiple features together, since complex

foreign functions are likely to have, e.g., many different side-

effects that interact in subtle and inseparable ways.

As before, first we introduce linking types. For simplicity,

our modal arrows only signal whether a function is pure or

impure; they do not to distinguish between different effects

(i.e., state vs. control), though our approach is certainly com-

patible with amore granular type system. Therefore, this part

of the extension is exactly the same as in the previous section.

For contrast, we typeset this extension in orange bold font,
use square modal arrows,

◪→, and identify it with X.
Next we define lift and lower, which we present in Fig. 9.

While lift is exactly the same as in the previous case study,

lower is quite different. Since code under an X boundary

might throw an uncaught exception, lower must account for

the type of an exceptional result. Therefore, we define lower

in two steps: the helper metafunction

↠

accounts for the

success case, and the top level ↓merges it with the exception

case under a sum. Since exceptions might produce a variety

of values, we use the universal type U in the exception case.
4

Next, we provide a StackLang implementation of an ex-

ceptions library in Fig. 10. Although defining encapsula-

tion wrappers is really the next step of the approach, the

library implementation offers some intuition for the way

that we model exceptions using delimited continuations in

4
While an important aspect of exceptions are identity, which this doesn’t

expose statically, we wanted to focus on the other important aspect: non-

local control flow.

𝜏 ↑𝜏

↠

𝜏

𝜏 𝜏 𝜏

𝜏1 × 𝜏2 ↑𝜏1 × ↑𝜏2

↠

𝜏1 ×
↠

𝜏2
𝜏1 + 𝜏2 ↑𝜏1 + ↑𝜏2

↠

𝜏1 +
↠

𝜏2
`𝛼.𝜏 `𝛼.↑𝜏 `𝛼.

↠
𝜏

(𝜏1, . . . , 𝜏n)→𝜏 ′ (↑𝜏1, . . . , ↑𝜏n)
□→↑𝜏 ′ see below

𝜏

↠

≜

↠

(𝜏1, . . . , 𝜏n)
□→ 𝜏 ′ (

↠
𝜏1, . . . ,

↠

𝜏n)→

↠

𝜏 ′

↠

(𝜏1, . . . , 𝜏n)
■→ 𝜏 ′ (

↠
𝜏1, . . . ,

↠

𝜏n)→U + (

↠

𝜏 ′)↠

ref 𝜏 unit

where U ≜ `𝛼.unit + int + (𝛼 × 𝛼) + (𝛼 + 𝛼) + ((𝛼) → 𝛼) + 𝛼

and ↓𝜏 ≜ U +
↠

𝜏

Figure 9. Lift and lower functions for exceptions extension

CATCH ≜ thunk push (thunk lam fcatch.lam f.push f; call;
lam res.push [1, res]; reset); fix

THROW ≜ thunk push (thunk lam fthrow.lam exn.push [0, exn];
shift _ ()); fix

*ref 𝜏+ ≜ free; push [1, 0]; reset
*(𝜏1, . . . ,𝜏n)

■→ 𝜏 ′+ ≜ DUP; push (thunk lam l.push l; free);
getlocs; lam res. push [1, res]; reset

*𝜏+ ≜ lam res.push [1, res]; reset where 𝜏 ∉ above

Figure 10. Exception target library & boundary enforcement

StackLang. A shift with an empty body discards the pro-

gram until the next reset, which intuitively corresponds to

throwing and catching an exception, respectively. In the im-

plementation, THROW is responsible for tagging an excep-

tion value, while CATCH is responsible for tagging a success

value. Note that CATCH takes a function corresponding to

the computation to run.

With an intuitive understanding of StackLang exceptions,

we are ready to define the target-level encapsulation wrap-

pers. Unlike the previous extension, wrappers are required

for every 𝜏 , because the boundary must always be prepared

for an uncaught exception. In all cases, the wrapper is re-

sponsible for capturing any escaping exceptions, which it

does with reset (N.B., if there is no shift under the boundary,

this reset is effectively a no-op). For types with pure values,
the encapsulation wrapper can simply tag the success value

before it resets. Meanwhile, references and impure functions

are handled as before, modulo tagging and a reset.
With this new extension, we can improve upon our fib

function (Fig. 11): this time, we take a list of inputs (1), com-

pute all of their results with a single memotable (2), and

throw an exception on bad inputs (3). Notice that there is not

a corresponding catch, since, in this example, a bad input

is an unrecoverable error. Still, our program—and indeed,

any program with uncaught exceptions—is safe because the

boundary code catches and tags escaping exceptions.

21

Semantic Encapsulation using Linking Types TyDe ’23, September 4, 2023, Seattle, WA, USA

import(alloc, read, write : See fig. 8 ,

catch : (() ■→ U) □→ U + U,

throw : (U) ■→ int)
fun fiblist(lst : `𝛼.(int × 𝛼) + unit){ 1

{let mtbl = alloc(fun f(n : int){−1}) in 2

let mf = fun mutfib(y : int){ See fig. 8 } in
fun mutfiblist(l : `𝛼.(int × 𝛼) + unit){
match unfold l
x {if fst x < 0 {throw(fold inl ())} { 3

fold inl(mf(fst x), mutfiblist(snd x))}
y {fold inr()}

}
}(lst)}X

U + `𝛼.(int × 𝛼) + unit
}

Figure 11. Example: fibonacci with input checks and memo-

ization

Implement
1. Extend the type system (⊢E).
2. Define lift (↑𝜏) and lower (↓𝜏).
3. * Develop encapsulation wrappers (*𝜏+).

Model
4. Design a core realizability model

5
(J⊢ 𝜏K).

5. Design an extended realizability model (J⊢E 𝜏K).
Verify

6. Prove lift (↑𝜏) sound.
7. * Prove encapsulation *𝜏+ enforces lower (↓𝜏).
8. Prove “compatibility” lemmas.

9. Prove libraries semantically well-typed.

Figure 12. Our approach, summarized (for *, see §6.5)

6 Soundness
We follow prior work on interoperability [49] and verify

semantic type soundness using realizability models, which

are sets of target terms indexed by source types. The ap-

plication of such models goes back to Benton and collabo-

rators [9, 10], who used them to prove type soundness for

standalone languages. Here, we first build a core model for

FunLang (Item 4), and then another model for each linking

types extension (Item 5). Since realizability models are in-

habited by target terms, we can interpret linking types (e.g.,

ref 𝜏) whose behavior is inexpressible in core FunLang. Also,
the fact that the inhabitants of these models share a com-

mon operational semantics will be instrumental in proving

that the boundary typing rule is sound. We summarize our

approach in Figure 12.

While the full proofs are in [51], here we highlight a few

key details.

6.1 Proving ↑ Sound
There are two lemmas that we need to prove, one for 𝐸 = S
and one for 𝐸 = X (Item 6), here stated as paraphrased

English:

Lemma 6.1 (Lift 𝐸). Any value v in the modelV𝐸J↑𝜏K is also
in the model V_J𝜏K, and vice versa.

Proof (Sketch). This seems initially difficult, as the extended

model (V𝐸J↑𝜏K) has additional logical structure, to account

for features unknown by the core model. The key observa-

tion is that the lifted types are exactly those that do not rely

upon any of that additional structure – e.g., for our model

with state, they are exactly those values that have no rele-

vant portions of the heap. Indeed, this largely motivated the

design of the linking types and the lift function ↑. □

6.2 Proving *𝜏+ Satisfies ↓
Unlike the previous proofs, this is non-trivial. Intuitively,

for the state extension, one wants to show that a program

P; *𝜏+ is in E_J↓𝜏K whenever P is in ESJ𝜏K (with the same

logical state), but this isn’t always the case. The problem

is that P may manipulate the heap and end up with logical

constraints on it that E_J↓𝜏K will not enforce. Indeed, that
relation only admits terms that run under arbitrary heaps, so

a term depending on a type invariant at a particular location

will trigger an unacceptable Type error on some executions.

On the other hand, ↓𝜏 is FunLang type, so how are we to

proceed? For the state extension, we begin by proving a

subtle variation of the statement above (Item 7). It suffices

to focus on values when exceptions are uninvolved, since

terms always diverge, error, or run to a value:

Lemma 6.2 (Encapsulation S). If v is inVSJ𝜏K then
push v; *𝜏+ is in ESJ↑↓𝜏K

The full proof is somewhat involved (see [51]), since we

must consider each type and its associated wrapping code.

Nevertheless, we can show that state is encapsulated; i.e., ↑↓𝜏
is stateless even if 𝜏 is stateful. To show that it is safe to bring

encapsulated results across the boundary, we can compose

this lemma with Lemma 6.1 just by evaluating intermediate

terms. The proof pipeline looks roughly like this, eliding

logical state (Kripke worlds, etc), and divergence/errors:

P ∈ ESJ𝜏K
eval⇒ v ∈ VSJ𝜏K

6.2⇒ push v; *𝜏+ ∈ ESJ↑↓𝜏K eval⇒
v′ ∈ VSJ↑↓𝜏K 6.1⇒ v′ ∈ V_J↓𝜏K

For the exception extension, we follow the same general

approach, but we can no longer assume that a term will run

down to a value before reaching the encapsulation wrapper,

since it may throw an exception in first, so we have to prove

a slightly different, but analogous lemma.

22

TyDe ’23, September 4, 2023, Seattle, WA, USA Daniel Patterson, Andrew Wagner, and Amal Ahmed

6.3 Proving Libraries Satisfy Types
The next step is to prove that each library function we are

linking with satisfies the type that we are importing it at

(Item 9). We note that a single library function may be com-

patible with multiple types, even across different extensions

with different reasoning principles. This is especially relevant

here because our library functions are naturally polymor-

phic even though FunLang is not. To reconcile this mismatch,

when we prove the libraries sound, we actually do quantify

over all concrete types; i.e., we treat the libraries as polymor-

phic in the metalanguage.

We recall all the library code used in our case studies; the

first three functions are used in the state extension, and all

are used in the exception extension. For each function, we

also include a type we intend to import it at.

ALLOC : (𝜏) → ref 𝜏 ≜ t−p (t−l falloc.lam x.push x; alloc); fix
READ : (ref 𝜏) → 𝜏 ≜ t−p (t−l fread.lam l.push l; read); fix
WRITE : (ref 𝜏, 𝜏) → unit ≜ t−p (t−l fwrite.lam x.lam l.push l;

push x;write; push 0); fix
CATCH : (() ■→ 𝜏) □→ U + 𝜏 ≜ t−p (t−l fcatch.lam f.push f; call;

lam res.push [1, res]; reset); fix
THROW : (U) ■→ 𝜏 ≜ t−p (t−l fthrow.lam exn.push [0, exn];

shift _ ()); fix
where t−p = thunk push and t−l = thunk lam

For each one, we have to show that the code is in the value

relation at the corresponding type.

6.4 Compatibility Lemmas & Type Soundness
Our ultimate goal is to prove that FunLang, together with
these linking types extensions, is type sound. Using the mod-

els constructed so far, we give a semantic proof of type sound-
ness. First, we show that all syntactically well-typed terms

belong to the model, which is done via so-called compatibil-

ity lemmas (Item 8). Second, we show that all terms in the

model are well-behaved, which follows directly from the defi-

nition of the model. Composing these two steps, we conclude

that syntactically well-typed programs are well-behaved.

Because the value and expression relations contain only

closed terms (in the same way as the simple model shown

in §3), we use closing substitutions to account for the typing

contexts above. Typically, these substitutions are drawn from

the model itself. i.e., we consider an open term 𝑒 such that

for some mapping of variables to (closed) values in the value

relation 𝛾 , 𝛾 (𝑒) is in the (closed) expression relation.

We do something similar here, except that we cannot hope

to find a closing substitution (i.e., 𝛾) for the imported code

that satisfies the core model! Indeed, the whole point of

importing at linking types is that the associated programs

are outside the core model! Thus, we close off the imports

by drawing substitutions from the extended models instead.

All of the compatibility lemmas and their proofs can be

found in [51].

6.5 Discussion

Dynamic Checks. As indicated in Items 3 and 7 of our ap-

proach, inserting wrappers that perform dynamic checks is,

in some sense, optional, but the proof obligation that they

discharge is certainly not. In particular, without wrappers,

the compatability lemma for a boundary {e}E↓𝜏 requires a

much stronger assumption; namely, that e behaves like an

E_J↓𝜏K. This assumption percolates all the way up to the

central soundness theorem, which correspondingly needs to

be weakened to accept proofs that each boundary is encap-

sulated. Moreover, this shifts the burden of proof off of the

language designer and on to the user, who must now verify

every block of their linking code. This trade-off may be pro-

hibitive for many applications, but for performance-critical

domains, efforts like RustBelt [32] suggest that such spe-

cialized verification is viable. Also, without dynamic checks,

one could potentially admit so-called benign global effects,

like global memoization [15, 53], which are not technically

encapsulated yet have no impact on the result of a program.

On the other hand, dynamic checks can be useful for se-

curity reasons; e.g., if a foreign library is loaded dynamically

from a potentially-malicious source. Recent work by Samm-

ler et al. [58] shows how to ensure robust safety in a low-level
language via sandboxing. Just as we show that core code is

safe in the presence of foreign code, they show that trusted

code is safe in the presence of untrusted code, though their

sub-languages have similar expressive power. Earlier work

by Swasey et al. [60] shows how to verify common dynamic

enforcement patterns (e.g., sealing), which may be helpful

when developing encapsulation wrappers for future linking

types extensions.

Beyond Safety. In this paper, we focus only on soundness,
so our models are unary—they simply characterize well-

behaved terms. Still, our approach is theoretically amenable

to stronger properties, like preserving equivalences. One

would instead use binary models and show that the presence

of linking code does not break equivalences from the core

model. This is in the spirit of recent work [28, 64] proving

that the ST Monad in Haskell preserves purity, though our

approach is agnostic to the particular effects or encapsulation

techniques. Indeed, the semantically typed back-translation

of [28] is very similar to our use of realizability models and

the way they allow us to leverage encapsulation wrappers to

show that encapsulated linking code behaves as a core type.

Negative Expressivity. In both of our case studies, the link-

ing types provide positive expressivity [19]: they characterize

a strictly larger class of programs than do base types. One

could also develop a negatively expressive extension, which

restricts the class of programs under a boundary. For example,

to link FunLang with a linear language’s library, we would

develop a linear linking types extension.

23

Semantic Encapsulation using Linking Types TyDe ’23, September 4, 2023, Seattle, WA, USA

In this case, lift and lower would enforce the independence
principle of adjoint logic [54, 57], which ensures that unre-

stricted code does not misuse linear values. Note the shift

in perspective: whereas we have been talking about protect-

ing core from foreign, in this case we would be protecting

foreign from core. Thus, a more general characterization

of our approach is it ensures the integrity of the boundary,

regardless of the expressive “side” on which core sits.

7 Related Work
Linking Types Position Paper In 2017, two of the authors pro-

posed ([48]) the idea of linking types as a way of building

fully abstract compilers that support linking with code in-

expressible in the source language. While some of overall

idea remains the same, the current goal is to prove type

soundness in the presence of inexpressible behavior, not full

abstraction. While type soundness is a weaker theorem, un-

like full abstraction it is one that most typed languages at

least aspire to satisfy, and thus our approach is one that can

be readily adopted by existing typed languages. The current

work also differs in strategy, building realizability models

that allow encapsulation proofs, which are entirely absent

from the previous approach. Indeed, the notion of a block of

code *𝜏+ that enforces safe encapsulation, a key element of

our approach, is not something previously considered. With-

out the realizability models we use, describing such target

code that ensures we can move from behavior of linking

types to behavior of core types is not possible, and perhaps

because of that, that paper also relies on novel terms, not

intended for programmer use, to inhabit the linking types.

Further, that earlier work imposed more restrictive proper-

ties on the functions relating core and extended types (called

^+ () and ^− () instead of ↑ and ↓)—namely that they form an

embedding-projection pair, so that ^− (^+ (𝜏)) = 𝜏 . The cur-

rent approach is more flexible, and therefore allows simple

linking-type systems.

Multi-languages and Interoperability Many have used the

idea of a syntactic multi-language from Matthews and Find-

ler [40], where the syntax of both interoperating languages

are embedded into a single language and enhanced with

boundary terms [2, 25, 26, 43, 46, 50, 52, 59, 65]. However,

one critical but often unnoticed issue with this approach is

that type soundness is proved of the multi-language, where

the behavior prescribed by some type 𝜏 in the multi-language

need not be the same as the behaviors allowed by 𝜏 in the

corresponding core language. For simple languages (e.g.,

where the only effect is divergence as in [40]) this may be an

immaterial distinction, but even by adding state, the opera-

tional semantics of the multi-language now must consider

the heap, and thus a pure language embedded in such a multi-

language may no longer behave the same, as there is now a

heap threaded through. Scherer et al. [59] consider this issue

and argue for fully abstract embedding into a multi-language.

In a slightly different vein, there has also been some work

mixing bindings [6] and building multi-language runtimes

[66], but this work does not consider formal semantic prop-

erties.

Recent work by Patterson et al. [49] more directly ad-

dresses the limitations of the syntactic multi-language ap-

proach, building realizability models for the two languages

rather than a source-level operational semantics and then

proving soundness in terms of that shared target-level rep-

resentation. Our work makes two improvements over theirs.

First, we define a notion of soundness of the core language

independent of the linked code, in the form of the model for

our core language. Since we use similar realizability tech-

niques, we expect this approach could be adapted to the

work of Patterson et al. [49], but, as presented, their models

share logical state across the languages. Second, and more

fundamentally, while they allow linking with inexpressible

behavior, at the boundary such code must be given a sound

type in the native language, which means that all use of that

behavior must be contained in the foreign language. For ex-

ample, if one wanted to write code that uses exceptions, all

code using exceptions would have to be implemented in the

foreign language, and only the end result (an encapsulated

component) could be brought across. This contrasts with our

approach, which defines an extended sublanguage where

only the try and catch primitives are imported, and the rest

of the code is implemented within the core language.

Foreign Function Interfaces (FFI) Many researchers have

investigated FFIs and how to make them safer, often consid-

ering a particular pair of languages, where one of them is

usually C [12, 23, 24, 35, 61–63]. There has also been work

extending the annotations that are written down so that

there is less hand-written (and thus error-prone) code to

write, with much work in the context of the Haskell FFI

[14, 20, 30]. While the latter certainly care about Haskell

type invariants, it’s not clear from these papers whether any

formal soundness properties were proved.

Another approach to having rich FFIs is to co-design both

languages, as has been done in the verification project Ever-

est [11], where a low-level C-like language Low* is designed

[56] to interoperate with an embedding of a subset of assem-

bly suitable for cryptography [22].

By embedding both languages into the verification frame-

work F*, they are able to prove rich properties about the

interactions between the two languages, but this approach

is less useful for existing languages, our primary focus.

Rust The Rust language has a built-in mechanism for em-

bedding “unsafe” code that could not satisfy the typechecker

of “safe” Rust. There have been efforts to characterize the

semantic behavior of safe Rust (“unsafe code guidelines”)

and prove that some unsafe code, while syntactically not

well typed, does not violate those properties. Most notably,

the RustBelt [32] project gives a semantic model of _𝑅𝑢𝑠𝑡

24

TyDe ’23, September 4, 2023, Seattle, WA, USA Daniel Patterson, Andrew Wagner, and Amal Ahmed

types and uses it to prove the soundness of _𝑅𝑢𝑠𝑡 typing

rules, but also to prove that the _𝑅𝑢𝑠𝑡 implementations of

standard library features (essentially unsafe code) are seman-

tically sound inhabitants of their ascribed type specification.

We argue that Rust’s goals for unsafe and how RustBelt

approached them fit into our approach: the unsafe code un-

questionably has behavior inexpressible in the rest of Rust,

and they already have a syntactic boundary construct: un-

safe blocks. Moreover, for RustBelt, Jung et al. [32] created a

lifetime logic that could be used to semantically model (some

of) that behavior. While in this paper we expect syntactic

type checkers for the extended language, there is no reason

why a lifetime logic approach isn’t equally valid, and may be

necessary for sufficiently complex behavior. Since RustBelt

uses the same lifetime logic to define the semantics of safe

Rust types, the type functions are perhaps not as apparent,

but the properties they convey are: in particular, since they

do not insert code around unsafe blocks, they need to prove

that the code inside satisfies a safe Rust type. Put another

way, any encapsulation has to be inlined into the library

implementation, rather than inserted by the compiler.

Semantic Models and Realizability Models The use of se-
manticmodels to prove type soundness has a long history [41].

We make use of step-indexed models [3, 4], developed as part

of the Foundational Proof-Carrying Code [1] project, which

showed how to scale the semantic approach to complex fea-

tures found in real languages such as recursive types and

higher-ordermutable state. Our realizabilitymodels interpret

source types as sets of target terms. This work follows a line

of work by Benton and collaborators on “low-level seman-

tics for high-level types” (a.k.a. “realistic realizability”) [7].

Such models have been used to prove type soundness of

standalone languages, specifically, Benton and Zarfaty [10]

proved an imperative while language sound and Benton and

Tabareau [9] proved type soundness for a simply typed func-

tional language, interpreting source types as relations on

terms of an idealized assembly and allowing for compiled

code to be linked with a verified memory allocation mod-

ule implemented in assembly [7]. Krishnaswami et al. [34]

make use of a realizability model to prove consistency of

LNL𝐷 a core type theory that integrates linearity and full

type dependency: this is a form of interoperability, but as the

FFI work above, it is a concrete instantiation for a particular

problem, rather than an general approach. Such realizability

models have also been used by Jensen et al. [29] to verify

low-level code using a high-level separation logic, by Benton

and Hur [8] to verify compiler correctness, and by New et

al. [42, 44, 45] in their work on semantic foundations for

gradual typing.

8 Conclusion
We have presented a framework for encapsulating foreign

code which is based on the idea of giving precise linking

types to libraries that provide behavior that is inexpressible

in the core language. These types are then used to typecheck

encapsulated portions of code that use the external libraries,

and the results are then wrapped in boundaries that ensure

they behave as a type in the core language. The technical

development leverages realizability models, which interpret

source types as sets of target terms and thus allow us to

build different models for the different type systems, yet

move terms between them in our proofs.

There are many possible extensions, both practical and

theoretical. On the practical end, we think there is interest-

ing research to be done on suitable type mechanisms for the

linking types themselves. In particular, the balance of expres-

sivity and usability that we would want suggests that some

sort of extensible type system may be the right tool for this:

perhaps an indexed monad, building on the work of Maillard

et al. [39], or maybe an effect type system in the vein of Koka

[36, 37]. On the other hand, there may also be interesting

work in combining different extensions: in this work, we

took the position that extensions could not be combined, but

it is possible that this is too restrictive of a position, and that

such an extensible type system could be combined with sets

of models that capture different effects and can be composed

together, as needed. Clearly, the fact that our model for both

exceptions and state recapitulates the definitions of the state

model seems disappointing: perhaps there is a better way.

In addition to extensions, there are also ways of mak-

ing the problem more specific that we think are interesting.

For example, consider recent work [13] embedding OCaml

code into Coq by way of an encoding that represents the

OCaml as non-deterministic functions. While the types are

defined within Gallina, the reliance on extraction to inhabit

those types leads us to believe that this sort of system could

be proved sound using exactly the type of framework we

propose. Indeed, the interaction of verified code, or the ver-

ification base itself, with untrusted code is an important

interoperability problem, and one that we think the linking
types framework could be useful for.

Finally, while we have focused on unary models and type

soundness theorems, we think there are also possibly inter-

esting results from considering binary models. In that setting,

we can directly reason about equivalence, whether that is

used to show theorems that should hold of models (e.g., refac-

torings that should hold in a side-effect free language), or

about security properties like full abstraction.

Acknowledgements
We thank anonymous reviewers for their in-depth comments.

This material is based upon work supported by the National

Science Foundation under Grant No. CCF-1816837 and CCF-

1453796.

25

Semantic Encapsulation using Linking Types TyDe ’23, September 4, 2023, Seattle, WA, USA

References
[1] Amal Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N.

Swadi, Gang Tan, and Daniel C. Wang. 2010. Semantic Foundations

for Typed Assembly Languages. ACM Transactions on Programming
Languages and Systems 32, 3 (March 2010), 1–67.

[2] Amal Ahmed and Matthias Blume. 2011. An equivalence-preserving

CPS translation via multi-language semantics. In Proceeding of the
16th ACM SIGPLAN international conference on Functional Program-
ming, ICFP 2011, Tokyo, Japan, September 19-21, 2011, Manuel M. T.

Chakravarty, Zhenjiang Hu, and Olivier Danvy (Eds.). ACM, 431–444.

https://doi.org/10.1145/2034773.2034830
[3] Amal Jamil Ahmed. 2004. Semantics of Types for Mutable State. Ph. D.

Dissertation. Princeton University.

[4] Andrew W. Appel and David A. McAllester. 2001. An indexed model

of recursive types for foundational proof-carrying code. ACM Trans.
Program. Lang. Syst. 23, 5 (2001), 657–683. https://doi.org/10.1145/
504709.504712

[5] Vytautas Astrauskas, Christoph Matheja, Federico Poli, Peter Müller,

and Alexander J Summers. 2020. How do programmers use unsafe

Rust? Proceedings of the ACM on Programming Languages 4, OOPSLA
(2020), 1–27.

[6] Edd Barrett, Carl Friedrich Bolz, Lukas Diekmann, and Laurence Tratt.

2016. Fine-grained Language Composition: A Case Study. In 30th
European Conference on Object-Oriented Programming (ECOOP 2016)
(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 56), Shri-
ram Krishnamurthi and Benjamin S. Lerner (Eds.). Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 3:1–3:27. https:
//doi.org/10.4230/LIPIcs.ECOOP.2016.3

[7] Nick Benton. 2006. Abstracting allocation: The new new thing. In

Computer Science Logic (CSL).
[8] Nick Benton and Chung-Kil Hur. 2009. Biorthogonality, Step-indexing

and Compiler Correctness. In Proceedings of the 14th ACM SIGPLAN
International Conference on Functional Programming (Edinburgh, Scot-

land) (ICFP ’09). ACM, New York, NY, USA, 97–108. https://doi.org/
10.1145/1596550.1596567

[9] Nick Benton and Nicolas Tabareau. 2009. Compiling functional types

to relational specifications for low level imperative code. In Proceedings
of TLDI’09: 2009 ACM SIGPLAN International Workshop on Types in
Languages Design and Implementation, Savannah, GA, USA, January
24, 2009. 3–14.

[10] Nick Benton and Uri Zarfaty. 2007. Formalizing and Verifying Se-

mantic Type Soundness of a Simple Compiler. In Proceedings of the
9th ACM SIGPLAN International Conference on Principles and Practice
of Declarative Programming (Wroclaw, Poland) (PPDP ’07). Associa-
tion for Computing Machinery, New York, NY, USA, 1–12. https:
//doi.org/10.1145/1273920.1273922

[11] Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cé-

dric Fournet, Chris Hawblitzel, Catalin Hritcu, Samin Ishtiaq, Markulf

Kohlweiss, Rustan Leino, Jay R. Lorch, Kenji Maillard, Jianyang Pan,

Bryan Parno, Jonathan Protzenko, Tahina Ramananandro, Ashay Rane,

Aseem Rastogi, Nikhil Swamy, Laure Thompson, Peng Wang, Santi-

ago Zanella Béguelin, and Jean Karim Zinzindohoue. 2017. Everest:

Towards a Verified, Drop-in Replacement of HTTPS. In 2nd Summit
on Advances in Programming Languages, SNAPL 2017, May 7-10, 2017,
Asilomar, CA, USA (LIPIcs, Vol. 71), Benjamin S. Lerner, Rastislav Bodík,

and ShriramKrishnamurthi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 1:1–1:12. https://doi.org/10.4230/LIPIcs.SNAPL.2017.1
[12] Matthias Blume. 2001. No-longer-foreign: Teaching an ML compiler

to speak C “natively”. Electronic Notes in Theoretical Computer Science
59, 1 (2001), 36–52.

[13] Sylvain Boulmé and Thomas Vandendorpe. 2019. Embedding Un-

trusted Imperative ML Oracles into Coq Verified Code. (July 2019).

https://hal.archives-ouvertes.fr/hal-02062288 This preprint has been

largely rewritten and integrated into Sylvain Boulm{é}’s Habilitation

in 2021, See http://www-verimag.imag.fr/ boulme/hdr.html..

[14] Manuel MT Chakravarty. 1999. C->HASKELL, or Yet Another In-

terfacing Tool. In Symposium on Implementation and Application of
Functional Languages. Springer, 131–148.

[15] Byron Cook and John Launchbury. 1997. Disposable memo functions.

In ICFP, Vol. 97. 310.
[16] Olivier Danvy and Andrzej Filinski. 1990. Abstracting control. In

Proceedings of the 1990 ACM Conference on LISP and Functional Pro-
gramming. 151–160.

[17] Derek Dreyer, Georg Neis, and Lars Birkedal. 2012. The Impact of

Higher-Order State and Control Effects on Local Relational Reasoning.

J. Funct. Program. 22, 4–5 (aug 2012), 477–528. https://doi.org/10.1017/
S095679681200024X

[18] Mattias Felleisen. 1988. The Theory and Practice of First-Class Prompts.

In Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (San Diego, California, USA) (POPL ’88).
Association for Computing Machinery, New York, NY, USA, 180–190.

https://doi.org/10.1145/73560.73576
[19] Matthias Felleisen. 1990. On the expressive power of programming

languages. In European Symposium on Programming. Springer, 134–
151.

[20] Sigbjorn Finne, Daan Leijen, Erik Meijer, and Simon Peyton Jones.

1998. H/Direct: a binary foreign language interface for Haskell. In

Proceedings of the third ACM SIGPLAN international conference on
Functional programming. 153–162.

[21] The Rust Foundation. [n. d.]. The Rust Standard Library. https://doc.
rust-lang.org/std/keyword.extern.html

[22] Aymeric Fromherz, Nick Giannarakis, Chris Hawblitzel, Bryan Parno,

Aseem Rastogi, and Nikhil Swamy. 2019. A verified, efficient em-

bedding of a verifiable assembly language. PACMPL 3, POPL (2019),

63:1–63:30. https://doi.org/10.1145/3290376
[23] Michael Furr and Jeffrey S. Foster. 2005. Checking Type Safety of

Foreign Function Calls. 62–72.

[24] Michael Furr and Jeffrey S. Foster. 2008. Checking Type Safety of

Foreign Function Calls.

[25] Kathryn E Gray. 2008. Safe cross-language inheritance. In European
Conference on Object-Oriented Programming. Springer, 52–75.

[26] Kathryn E Gray, Robert Bruce Findler, and Matthew Flatt. 2005. Fine-

grained interoperability through mirrors and contracts. ACM SIGPLAN
Notices 40, 10 (2005), 231–245.

[27] Unsafe Code Guidelines Working Group. [n. d.]. Unsafe Code Guide-
lines Reference. https://rust-lang.github.io/unsafe-code-guidelines/
introduction.html

[28] Koen Jacobs, Dominique Devriese, and Amin Timany. 2022. Purity of

an ST monad: full abstraction by semantically typed back-translation.

Proceedings of the ACM on Programming Languages 6, OOPSLA1 (2022),
1–27.

[29] Jonas B. Jensen, Nick Benton, and Andrew Kennedy. 2013. High-

Level Separation Logic for Low-Level Code (POPL ’13). Association
for Computing Machinery, New York, NY, USA, 301–314. https://doi.
org/10.1145/2429069.2429105

[30] Simon Peyton Jones, Thomas Nordin, and Alastair Reid. 1997. Green-

Card: a foreign-language interface for Haskell. In Proc. Haskell Work-
shop.

[31] Simon Peyton Jones, Norman Ramsey, and Fermin Reig. 1999. C-

—: A portable assembly language that supports garbage collection.

In International Conference on Principles and Practice of Declarative
Programming. Springer, 1–28.

[32] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.

2018. RustBelt: Securing the Foundations of the Rust Programming

Language. In ACM Symposium on Principles of Programming Languages
(POPL).

[33] Robert Kleffner. 2017. A Foundation for Typed Concatenative Languages.
Master’s thesis. Northeastern University.

26

https://doi.org/10.1145/2034773.2034830
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/504709.504712
https://doi.org/10.4230/LIPIcs.ECOOP.2016.3
https://doi.org/10.4230/LIPIcs.ECOOP.2016.3
https://doi.org/10.1145/1596550.1596567
https://doi.org/10.1145/1596550.1596567
https://doi.org/10.1145/1273920.1273922
https://doi.org/10.1145/1273920.1273922
https://doi.org/10.4230/LIPIcs.SNAPL.2017.1
https://hal.archives-ouvertes.fr/hal-02062288
https://doi.org/10.1017/S095679681200024X
https://doi.org/10.1017/S095679681200024X
https://doi.org/10.1145/73560.73576
https://doc.rust-lang.org/std/keyword.extern.html
https://doc.rust-lang.org/std/keyword.extern.html
https://doi.org/10.1145/3290376
https://rust-lang.github.io/unsafe-code-guidelines/introduction.html
https://rust-lang.github.io/unsafe-code-guidelines/introduction.html
https://doi.org/10.1145/2429069.2429105
https://doi.org/10.1145/2429069.2429105

TyDe ’23, September 4, 2023, Seattle, WA, USA Daniel Patterson, Andrew Wagner, and Amal Ahmed

[34] Neelakantan R. Krishnaswami, Pierre Pradic, and Nick Benton. 2015.

Integrating Linear and Dependent Types. In Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2015, Mumbai, India, January 15-17, 2015, Sri-
ram K. Rajamani and David Walker (Eds.). ACM, 17–30. https:
//doi.org/10.1145/2676726.2676969

[35] Byeongcheol Lee, Ben Wiedermann, Martin Hirzel, Robert Grimm,

and Kathryn S. McKinley. 2010. Jinn: synthesizing dynamic bug de-

tectors for foreign language interfaces. In Proceedings of the 2010
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010,
Benjamin G. Zorn and Alexander Aiken (Eds.). ACM, 36–49. https:
//doi.org/10.1145/1806596.1806601

[36] Daan Leijen. 2014. Koka: Programming with Row Polymorphic Ef-

fect Types. In Proceedings 5th Workshop on Mathematically Structured
Functional Programming, MSFP@ETAPS 2014, Grenoble, France, 12 April
2014 (EPTCS, Vol. 153), Paul Blain Levy and Neel Krishnaswami (Eds.).

100–126. https://doi.org/10.4204/EPTCS.153.8
[37] Daan Leijen. 2017. Type Directed Compilation of Row-Typed Alge-

braic Effects. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages (Paris, France) (POPL 2017).
Association for Computing Machinery, New York, NY, USA, 486–499.

https://doi.org/10.1145/3009837.3009872
[38] Paul Blain Levy. 2001. Call-by-Push-Value. Ph. D. Dissertation. Queen

Mary, University of London, London, UK.

[39] Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martínez, Cătălin

Hriţcu, Exequiel Rivas, and Éric Tanter. 2019. Dijkstra Monads for

All. Proc. ACM Program. Lang. 3, ICFP, Article 104 (jul 2019), 29 pages.
https://doi.org/10.1145/3341708

[40] Jacob Matthews and Robert Bruce Findler. 2007. Operational semantics

for multi-language programs. In Proceedings of the 34th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2007, Nice, France, January 17-19, 2007, Martin Hofmann and Matthias

Felleisen (Eds.). ACM, 3–10. https://doi.org/10.1145/1190216.1190220
[41] Robin Milner. 1978. A theory of type polymorphism in programming.

J. Comput. Syst. Sci. 17 (1978), 348–375.
[42] Max S. New and Amal Ahmed. 2018. Graduality from Embedding-

Projection Pairs, In ICFP. Proceedings of the ACM on Programming
Languages 2, 73:1–73:30.

[43] Max S. New,William J. Bowman, and Amal Ahmed. 2016. Fully abstract

compilation via universal embedding. In Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP
2016, Nara, Japan, September 18-22, 2016, Jacques Garrigue, Gabriele
Keller, and Eijiro Sumii (Eds.). ACM, 103–116. https://doi.org/10.1145/
2951913.2951941

[44] Max S. New, Dustin Jamner, and Amal Ahmed. 2020. Graduality and

Parametricity: Together Again for the First Time. Proceedings of the
ACM on Programming Languages 4, POPL, 46:1–46:32.

[45] Max S New, Daniel R Licata, and Amal Ahmed. 2019. Gradual type

theory. Proceedings of the ACM on Programming Languages 3, POPL
(2019), 15:1–15:31.

[46] Peter-Michael Osera, Vilhelm Sjöberg, and Steve Zdancewic. 2012. De-

pendent interoperability. In Proceedings of the sixth workshop on Pro-
gramming Languages meets Program Verification, PLPV 2012, Philadel-
phia, PA, USA, January 24, 2012, Koen Claessen and Nikhil Swamy

(Eds.). ACM, 3–14. https://doi.org/10.1145/2103776.2103779
[47] Bryan O’Sullivan, John Goerzen, and Donald Bruce Stewart. 2008.

Real world Haskell: Code you can believe in. " O’Reilly Media, Inc.",

Chapter 17.

[48] Daniel Patterson and Amal Ahmed. 2017. Linking Types for Multi-

Language Software: Have Your Cake and Eat It Too. In 2nd Summit
on Advances in Programming Languages (SNAPL 2017) (Leibniz In-
ternational Proceedings in Informatics (LIPIcs), Vol. 71), Benjamin S.

Lerner, Rastislav Bodík, and Shriram Krishnamurthi (Eds.). Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 12:1–

12:15. https://doi.org/10.4230/LIPIcs.SNAPL.2017.12
[49] Daniel Patterson, Noble Mushtak, Andrew Wagner, and Amal Ahmed.

2022. Semantic Soundness for Language Interoperability. In Proceed-
ings of the 43rd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2022, San Diego, California, June
13-17, 2022. ACM.

[50] Daniel Patterson, Jamie Perconti, Christos Dimoulas, and Amal Ahmed.

2017. FunTAL: reasonably mixing a functional language with assembly.

In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, Barcelona, Spain, June
18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 495–509.

https://doi.org/10.1145/3062341.3062347
[51] Daniel Patterson, Andrew Wagner, and Amal Ahmed. 2023. Semantic

Encapsulation using Linking Types (Technical Appendix). (July 2023).

Available at https://dbp.io/pubs/2023/lt-tr.pdf.
[52] James T. Perconti and Amal Ahmed. 2014. Verifying an Open Com-

piler Using Multi-language Semantics. In Programming Languages
and Systems - 23rd European Symposium on Programming, ESOP 2014,
Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceed-
ings (Lecture Notes in Computer Science, Vol. 8410), Zhong Shao (Ed.).

Springer, 128–148. https://doi.org/10.1007/978-3-642-54833-8_8
[53] Simon Peyton Jones, SimonMarlow, and Conal Elliott. 1999. Stretching

the storage manager: weak pointers and stable names in Haskell. In

Symposium on Implementation and Application of Functional Languages.
Springer, 37–58.

[54] Frank Pfenning and Dennis Griffith. 2015. Polarized substructural

session types. In International Conference on Foundations of Software
Science and Computation Structures. Springer, 3–22.

[55] LLVM Project. [n. d.]. LLVM Reference. https://www.llvm.org/docs/
GarbageCollection.html#gcroot

[56] Jonathan Protzenko, Jean Karim Zinzindohoué, Aseem Rastogi, Tahina

Ramananandro, Peng Wang, Santiago Zanella Béguelin, Antoine

Delignat-Lavaud, Catalin Hritcu, Karthikeyan Bhargavan, Cédric Four-

net, and Nikhil Swamy. 2017. Verified low-level programming embed-

ded in F. PACMPL 1, ICFP (2017), 17:1–17:29. https://doi.org/10.1145/
3110261

[57] Klaas Pruiksma, William Chargin, Frank Pfenning, and Jason Reed.

2018. Adjoint logic. Unpublished manuscript, April (2018).
[58] Michael Sammler, Deepak Garg, Derek Dreyer, and Tadeusz Litak.

2019. The High-Level Benefits of Low-Level Sandboxing. Proc. ACM
Program. Lang. 4, POPL, Article 32 (dec 2019), 32 pages. https://doi.
org/10.1145/3371100

[59] Gabriel Scherer, Max S. New, Nick Rioux, and Amal Ahmed. 2018.

FabULous Interoperability for ML and a Linear Language. In Founda-
tions of Software Science and Computation Structures - 21st International
Conference, FOSSACS 2018, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,
Greece, April 14-20, 2018, Proceedings (Lecture Notes in Computer Science,
Vol. 10803), Christel Baier and Ugo Dal Lago (Eds.). Springer, 146–162.

https://doi.org/10.1007/978-3-319-89366-2_8
[60] David Swasey, Deepak Garg, and Derek Dreyer. 2017. Robust and

Compositional Verification of Object Capability Patterns. Proc. ACM
Program. Lang. 1, OOPSLA, Article 89 (oct 2017), 26 pages. https:
//doi.org/10.1145/3133913

[61] Gang Tan, AndrewW. Appel, Srimat Chakradhar, Ravi Srivaths, Anand

Raghunathan, and Daniel Wang. 2006. Safe Java Native interface. In

Proceedings of the 2006 IEEE International Symposium on Secure Software
Engineering. 97–106.

[62] Gang Tan and Greg Morrisett. 2007. Ilea: Inter-language Analysis

Across Java and C. In Proceedings of the 22Nd Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems and Applications
(Montreal, Quebec, Canada) (OOPSLA ’07). ACM, New York, NY, USA,

27

https://doi.org/10.1145/2676726.2676969
https://doi.org/10.1145/2676726.2676969
https://doi.org/10.1145/1806596.1806601
https://doi.org/10.1145/1806596.1806601
https://doi.org/10.4204/EPTCS.153.8
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1145/3341708
https://doi.org/10.1145/1190216.1190220
https://doi.org/10.1145/2951913.2951941
https://doi.org/10.1145/2951913.2951941
https://doi.org/10.1145/2103776.2103779
https://doi.org/10.4230/LIPIcs.SNAPL.2017.12
https://doi.org/10.1145/3062341.3062347
https://doi.org/10.1007/978-3-642-54833-8_8
https://www.llvm.org/docs/GarbageCollection.html#gcroot
https://www.llvm.org/docs/GarbageCollection.html#gcroot
https://doi.org/10.1145/3110261
https://doi.org/10.1145/3110261
https://doi.org/10.1145/3371100
https://doi.org/10.1145/3371100
https://doi.org/10.1007/978-3-319-89366-2_8
https://doi.org/10.1145/3133913
https://doi.org/10.1145/3133913

Semantic Encapsulation using Linking Types TyDe ’23, September 4, 2023, Seattle, WA, USA

39–56. https://doi.org/10.1145/1297027.1297031
[63] Zachary Tatlock, Chris Tucker, David Shuffelton, Ranjit Jhala, and

Sorin Lerner. 2008. Deep Typechecking and Refactoring. In Proceedings
of the 23rd ACM SIGPLAN Conference on Object-oriented Programming
Systems Languages and Applications (Nashville, TN, USA) (OOPSLA
’08). ACM, New York, NY, USA, 37–52. https://doi.org/10.1145/1449764.
1449768

[64] Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars

Birkedal. 2017. A logical relation for monadic encapsulation of state:

Proving contextual equivalences in the presence of runST. Proceedings
of the ACM on Programming Languages 2, POPL (2017), 1–28.

[65] Jesse Tov and Riccardo Pucella. 2010. Stateful Contracts for Affine

Types. In Programming Languages and Systems, 19th European Sympo-
sium on Programming, ESOP 2010, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2010, Paphos,
Cyprus, March 20-28, 2010. Proceedings (Paphos, Cyprus).

[66] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,

Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and

Mario Wolczko. 2013. One VM to Rule Them All. In Proceedings of the
2013 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software (Indianapolis, Indiana, USA)
(Onward! 2013). Association for Computing Machinery, New York, NY,

USA, 187–204. https://doi.org/10.1145/2509578.2509581

Received 2023-06-01; accepted 2023-06-29

28

https://doi.org/10.1145/1297027.1297031
https://doi.org/10.1145/1449764.1449768
https://doi.org/10.1145/1449764.1449768
https://doi.org/10.1145/2509578.2509581

	Abstract
	1 Introduction
	2 Setting the Stage
	2.1 A Functional Language
	2.2 A Stack Language
	2.3 A Compiler for normalnormalRoyalBlue FunLang

	3 What Is Type Soundness?
	4 Linking with State
	5 Exceptions
	6 Soundness
	6.1 Proving GraynormalnormalRoyalBlue Sound
	6.2 Proving Black Gray Satisfies GrayGray
	6.3 Proving Libraries Satisfy Types
	6.4 Compatibility Lemmas & Type Soundness
	6.5 Discussion

	7 Related Work
	8 Conclusion
	References

