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ABSTRACT

Large software systems are, inevitably, multi-lingual. This arises for complex
socio-historical reasons, as large systems persist for years or decades, while
the people working on them and the languages, libraries, and tools available
to them change. Looking to these systems, I identify the interoperability
challenge: that it is more di�cult for programmers to reason about multi-
lingual systems than about single-language programs. A corollary is that
many of the key theorems about languages are proven in the absence of
interoperability, reality notwithstanding.
In this dissertation, I identify realizability models as a key tool for ad-

dressing the interoperability challenge. Realizability models, which use
target-level behavior to inhabit source types, allow the behavior of disparate
source languages to be brought together. In doing so, we can recover the
type of formal language-based reasoning critical to proving universal prop-
erties upon which programmers rely. In this dissertation, the property on
which we focus is type soundness, which we explore through a variety of case
studies and via two di↵erent interoperability mechanisms. The first mech-
anism, which models how typical foreign-function interfaces work, allows
foreign values to be imported at existing types. Realizability models are
used to demonstrate the soundness of the conversions that happen at the
boundaries. The second mechanism, which better models how programmers
wish interoperation worked, allows foreign code to be imported at novel
types, thus allowing new behavior to be brought in. Even as the source-level
mechanism is quite di↵erent between these two approaches, the underlying
realizability models are similar, underscoring the central thesis: that such
realizability models are an e↵ective way of reasoning about cross-language
interoperation.
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Part I

PREL IM INARIES



1
THE CHALLENGE OF LANGUAGE
INTEROPERABIL ITY

1.1 landscape of interoperability

Ever since the first compilers, programmers have been inventing languages,
and the number in widespread use keeps increasing. At the same time,
legacy code is remarkably persistent, so it’s not clear that any language,
once it reaches a certain threshold, will ever stop being used: indeed there
are still huge deployments of COBOL (Teplitzky, 2019; Powner, 2016)
and Fortran still underlies many numeric computations (of Tennessee et al.,
2021), both languages created in the 1950s. Even without more robust study,
this should not be terribly surprising: constructing software is remarkably
di�cult, especially software that inherits complex requirements from the
world around it. Once such software is working, or mostly working, the
idea of starting over again in a new language, and attempting to not only
extract all of the behavior from the first system, but correctly implement it
in the new one, is daunting, if not wholly inadvisable.

And yet, new languages do o↵er real benefits: better runtime systems,
better type systems, more expressive language features, and often, lessons
learned from earlier languages and complex problem domains. High-profile
cases prove the rule: e.g., consider Erlang, a language designed for reliability,
used not only to build an Ericsson AXD301 telephone switch that reached
an alleged 99.9999999% uptime (Armstrong, 2003), but at WhatsApp to
scale to hundreds of millions of users with only a few dozen sta↵ (Metz,
2015).

While initially at odds, the stubborn persistence of existing languages
and the promise of new ones can be reconciled through mechanisms that
support language interoperability. Indeed, the notion of a foreign function
interface (FFI) to integrate code written in a di↵erent language dates back
at least to the 1980s where Common Lisp implementations supported doing
this in various ways (Sexton, 1987). Using this sort of mechanism, new
components of old systems can be implemented in newer languages, either
for some specific linguistic benefit or as a path towards gradual migration.
Even in entirely new systems, individual components can be implemented
in di↵erent languages that suit the task best. While some languages aim
for true generality, many newer languages, e.g., the Rust Programming
Language, have gained popularity by targeting a more specific domain: for
Rust, making low-level programming safer. While certainly it would be
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1.1 landscape of interoperability 11

possible to implement everything in a language like Rust, a more likely
engineering outcome is a system like Facebook’s, where a high-level language
is used to write the majority of business logic driven user-facing code, and
backend code is implemented in a variety of lower-level, higher performance
languages.

It is worth exploring how, exactly, such multi-language systems can be
treated, and in doing so, focus on the type of interoperability that is the
subject of this dissertation. It’s important to understand the current state
of a↵airs in order to understand where research (rather than engineering)
can yield benefits.

Broadly speaking, there are two ways of connecting languages together.
One is via serialization-based interfaces, and the other is via direct-memory-
access. The former is the way that, e.g., Apache Thrift (Foundation,
2022), originally developed and still used at Facebook, works. Similar to
any number of other RPC (remote procedure call) libraries, Thrift uses a
generic data and function interface definition language (IDL) to generate
serialization and deserialization code in a variety of languages. Then, to
interoperate, a programmer invokes the generated code (and networking
code, as Thrift is designed for networked services). On the receiving end,
generated library code deserializes and invokes the corresponding native
functions, doing the reverse for return values. There are benefits to this
approach. Not only is it relatively easy to add a new language that can
interact with all existing languages, but the fact that separate services can
be moved to di↵erent physical machines can also be useful on its own.

But, this approach also comes with serious costs. Primarily, there is
significant overhead in making calls: even in the case of purely local invo- Engineering can

reduce this, e.g.,
consider Cap’n
Proto (https:
//capnproto.org/,
retrieved 2022-7-1),
which defines a
fixed binary format
that must be used
as the in-memory
data structure
format by all
languages, thus
eliminating
serialization cost.

cations, we still must context switch between processes, use some sort of
socket, and serialize and deserialize. This means that it only makes sense to
use this at coarse-grain boundaries. Thrift uses the language of “services”,
and that makes sense as a domain, but there are many other uses for in-
teroperability: in particular, consider using a high-level dynamic language,
and implementing a high-performance data structure in a lower-level static
language. Doing this in an RPC framework would make no sense, as any
benefit in speed of operations would be more than o↵set by the performance
lost by the framework overhead.

While the RPC frameworks are in some sense the most advanced form of
serialization-based interoperability, we also see this form of interoperability
in more primitive ways with systems that use a database, files, or network
access to interact with di↵erent parts that are implemented in di↵erent lan-
guages. While better engineering can always improve the RPC frameworks,
whether that means more tightly integrating them, improving performance,
or increasing expressivity, we have not identified theoretical deficiencies in
the serialization-based approach.

https://capnproto.org/
https://capnproto.org/
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The alternative is to directly make calls, involving no serialization and
potentially no overhead. This is how foreign-function interfaces (FFI)
generally work, and is the technique that underlies core libraries, data
structures, runtimes, and more. To understand the scope of this technique,
consider that while a program has some notion of a closed world with its
own values and functions, when it actually runs, the execution environmentOf course, some

security
mechanisms do try

to ensure such a
closed environment,
but generally at a

very di↵erent
granularity.

is not closed: there in no OCaml machine that runs OCaml expressions, but
rather, the OCaml compiler translates OCaml to either bytecode to be run
by an interpreter or machine code. In either case, a machine code program
runs, and since it is a machine code program, there is no reason why it has
to run only code that originated in the OCaml language. Indeed, it likely
will run code not written in OCaml when using certain libraries or parts
of the runtime. More specifically, our compiled program can jump directly
into machine code that was compiled from other languages, or implemented
directly in assembly, or to an interpreter for another language that runs its
own bytecode. This can happen with very little overhead, no more than is
necessary for function calls within a language, where the stack and registers
need to be properly managed to satisfy calling conventions.

For this reason, many high-level dynamic languages implement core data
structures in low-level languages and jump between them transparently.
Runtimes are also rarely written in the language that they support, and thus
involve a degree of switching between languages. There is also incredible
flexibility to this approach: because it involves a single program in a single
memory space, pointers to both data and functions can freely flow across
boundaries, to be accessed or invoked by the foreign language as needed.

1.2 the interoperability challenge

With the power to directly access memory and transfer control comes a
significant cost: if foreign values and code freely flow in, theorems proved
assuming an isolated core language are likely to be meaningless. This leads us
to identify the interoperability challenge: reasoning about multi-language
programs should be no more di�cult than reasoning about single-language
programs. Concretely, what we mean is that if a theorem holds about an
idealized version of the language that exists in isolation, some analog of
that theorem should hold about the language as it exists when interacting
with other languages. Or, to put it di↵erently, if I have a program entirely
implemented in language L, the challenge says that local reasoning that I do
about a part of that program should not change even if I replace part of the
rest of the program with an implementation written in a di↵erent language.
As an example, consider that a term in my program had a particular static
type, like a reference: linking with foreign code should not invalidate this
fact. Clearly, this is not currently the case: not only do FFIs allow types
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to be violated, but they can cause memory-safe languages to segfault, pure
languages to no longer respect key equivalences, and a myriad of other
problems. We identify this challenge both as a useful prompt for future
work on interoperability, which is sorely lacking, and also as a framing for
the thesis of this dissertation.

1.3 thesis

Modeling source types in terms of target-level behavior is an
e↵ective way of reasoning about cross-language interoperation.

This dissertation will show that so-called realizability models, which model
source types using target behavior, are a useful tool for addressing the
interoperability challenge. While the challenge is intentionally broad, the
dissertation is necessarily narrow: in it we focus on type soundness. Despite
the fact that plenty of reasoning that programmers do is often relational or
related solely to static semantics, type soundness is a central theorem that Even “untyped”

languages are
usually “type
sound” in this
sense, they just
have a single type:
the dynamic type.

is often proved, or at least aspired to, by typed languages. Thus, addressing
soundness is both a useful goal on its own, and a good exercise of the thesis.
By showing that our realizability models are up to the task of accounting
for various forms of type soundness, we give evidence towards their more
general utility in addressing the broader challenge.
Type soundness, around which our central results revolve, says that a

program that satisfies a syntactic check behaves in a semantically meaningful
way, which generally means that it will only have well defined errors. If
arbitrary target values or code can be introduced, this theorem will never
hold, as our target will generally have many more behaviors and values than
our source language, and can thus create corruption or behavior that is not
explainable in terms of the source language.
Typically, if a language is proven sound at all, the proof will almost

certainly exclude interoperability (generally supported via an FFI). Unfortu-
nately, this means that the soundness theorem is only a crude approximation
of reality, as nearly all programs have FFI calls somewhere in their stack.
The interoperability challenge demands that we correct this situation, and
this dissertation does, in two di↵erent ways. First, however, we address one
key point of related work.

1.4 an existing approach

Despite the obvious importance of the interoperability challenge, it is not
terribly surprising that FFIs have been typically excluded from soundness
proofs. After all, the prevailing technique for proving type soundness (due to
Wright and Felleisen (1994)) involves a syntactic progress and preservation
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proof to show that types are preserved by reduction. This involves showing
that a program continues to satisfy the source type system as it runs, but
a program that invokes foreign code will involve running code that could
not be well-typed in that type system. If this approach were to be followed,
syntactic type soundness must account for the foreign code, too. This
is precisely what Matthews and Findler (2007) set out to support with
multi-language semantics, which is defined over a joint syntax that embeds
the syntax of the two languages, say core language L and foreign language
F. Interoperation between these languages is mediated by a boundary,
⌧LLF

⌧FeF, which enables foreign code eF : ⌧F to be used in an L context that
expects code of type ⌧L (while the boundary term ⌧FFL

⌧LeL enables the
converse).

This multi-language framework has inspired a significant amount of work
on interoperability: between simple and dependently typed languages (Os-
era et al., 2012), between languages with unrestricted and substructural
types (Tov and Pucella, 2010; Scherer et al., 2018), between a high-level
functional language and assembly (Patterson et al., 2017), and between
source and target languages of compilers (Ahmed and Blume, 2011; Perconti
and Ahmed, 2014; New et al., 2016).

Unfortunately, while Matthews-Findler-style boundaries give an elegant,
abstract model for interoperability, they are not the right tool for building
soundness proofs that account for FFIs. There are two flaws, corrected by
Parts II and III of this dissertation.

1.5 contributions

value interoperability In Part II of the dissertation, we present
an approach for proving soundness of idealized FFIs as they exist: where
foreign values and code are imported at existing types of the language.
This approach addresses the first major deficiency in the multi-language
approach, which is that the semantics is disconnected from the actual code
that runs. It also serves to demonstrate for the first time the power of
realizability models in addressing questions of interoperability. We describe
in more detail what we mean by a disconnect from the actual code that
runs, and why it is a problem with the multi-language approach to proving
type soundness.

• Novel Semantics The biggest problem with multi-language seman-
tics is that when one defines a multi-language, one defines an entirely
new language, with its own dynamic and static semantics. For simple
languages, the operational behavior of the embedded languages can be
preserved, and we can prove that reductions in the original language
correspond to reductions in the multi-language, but even the introduc-
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tion of state complicates this, as pure reductions must now thread a
heap. More significantly, as we show in a case study in Chapter 6, if
one language is garbage collected and the other has manual memory
management, assuming we want to allow non-trivial interoperation, we
have to make garbage collection explicit. It becomes important what
happens when there are references between the two heaps (if allowed),
which are questions that, by definition, do not arise in the semantics of
the original source languages. These decisions can all be answered in
the multi-language semantics, but making the modeling decisions there
brings in a significant risk: that what is done in the multi-language
does not correspond to what happens in the actual program, as we do
not use this multi-language semantics to run programs.

• Existing CompilersWhile we could ensure that our multi-language is
sensible by proving correctness of the compiler from our multi-language
to a target that actually runs, this target code does not necessarily
correspond to code that would be emitted by already existing compilers
for the languages in question. Further, this approach is in some ways
backwards: since the existing compilers are already our source of truth,
better to use them to start.

• (Un)desirable Conversions The final problem with the disconnect
between multi-languages and the target is that since the multi-language
defines conversions via meta-functions, it’s not always obvious if those
can be realized in performant code, especially because the conversions
that will actually happen will be over target-level representations
of values. The source-level metafunctions that the multi-language
uses for conversions may obscure benificial implementations or hide
necessary ine�ciencies, producing results that may not be useful. As
a simple example, indexing a sequence may be fast if the sequence is
represented as an array, but slow if represented as a linked list, and
both operations will look identical in a metafunction.

While multi-language boundaries are a good source-language abstraction,
as they can account for both inline code and import/export-style linking,
we can address all the above issues by building realizability models derived
from how the source languages are compiled and the glue code that is
inserted at the boundaries. To account for that glue code, we add a static
“convertibility” judgment ⌧1 ⇠ ⌧2 that is realized at runtime by target-
level code that converts from target representations of ⌧1 to ⌧2, and the
converse. The soundness of that glue code, which mediates between data
representations and calling conventions, is proved using the realizability
models, since target representations of ⌧i are exactly what our models give us.
While multi-langugage boundaries have similar type-directed conversions,
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they are at the source, and thus do not account for this code, which is
of critical importance for the soundness of the FFI. Once we have our
realizability models, proving type soundness is a matter of following the
standard semantic type soundness playbook: show that a statically well-
typed source program, once compiled, satisfies the realizability model at the
corresponding semantic type.

behavior interoperability While the above, which covers Part II
of the dissertation, does a good job of bringing the multi-language approach
closer to the target, and thus onto a more useful footing, there is a more
fundamental challenge to type soundness and interoperability inherent to
the multi-language approach. The problem is, even if we can account for
the conversions between a core language L and a foreign language F, the
soundness of our types means that if we want to use novel behavior from
language F, we need to write code in F. That is because we can only convert
to language L values that behave as L types. Concretely, consider if L was a
pure language, and the goal of using the FFI was to use stateful behavior
in F to implement a mutable reference library. This is a realistic situation,
as often FFIs are used to bring new behavior into otherwise less expressive
languages. The issue is that no type in L admits such behavior, and so our
L programmer would have to do all of the programming that involved state
in F and only incorporate extensionally pure code into L. It isn’t realistic
to expect an L programmer to know all the foreign languages F1, . . . ,Fn in
which their library code is written, and thus in practice what we actually
observe is that foreign code is imported at types that do not accurately
capture their behavior, often threatening soundness. For example, the
OCaml FFI allows C code to be used at OCaml types, despite the fact
that having correct headers is no guarantee that the function behaves as an
OCaml function should: not violating memory safety, value representations,
etc.

Indeed, the most serious limitation of a multi-language semantics is that L
programmers cannot benefit from the extra expressive power of F unless they
write embedded F programs themselves. More typically, libraries expose new
primitives that allow the programmer to continue to program in (nearly) their
language. For example, the programmer might import alloc, read, write
functions to add heap access but otherwise continue programming in their
language. Mirroring this, our goal is to allow L programmers to leverage this
power while continuing to program in L. The framework in Part III, called
“linking types”, shows how to address this issue by building an extension
within L that can capture such novel behavior, and again use realizibility
models to prove the entire system sound. Proving soundness, in this case,
involves showing that the novel behavior is safely encapsulated within the
extension. Important to note is that while the surface level behavior is much
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more expressive than in Part II, the underlying realizability models are very
similar. Thus, Part III of the dissertation is both an interoperability design
contribution on its own and strong evidence for the thesis: that realizability
models are a generally useful tool when confronting the interoperability
challenge.



2
BACKGROUND : REAL IZAB IL ITY & SEMANTIC
SOUNDNESS

In this chapter, we give background on type soundness and logical
relations before presenting a tutorial on realizability models. The
model in the tutorial, while simple, shows how we build these
sorts of models and use them to prove type soundness.

type soundness Milner (1978) was the first to propose a theorem for
type soundness. The theorem states that if programs possess a syntactic
property, satisfying an algorithmic type-checker, they therefore possess a
semantic property of being well typed. Being well typed means that they
cannot get into an erroneous state, which has led to the pithy slogan “well-
typed programs don’t go wrong”. Since the mid 1990s, people commonly
prove type soundness using a method created by Wright and Felleisen
(1994), in which syntactically well-typed programs are shown to remain
well-typed as they evaluate. Concretely, this technique uses a pair of lemmas
called “progress” (a well-typed term can take a step of evaluation) and
“preservation” (a well-typed term that takes a step remains well-typed);
inductively, these mean a well-typed program will never get into a non-
well-typed (i.e., erroneous) state. What are these “erroneous states”? InThus the slogan

“well-typed programs
don’t go wrong”

was actually very
precise for Milner.

Milner’s case, it was wrong, which was the element used in the semantic
equations for compositions of expressions that had no meaning. One of the
equations, for example, that covered function application, is the following
(written using slightly more familiar, if verbose, notation than in (Milner,
1978)):

EJ(e1 e2)K⌘ =

8
>>>>>>><

>>>>>>>:

?, if v1 = ?8
>><

>>:

?, if v2 = ?

wrong, if v2 = wrong

v1 v2, otherwise

, if v1 2 F

wrong, otherwise

where v1 2 EJe1K⌘ and v2 2 EJe2K⌘

where F is all functions, ? denotes divergence, and ⌘ is the (unused)
environment. We can see that an application goes wrong if the first term is
not a function or if the second term goes wrong.

For Wright-Felleisen, going wrong is an absence of an operational step
that the program can take when the program is not in a valid terminal

18



background: realizability & semantic soundness 19

state: the program has gotten stuck. Showing a concise example is more
troublesome, since it is the absence that determines stuckness, but a typical
setup might include cases for stepping in either the function position or
argument position, and then a single rule like the following:

(�x.e) v ! e[x 7! v]

Which means that, like Milner, the term will get stuck (go wrong) if the
term in the function position does not turn out to be (i.e., evaluate to)
a function. While they look quite di↵erent, these are two di↵erent ways
of approaching the same idea, though Milner’s slogan certainly won the
rhetorical battle.

It is important to note, of course, that “not going wrong” does not mean
that programs cannot have errors! The errors simply must be interpreted by
the semantics of the language. For example, most languages allow arbitrary
integers to be divided, and diving by zero may be an unrecoverable error.
In that case, in Milner’s formulation the program n/0 would be given the
meaning dividebyzero or something else to indicate the unrecoverable
error, rather than wrong. In the Wright-Felleisen formulation, n/0 would
step to a sentinal error value which would be a valid terminal configuration
for a program.

More subtly, any meaningful properties that you wish to capture in a
type soundness theorem should be distinguished by a program going right
or wrong: if violation of the invariant that the type is supposed to enforce
does not result in wrongness/stuckness, the type soundness theorem may
not be providing a meaningful guarantee that the invariant is enforced, as
all that it says is that a well-typed program does not have a conflict with
the operational semantics. As an example of how this can get us in trouble,
if we design a type system for pointers that is intended to prevent memory
aliasing but we have an operation “clone” that copies a pointer, a proof
that such a system is sound does not guarantee anything about the aliasing
property, as soundness only ensures programs do not get stuck. Instead,
a separate theorem needs to be stated that says that there are no aliases
in memory after each program step. An alternative approach, which we
follow in this dissertation, is to prove soundness by defining a logical relation.
Here, the property of interest (whether soundness, or soundness plus other
properties, like lack of aliasing) is built in, and after showing the language
satisfies the logical relation, the property of interest follows “for free” as a
corollary.

logical relations While Wright-Felleisen prove soundness over the
structure of reduction, we take a di↵erent approach. We use logical relations
to prove a semantic soundness theorem. Logical relations are a technique
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that most attribute as a generalization of a proof by Tait (1967), and thus
has been sometimes called Tait’s Method1. Tait was originally concernedAs a logician, he

was working with
Gödel’s System T,
which is essentially

a simply typed
lambda calculus

with natural
numbers.

with proving that there was no infinite reduction of a well-typed term in
(essentially) the simply typed lambda calculus (i.e., they were terminating).

Naive induction over the typing derivation or syntax does not work: once
the argument e0 is substituted into the body of an abstraction �x.e, a novel
term e[x 7! e0] results that did not exist before, and thus is not covered by the
induction hypothesis. The essence of Tait’s Method, and all subsequent work
on logical relations, is to build stronger inductive (type-indexed) relations
R⌧ that include the property of interest (in this dissertation, type soundness)
and then show that the original term e : ⌧ belongs to the relation at the
corresponding type ⌧ . Since the relation was built to include the property
of interest, the desired result now follows as a corollary.

In Tait’s case, the relation R⌧ was built out of terminating terms: in
particular, while the relation at base type is just made up of the base values,
the relation at function type ⌧1 ! ⌧2 only admits function values that, when
values in the relation at ⌧1 are substituted in, result in terms in the relation
(so, terminating) at ⌧2. This resolves the issue above, as now rather than
being a novel term not covered by the induction hypothesis, e[x 7! e0] is
by definition in the relation, and thus terminating. More involved is how
to prove that well-typed simply typed lambda calculus terms are in this
relation in the first place, but that is the subject of the next section.

Beyond the foundational characteristics inherited from Tait, there have
been several important developments. First, (Girard, 1971; Girard et al.,
1989) showed how to extend the technique to account for polymorphism.
Next, there were various e↵orts to incorporate recursion (Pitts, 1998, 2000),
mutable references with various restrictions (Pitts and Stark, 1993, 1998;
Stark, 1994; Benton and Leperchey, 2005), then recursive types (Birkedal
and Harper, 1997; Crary and Harper, 2007), but these models were either
limited or cumbersome.

Later, Appel and McAllester (2001) developed the technique of step-
indexing to avoid circularity in the presence of recursive types. This was
extended to languages with dynamically allocated mutable references by
Ahmed (2004), work we rely upon in this dissertation.

While all of the above involve giving interpretation of types of a language
using terms (even if untyped) from the same language, we build upon an
idea championed by Benton and collaborators called “low-level semantics for
high-level types” (or “realistic realizability”) (Benton, 2006). They created
realizability models where the types came from high-level languages but the

1 The actual name “logical relations” seems to have come from either G. Plotkin de-
scribing Tait’s work, or possibly describing M. Gordon describing Tait’s work. c.f., dis-
cussion https://cstheory.stackexchange.com/questions/7179/what-is-the-origin-of-logical-
relations retrieved 2022/1/20
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terms that inhabited the relation were low-level terms, and exercised this
to prove type soundness of two standalone languages. Specifically, Benton
and Zarfaty (2007) proved an imperative While language sound and Benton
and Tabareau (2009) proved type soundness for a simply typed functional
language, both times interpreting source types as relations on terms of
an idealized Assembly and allowing for compiled code to be linked with
a verified memory allocation module implemented in Assembly (Benton,
2006).

realizability model tutorial

In this section, we build a realizability model, in the style of Benton’s
realistic realizability, for a simply typed function language, SimpleFunLang,
and use it to prove type soundness. Our target for the tutorial is high-level:
the untyped lambda calculus, which we call Lambda. We do not give a
source operational semantics for SimpleFunLang: its operational semantics
is defined by compilation. Our compiler is straightforward, but despite
this, our target is much more expressive than our source: in particular, all
programs in our source terminate (it is a simply typed lambda calculus),
whereas the untyped lambda calculus can encode general recursion (and,
more straightforwardly, the term ⌦, (�x.xx)(�x.xx), runs forever). This
section should serve as (1) a tutorial on logical relations / refresher to those
familiar with them, (2) a preview of our common syntactic conventions,
and (3) a demonstration of the realizability technique, all in a small, self-
contained manner.

SimpleFunLang has a single base type (B) with two inhabitants (b1 and
b2) and an operation (bop) that only succeeds on one of them (as an identity),
variables (x), functions (fun(x : ⌧){e}), and application (e(e)).

SimpleFunLang

Type ⌧ ::= B | ⌧ ! ⌧
Expression e ::= b1 | b2 | bop | x | fun(x : ⌧){e} | e(e)
Value v ::= b1 | b2 | fun(x : ⌧){e}

� ` b1 : B � ` b2 : B

� ` e : B

� ` bop(e) : B

x : ⌧ 2 �

� ` x : ⌧

�, x : ⌧ ` e : ⌧ 0

� ` fun(x : ⌧){e} : ⌧ ! ⌧ 0
� ` e : ⌧ ! ⌧ 0 � ` e0 : ⌧

� ` e(e0) : ⌧ 0

Lambda has boolean base values, if, functions, and application, but no
types, and defines reduction using evaluation contexts E to lift the primitive
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reduction step (_). It also has a expression, fail , that causes execution
to terminate. Note that this is defined not as a primitive step _ but an
ordinary step !, as it needs to discard the context E .

Lambda
Expression e ::= true | false | if e e e | x | �x : ⌧.e | e e | fail
Value v ::= true | false | �x : ⌧.e
Evaluation context E ::= [·] | if C e e | C e | (� x .e) C

if true e1 e2 _ e1 if false e1 e2 _ e2 (�x .e) v _ [x 7! v ]e

E [fail ] ! fail

e _ e 0

E [e] ! E [e 0]

We compile SimpleFunLang to Lambda with , and given a SimpleFunLang
term e write the compiled Lambda term as e+.

e e+

b1  true
b2  false
bop  �x .if x x fail
fun(x : ⌧){e}  �x .e+

e(e0)  e+ e0+

The soundness theorem we wish to prove is the following:

Theorem 2.0.1 (Soundness, intended). If · ` e : ⌧ , and e+
⇤
! e 0 then one

of:

• e 0 is a value.

• e 0 is fail .

• e 0 ! e 00 for some e 00.
Indeed, it is

actually quite rare
for languages,

aside from those
with verified

compilers, to have
independent formal

specifications of
their source
operational
semantics.

This is a little di↵erent from a soundness theorem that is defined solely
in terms of a source operational semantics as it says that the compiled term
does not get stuck, but matches the common scenario of languages whose
operational semantics is defined by translation to another language.

We prove this by first building a realizability model for our language that
respects our compiler (·)+. The model has two parts: a value relation, with
defines for each type ⌧ a set VJ⌧K of Lambda values that behave as that
type. Second, we define an expression relation EJ⌧K that defines the sets of
Lambda terms that behave as type ⌧ .
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VJBK = {true, false}
VJ⌧1 ! ⌧2K = {�x .e | 8v 2 VJ⌧1K. [x 7! v ]e 2 EJ⌧2K}

EJ⌧K = {e | 9e 0. e
⇤
! e 0 ^ (e 0 = fail _ e 0 2 VJ⌧K)}

The first case of the value relation is straightforward: since b1 and b2
are the two SimpleFunLang values that have the type B, the only Lambda
terms that make sense in the set VJBK are the terms they compile to, true
and false. Our only other Lambda values are functions, which don’t seem
like they behave as B so VJBK is the set of exactly those two values.

a note on precision If “seem like” and “make sense” appear terribly
imprecise, this is a consequence of the flexibility of logical relations: since
the sets can contain anything that we want, we will only find out when we
try to use the relation to prove things if we put in the right elements. Thus,
our initial design may indeed be based on (mathematical) intuition, and
only when we get stuck in a proof may we come back with more concrete
reason as to why a certain element either must be in or cannot be in one of
the sets.

More interesting is VJ⌧1 ! ⌧2K. This set contains Lambda functions, �x .e,
but restricted in the following way: we only admit functions into the set
if, given a value v in VJ⌧1K (the argument), substituting it for the body
results in an expression in EJ⌧2K. Thus, these are well typed according to
the model, rather than a syntactic judgment.

The expression relation, while critical to the whole system, is perhaps
unsurprising: EJ⌧K is made up of Lambda terms that run to either fail or a
value in VJ⌧K. Note that while Lambda is non-terminating, our relation is Before the Halting

problem pitchforks
are bared, please
note: we will never
need to decide if an
arbitrary Lambda
program belongs to
our relation.

only made up of terminating programs, which is both what we want, and
not ultimately going to cause problems because any SimpleFunLang term
that typechecked would terminate after compilation to Lambda. Thus, we
need not concern ourselves with, or include, terms that do not terminate.

To use this relation, we first need to account for the fact that our typing
rules are over open terms � ` e : ⌧ , whereas our relation is built out of
closed terms (i.e., no analog to �). While our type soundness theorem is
stated over closed terms, if we try to prove that closed well-typed terms are
in our relation, we will get stuck on the function case, as the body has a
free variable (the argument).

Instead, we first define the notion of a closing substitution, which interprets
an environment � as a set of substitions that map the variables in � to
values that are in VJ⌧K at the right type. Note that this relies upon a
variable x being interpreted in the model, and therefore compiling, to x ; in
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a setting where the target had di↵erent binding structure than the source,
this definition may be more complex.

GJ·K = {·}

GJx : ⌧ ,�K = {(x 7! v , �) | v 2 VJ⌧K ^ � 2 GJ�K}

With that in mind, we can define a shorthand notation that says that
given a substitution that behaves as prescribed by types in �, the Lambda
term e behaves as prescribed by ⌧ :

� ✏ e : ⌧ , 8� 2 GJ�K. �(e) 2 EJ⌧K

Note, importantly, that this is defined with a Lambda term e, not a
compiled SimpleFunLang term e+. This allows the statements we make to
be slightly more general, as they will work over arbitrary elements in the
relation, rather than just those in the image of the compiler.

Now we complete the proof in a two-step manner. (1) We show that any
well-typed term e : ⌧ , when compiled to a Lambda term e, is in the model
at EJ⌧K, and (2) show that any term in the model is type-sound. (2) is
easy, since we built the notion of type soundness into the definition of EJ⌧K.
We prove (1) by induction over the structure of the typing judgment, by
proving a “compatibility” lemma for each typing rule in SimpleFunLang.
“Compatibility” lemmas, given below, show that the model (logical relation)
is compatible with the static type system.

Lemma 2.0.2 (Compatibility b1). � ✏ true : B

Proof. Unfolding the definition, we need to show that for any � 2 GJ�K. �(true) 2
EJBK. Clearly, �(true) = true, so if we unfold the definition of EJBK, we can
see we need to show:

9e 0. true
⇤
! e 0 ^ (e 0 = fail _ e 0 2 VJBK)

Since true is already a value, it won’t step, which means we can take
e0 = true, and thus need to show (true = fail _ true 2 VJBK). Clearly, the
true 6= fail , but the other disjunct is (since VJBK = {true, false}), so we are
done.

Lemma 2.0.3 (Compatibility b2). � ✏ false : B

Proof. �(false) = false 2 EJBK, with e 0 = false.

The typing rules with premises are more interesting, as those premises
turn into hypotheses. First, bop and variables.

Lemma 2.0.4 (Compatibility bop). If � ✏ e : B then � ✏ (�x .if x x fail) e :
B
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Proof. �((�x .if x x fail) e) = (�x .if x x fail) �(e). To show that is in
EJBK, we appeal to the hypothesis, which says �(e)

⇤
! e 0, where e 0 = fail or

e 0 2 VJBK.
If e 0 = fail , then by inspection of the operational semantics, the entire

term will step to fail in one more step.
If e 0 2 VJBK, we can similarly compose the context at each point with an

outer context (�x .if x x fail) [·], which means we know that (�x .if x x fail) �(e)
⇤
!

(�x .if x x fail) e 0, where e 0 2 {true, false}. Consider the two cases.

1. If e 0 = true, then (�x .if x x fail) e 0 ! if true true fail ! true, and
we are done since true 2 VJBK.

2. If e 0 = false, then (�x .if x x fail) e 0 ! if false true fail ! fail, but
this also finishes the proof, as that is a valid result for EJBK.

Lemma 2.0.5 (Compatibility x). If x : ⌧ 2 � then � ✏ x : ⌧

Proof. Since x : ⌧ 2 �, we know that �(x ) = v for some v 2 VJ⌧K. We thus
take e 0 = v and are done.

The last two compatibility lemmas, for function definitions and function
application, are the most interesting.

Lemma 2.0.6 (Compatibility fun). If �, x : ⌧ ✏ e : ⌧ 0 then � ✏ �x .e :
⌧ ! ⌧ 0

Proof. Our obligation is to show that �(�x .e) 2 EJ⌧ ! ⌧ 0K. Since x is a
bound variable, we can consider it disjoint from the domain of �, and thus
push the substitution into the body of the function. Thus, �x .�(e) does
not step, and since it is not fail , we need to show that it is in VJ⌧ ! ⌧ 0K.
That means we must consider arbitrary v from VJ⌧K and show that [x 7!

v ]�(e) 2 EJ⌧ 0K.
To show this, we will appeal to our premise. In particular, we instantiate

it with �0 = �, x 7! v , which is thus in GJ�, x : ⌧K. This means that
�0(e) 2 EJ⌧ 0K, which is exactly equivalent to what we needed to show.

Lemma 2.0.7 (Compatibility e(e0)). If � ✏ e1 : ⌧ ! ⌧ 0 and � ✏ e2 : ⌧ then
� ✏ e1 e2 : ⌧ 0

Proof. We have to show that �(e1 e2 ) = �(e1 ) �(e2 ) 2 EJ⌧ 0K. We consider
our first premise, instantiated with �. It tells us that �(e1 )

⇤
! e 01 , where

e 01 = fail or e 01 2 VJ⌧ ! ⌧ 0K. Consider the two cases:

1. In the first case, we can lift the reductions into the context E �(e2 )
to show that the overall term will similarly step to fail , and thus we
are done.
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2. In the latter case, we next turn to our second hypothesis, again
instantiating it with �. This means that �(e2 )

⇤
! e 02 , where e 02 = fail

or e 02 2 VJ⌧K. Again, we proceed by case analysis.

a) In the former case, we can stitch together both reductions, lifting
�(e1 )

⇤
! e 01 into the context E �(e2 ) to get that �(e1 ) �(e2 )

⇤
!

e 01 �(e2 ) and then lifting the second with the context e 01 E, noting
that e 01 is a value to get that the overall term runs to fail .

b) If v 02 is in VJ⌧K, we can perform the same context lifting to thus
get that �(e1 ) �(e2 )

⇤
! e 01 v 02 .

Now, from the definition of VJ⌧ ! ⌧ 0K, we know that e 01 = �x .e
for some e, and thus e 01 v 02 ! [x 7! v 02 ]e. Further, from the
definition of VJ⌧ ! ⌧ 0K, we know that this term is in EJ⌧ 0K, since
v 02 2 VJ⌧K. What that means is that there exists e 0 such that
[x 7! v 02 ]e

⇤
! e 0, where e 0 = fail or e 0 2 VJ⌧ 0K. Since that e 0 is

the result of the reduction of our original term, this completes
the proof.

Now that we have completed the compatibility lemmas, we can prove
the main theorem of the logical relation, usually called the Fundamental
Property. This connects the static semantics to our semantic model.

Theorem 2.0.8 (Fundamental Property). If � ` e : ⌧ then � ✏ e+ : ⌧ .

Proof. We prove this by induction over the structure of the typing derivation.
Thus, we have one case per typing rule. Each follow from the corresponding
compatibility lemma, but we spell out some of the details for completeness.

� ` b1 : B — In this case, we have no inductive hypothesis, and thus have
to show that � ✏ b1+ : B, but this is exactly what we proved with our
compatibility lemma.

� ` b2 : B — Same as B2.

� ` bop(e) : B — Our inductive hypothesis tells us that � ✏ e+ : B, and
we need to show that � ✏ bop(e)+ : B. But expanding the compiled
term, we can see that this is exactly the compatibility lemma statement,
instantiated with e+.

� ` x : ⌧ — As with the first two cases, this has no inductive hypotheses,
but follows exactly from the compatibility lemma.

� ` fun(x : ⌧1){e} : ⌧1 ! ⌧2 — As with bop, our inductive hypothesis gives
us exactly what we need to instantiate the fun compatibility lemma,
which then yields the result.
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� ` e(e0) : ⌧ 0 — Here, we need to show that � ✏ e(e0)+ : ⌧ 0, given � ✏ e+ :
⌧ ! ⌧ 0 and � ✏ e0+ : ⌧ . We can expand the obligation to � ✏ e+ e0+ : ⌧ 0,
after which everything follows from the corresponding compatibility
lemma, instantiated with e+ and e0+.

As a corollary of the Fundamental Property, we can now prove our goal,
type soundness:

Corollary 2.0.9 (Type Soundness). If · ` e : ⌧ and e+
⇤
! e 0 then one of:

• e 0 is a value.

• e 0 is fail .

• e 0 ! e 00 for some e 00.

Proof. We first apply the Fundamental Property (Theorem 2.0.8), which
tells us that · ✏ e+ : ⌧ . This means that there exists an ef such that
ef = fail or ef 2 VJ⌧K. Consider e 0. If e 0 = ef , then we are done, since every
element in VJ⌧K is a value. If e 0 is not a value, then since ef cannot take a
step and Lambda is deterministic (unproved, but straightforward), e 0 must
exist within the reduction e+

⇤
! ef . This means there exists some e 00 such

that e 0 ! e 00, and so we are done.

Now, we note an interesting thing. While type soundness was our original
goal, the Fundamental Property was our central result, and indeed, it is a
stronger result than Corollary 2.0.9. In particular, we can prove as a second
corollary that all well-typed terms, after compilation, terminate:

Corollary 2.0.10 (Termination). If · ` e : ⌧ then 9e 0. e+
⇤
! e 0 9.

Proof. Since neither fail nor elements in VJ⌧K can step, this is a straight-
forward consequence of the Fundamental Property (Theorem 2.0.8), which
tells us that e+ 2 EJ⌧K and thus that there exists such an e 0.

This is not a trivial result, since our Lambda language clearly includes
divergent terms, but our realizability model only includes a subset that is
terminating. Further, while we could have avoided this and structured our
EJ⌧K to allow divergence by stating 8e 0. e

⇤
! e 0 9 =) (e 0 = fail _ e 0 2

VJ⌧K), our models may often be stronger than what is necessary to prove
“lack of stuckness”.

Termination is not the only way our result is stronger: we have also
proved what is sometimes called “strong soundness”, which means that not
only does our term either run to fail or a value, but that value has the
correct type! This is sometimes somewhat subtle to state, as runtime values
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may not be able to be type checked, existing only at runtime (so we may
not be able to write e 0 is a value and · ` e 0 : ⌧ , as there may be no static
judgment for the value e 0), but we what we have proved is essentially a
semantic analog to this.
Indeed, the notion that the proof method we use is giving us more than

simple “lack of stuckness” is not exclusively a property of semantic soundness:
the same is true of proofs via Wright-Felleisen progress and preservation,
as not only do they clearly need to enrich the language with a notion of
typechecking runtime values (as they ensure that at every step, the term is
well-typed), but this enriched type system may include more detail than
was possible in the statics. While these two approaches to proving type
soundness (the “syntactic” and “semantic”) may be typically presented as
completely at odds, the reality is that in many cases, what is done in one
can be adapted to the other. While some results, like termination, may not
readily be adapted to a syntactic approach, others can.
However, a place where the semantic approach really shines, and the

reason why we rely so heavily on it, is the notion of realizability. As we
will see in later sections, we use our models to ascribe di↵erent semantic
types to the same target code, which then allows us to reason about how
the code that behaves like a type ⌧ can be converted or wrapped to behave
like a di↵erent type ⌧ 0. Also, we can show that target code that did not
originate in our source language nonetheless satisfies our semantic types,
which is useful for reasoning about the behavior of low-level library code,
for instance. This comes along with other flexibility in realizability models:
to at once be able to ignore target features (like divergence of Lambda) that
we do not need or cannot account for but also to ascribe rich statics onto
untyped or weakly typed target languages.
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MOVING VALUES ACROSS LANGUAGE
BOUNDARIES



3
A RECIPE FOR SOUND LANGUAGE
INTEROPERABIL ITY

In this chapter, we present a recipe for proving soundness of
languages that exchange values over an FFI, and in particular,
give foreign values accurate types using the existing local type
system. This chapter demonstrates the framework by extending
the simple language used in the tutorial in Chapter 2. By seeing
the full framework in the small, the reader should be prepared
for the more substantive case studies in Chapters 4, 5, and 6.

Language interoperability is about including code written in another
language in a given program. This may be to extend a legacy system, to
use a particular featureful or well-tested library, or simply because di↵erent
portions of a program benefit from di↵erent linguistic abstractions. Even
in a system that includes many languages, each individual boundary is
between a pair of languages, and the interaction generally involves first
converting core values into representations suitable to the foreign language,
executing the foreign code on those values, and then converting the result.
To facilitate this, there may be additional code that manages details relating
to di↵erences in calling conventions: placing values in particular places on a
call stack, manipulating registers, etc. This orchestrated control transfer
can, of course, be more interleaved, as what is passed back when control
returns may be a higher-order value (a function, function pointer, closure,
etc) that can later be invoked itself. But, in all the cases that we consider
in this section, and indeed, in what we observe in the design of existing
foreign-function interfaces, what crosses the language boundaries are values.
Accounting for the soundness of this transaction is the subject of this part
of the dissertation.
In Chapters 4, 5, and 6, we will explore in detail particular pairs of

languages and show how to prove type soundness in the presence of inter-
operability between them. In this chapter, we present the general recipe
for our approach. The source languages we will use are SimpleFunLangP

and SimpleFunLangQ. We will write SimpleFunLangP types and terms in
in turquoise and SimpleFunLangQ types and terms in orange, though will
often include subscripts P and Q to aid legibility in the absence of colors.
SimpleFunLangP and SimpleFunLangQ each extend the example source lan-
guage from Chapter 2 with a di↵erent base type, P and Q respectively. These
base types each have a single inhabitant (p and q respectively), and are
thus semantically equivalent to a unit type. While thus not particularly

30
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interesting on their own, they will allow us to demonstrate the various parts
of the framework in full clarity. In the subsequent chapters of this part of the
dissertation we will show more realistic challenging cases of interoperability,
but with that complexity comes a wealth of details. These details, while
necessary to account for type soundness, partly obscure the framework.

the framework

The inputs to the framework are two source languages, SimpleFunLangP
and SimpleFunLangQ, a target language Lambda, and compilers e+ = e
and e+ = e. This section serves both as a roadmap of what is to come
and a reference to refer back to. The first two steps, defining boundary
syntax and what types ought to be convertible (§3.0.1 and §3.0.2), must
be performed by the designer of the interoperability system, whereas the
last three, building realizability models and using them to prove soundness
of conversions and the interoperating source languages (§3.0.3, §3.0.4, and
§3.0.5), should be performed by the verifier of the system.

a note on verification While clearly, we are advocates for proving
theorems, we would be remiss to ignore that most languages are never proven
type sound, and thus advocating extended versions of type soundness is,
perhaps, a fools errand. We note that despite Milner’s theorem rarely
being proved outside of academia, the notion of type soundness has been
an incredibly useful one in rendering languages more reliable. Indeed, most
languages aspire to type soundness, even if a formal proof is never attempted.
In the same way, we hope that our work can serve both as a theoretical
tool that can be used for true proofs, in the rare cases they are achievable,
but also as a useful guide for language designers and implementers to make
their systems more reliable. Towards this end, we have made an e↵ort to
make a delineation between what portions of our work constitute elements
of actual languages, compilers, or runtime systems (that are carried out
by the designer), and what portions are the theoretical sca↵olding used
to prove the former to be correct (carried out by the verifier). Much of
the work of the designer that pertains to this part of the dissertation is
likely already happening: indeed, most of the novelty is in the proof of
soundness, rather than the interoperability. In Part III, the situation is
a bit di↵erent, as we are addressing cases where traditional FFI’s cannot
express the interoperability that we desire, and thus there is novel work for
both the designer and the verifier.
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SimpleFunLangP

Type ⌧ ::= P | B | ⌧ ! ⌧
Expression e ::= p | b1 | b2 | bop | x | fun(x : ⌧){e} | e(e)
Value v ::= p | b1 | b2 | fun(x : ⌧){e}

SimpleFunLangQ

Type ⌧ ::= Q | B | ⌧ ! ⌧
Expression e ::= q | b1 | b2 | bop | x | fun(x : ⌧){e} | e(e)
Value v ::= q | b1 | b2 | fun(x : ⌧){e}

Lambda
Expression e ::= true | false | if e e e | x | �x : ⌧.e | e e | fail
Value v ::= true | false | �x : ⌧.e
Evaluation context E ::= [·] | if E e e | E e | (� x .e) E

Our static semantics are essentially identical to that of SimpleFunLang in
the tutorial presented in Chapter 2; the only additions are the terms p and
q, which have types P and Q respectively. Our compilers are also similar;
the only notable di↵erence is that we compile p and q to true. Our static
semantics will ensure that we do not mix this term with a term of type B or
B, so this is a perfectly acceptable compilation choice, and one of the only
base values that we have in Lambda, which is unchanged from Chapter 2.

p  true
b1  true
b2  false
bop  �x .if x x fail
fun(x : ⌧){e}  �x .e+

e(e0)  e+ e0+

q  true
b1  true
b2  false
bop  �x .if x x fail
fun(x : ⌧){e}  �x .e+

e(e0)  e+ e0+

3.0.1 Boundary syntax

To include code from another language, the designer requires some way
of invoking such code. While there are various ways of doing this in real
toolchains, here she adopts a general approach based on the notion ofAs in (Matthews

and Findler, 2007). language boundaries.

If a program written in the language SimpleFunLangP is to include code
from the language SimpleFunLangQ, the SimpleFunLangP designer should
add a boundary form LeM⌧P . This allows a term e : ⌧Q to be used in an
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SimpleFunLangP context at type ⌧P, for some ⌧P and ⌧Q. This boundary
strategy is very general. It clearly allows inline code, as used by libraries
that support inline C, because the term e can be an arbitrary snippet of
code. But, it also captures the more common scenario where bindings are
declared as imports and then used accordingly. This is because our terms
are open, and thus a term can have a SimpleFunLangQ binding f : ⌧ ! ⌧ 0

free, declared in the global environment. Then the use of the imported
term would be LfM⌧P!⌧

0
P

for appropriate types ⌧P and ⌧ 0
P
. In order to support

this pattern, we generally typecheck terms of both languages under an
environment that includes bindings from both languages. If we were only
interested in inline (closed) code, we could avoid this, but we think this
more realistically matches the import/export scenario. This means our
typing judgments, while largely inheriting from those for SimpleFunLang
in Chapter 2, will change in shape, as shown below in the rules for the two
base types we have added.

�; � ` p : P �; � ` q : Q

While we show the additions to syntax for the boundary rules, we will
show the additions to the static semantics in the next section, because we
need an additional step before we can write down the typing rules.

SimpleFunLangP Expression e ::= . . . | LeM⌧P

SimpleFunLangQ Expression e ::= . . . | LeM⌧Q

Note that while in our examples, we equip both languages with boundaries,
the framework does not require this.

3.0.2 Convertibility rules

To know whether a term LeM⌧P is well-typed, the designer needs to know
if a SimpleFunLangQ term e : ⌧Q can be converted to an SimpleFunLangP

type ⌧P. In the case that e has a function type, we typically will expect to
convert to a corresponding function type, converting the arguments and
the return values. This isn’t of course, a requirement: functions could be
converted to objects, or other structures that capture the same meaning.

But there is no way to know, a priori, what types can be converted, and
thus the framework requires that the designer specify this explicitly. In
particular, she must provide judgments of the form ⌧P ⇠ ⌧Q to indicate
that these two types are interconvertible, allowing for the possibility of
dynamic conversion errors. Since our notion of linking depends upon
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both language SimpleFunLangP and SimpleFunLangQ being compiled to a
common target Lambda, this conversion needs to be witnessed by Lambda
code that performs the conversion. C⌧P 7!⌧Q denotes the code that performs a
target-level conversion from ⌧P to ⌧Q. For example, if Lambda had numbers
instead of booleans and we had a source convertibility relation bool ⇠ int,
where the former compiles to the numbers 0 and 1, then the conversion
Cbool 7!int is a no-op (since compiled booleans are already Lambda language
numbers), but Cint 7!bool must do something di↵erent. It could raise a
dynamic conversion error if given an int other than 0 or 1, or it could
collapse all other numbers into one of those, or something else. The particular
choice depends on the languages in question, and what the designer of the
interoperability system thinks makes sense: the framework only requires
that the decision made preserves type soundness.

In the case of SimpleFunLangP and SimpleFunLangQ, we convert between
P and Q, and we convert between functions that, in turn, contain convertible
types.

CP 7!Q, CQ 7!P : P ⇠ Q

C⌧1 7!⌧1 , C⌧1 7!⌧1 : ⌧1 ⇠ ⌧1 C⌧2 7!⌧2 , C⌧2 7!⌧2 : ⌧2 ⇠ ⌧2

C⌧1!⌧1 7!⌧1!⌧1 , C⌧1!⌧2 7!⌧1!⌧2 : ⌧1 ! ⌧2 ⇠ ⌧1 ! ⌧1

These are symmetric rules, so the order that we write the judgment does
not have any particular significance. Further, we will sometimes leave outFor discussion of

making them not
symmetric, see

Chapter 7.

the code block identifiers in the convertibility judgments and simply write
P ⇠ Q, but note that the judgments must always be witnessed by that target
code, as the compiler needs to insert it when compiling boundary terms.

With these rules, we can now write the typing rules for boundary terms:

⌧ ⇠ ⌧ �; � ` e : ⌧

�; � ` LeM⌧ : ⌧

⌧ ⇠ ⌧ �; � ` e : ⌧

�; � ` LeM⌧ : ⌧

For our example, since we compile both p and q to the same Lambda
value true, the conversions between them are no-ops. Our higher order
conversions perform the typical higher-order contract operation (a la (Findler
and Felleisen, 2002)): converting arguments before invoking the function
on the converted value, and then converting the result at the end. The
careful reader might note that since no conversion is a non-identity, this
function conversion introduces a pointless eta expansion. We include it here
nonetheless: both to not be overly clever, but more importantly, because in
larger case studies, this same pattern on functions will reappear, without
the ability to simplify.
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CP 7!Q(e) = e
CQ 7!P(e) = e
C⌧1!⌧1 7!⌧1!⌧2(e) = �x . C⌧2 7!⌧2(e C⌧1 7!⌧1(x ))
C⌧1!⌧2 7!⌧1!⌧2(e) = �x . C⌧2 7!⌧2(e C⌧1 7!⌧1(x ))

Using these, we can now extend our compilers to account for boundary
terms. Our compilers have always operated over well-typed terms, but here,
we rely on that explicitly, as the types direct the conversions that we insert.

�; � ` LeM⌧  C⌧ 7!⌧ (e+) where �; � ` e : ⌧ and ⌧ ⇠ ⌧

�; � ` LeM⌧  C⌧ 7!⌧ (e+) where �; � ` e : ⌧ and ⌧ ⇠ ⌧

At this point, we have described all of the implementation work that
the language or FFI designer will have to do: add some boundary syntax,
declare conversions, implement the conversions in target code, and update
the compiler to insert that conversion code when compiling boundaries.
Clearly, implementing those conversions needs to be done with some care,
and with an idea of what the types mean and how they are realized in the
target language. While we describe this as a linear process, the process of
verification may result in changes to the conversions as the verifier realizes
that what the designer decided wasn’t quite right.

3.0.3 Realizability models for both languages

In order to prove type soundness, and in particular, account for the bound-
aries and convertibility rules from §3.0.1 and §3.0.2, the verifier needs to
build a logical relation for both languages. This relation is atypical in two
ways. First, it is a realizability model, which means that while it is indexed
by source types, it is inhabited by target terms. That is, the verifier must
first define an interpretation of values for each source type ⌧ , written VJ⌧K,
as the set of Lambda language values v that behave as ⌧ . That is, VJBK
is not the set of SimpleFunLangP language values of type B (i.e., b1 and
b2), but rather, the Lambda values that behave as that SimpleFunLangP
type (i.e., true and false). The compiler has to satisfy this relation, sending
values of type B to VJBK, but the latter may include more values. There is
also an expression relation, written EJ⌧K, that is the set of Lambda language
terms that evaluate to values in VJ⌧K (or diverge, or run to a well-defined
error).

The second novel aspect is that the relation is indexed with the types
of both of our source languages; in this example, SimpleFunLangP and
SimpleFunLangQ. Since they compile to the same target, this is sensible:
the inhabitants of VJPK and VJQK (for example) are both Lambda values.
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By bringing the types of both languages into a common setting, the verifier
gains powerful reasoning principles; for example, we can ask if VJPK = VJQK.
Since the only di↵erence between the languages in this section and

SimpleFunLang from Chapter 2 are the additional base types, the logi-
cal relations look almost the same. Note that since the expression relation
is the same for both languages, we do not include two cases for it, writing ⌧
for either ⌧ or ⌧ .

VJPK = {true}
VJBK = {true, false}
VJ⌧1 ! ⌧2K = {�x .e | 8v 2 VJ⌧1K. [x 7! v ]e 2 EJ⌧2K}

VJQK = {true}
VJBK = {true, false}
VJ⌧1 ! ⌧2K = {�x .e | 8v 2 VJ⌧1K. [x 7! v ]e 2 EJ⌧2K}

EJ⌧K = {e | 9e 0. e
⇤
! e 0 ^ (e 0 = fail _ e 0 2 VJ⌧K)}

Looking at this, we can clearly see that, as expected, VJPK = VJQK.

3.0.4 Soundness of conversions

Using the realizability models defined in §3.0.3, the verifier can prove that the
convertibility rules defined in §3.0.2 are sound. In particular, if ⌧P ⇠ ⌧Q, then
she should show that the conversions C⌧P 7!⌧Q and C⌧Q 7!⌧P actually translate
expressions between the types correctly:

8e 2 EJ⌧PK. C⌧P 7!⌧Q(e) 2 EJ⌧QK ^ 8e 2 EJ⌧QK. C⌧Q 7!⌧P(e) 2 EJ⌧PK

Since the model defines type interpretations, this ensures that the conver-
sions do exactly what is expected.

We have two convertibility rules, and thus two proofs to do, though each
involves both directions. For P ⇠ Q, we need to show that for any e 2 EJPK,
CP 7!Q(e) 2 EJQK, and the converse. Since CP 7!Q(e) = e, this amounts to
showing that e 2 EJPK () e 2 EJQK. This follows from the fact that VJPK
= VJQK.
The function case is a little more interesting; we consider one direction,

from SimpleFunLangP to SimpleFunLangQ; the other is identical. What we
need to show is that if e 2 EJ⌧1 ! ⌧2K then C⌧1!⌧1 7!⌧1!⌧1(e) 2 EJ⌧1 ! ⌧2K,
where ⌧1 ⇠ ⌧1 and ⌧2 ⇠ ⌧2. Expanding the conversion, we see the term under
consideration is �x . C⌧2 7!⌧2(e C⌧1 7!⌧1(x )). Since this is already a value, it
does not step, which means that to satisfy EJ⌧1 ! ⌧2K, it su�ces to show that
it is in VJ⌧1 ! ⌧2K. Syntactically, it clearly is a Lambda function, so we need
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to show that given an arbitrary v from VJ⌧1K, [x 7! v ]C⌧2 7!⌧2(e C⌧1 7!⌧1(x )) 2
EJ⌧2K. Simplifying slightly, using the fact that the only variables introduced
by conversions are bound, we have the term C⌧2 7!⌧2(e C⌧1 7!⌧1(v)). From
our inductive hypothesis, we know that this will be in EJ⌧2K, as needed, if
e C⌧1 7!⌧1(v) is in EJ⌧2K. Now, we know that e 2 EJ⌧1 ! ⌧2K, which means
that either it runs to fail , in which case the entire term will have failed and
we are done, or it runs to some value e 0 in VJ⌧1 ! ⌧2K. Now, we know that
if applied to a value in VJ⌧1K, this will result in a term in EJ⌧2K, and thus we
will be done. So it su�ces to show that C⌧1 7!⌧1(v) runs to a value in VJ⌧1K.
This also follows from our inductive hypothesis, since we know v 2 VJ⌧1K
and the conversion will result in a term in EJ⌧1K. This means that it either
runs to fail (in which case the entire term does, and we are done) or it runs
to a value in VJ⌧1K, exactly as needed.

3.0.5 Soundness of entire languages

Proving the conversions sound (§3.0.4) is the central goal, of course, but
the verifier also needs to ensure that the model defined in §3.0.3 is actually
faithful to the languages. She does this by following the standard approach
for proving semantic type soundness outlined in Chapter 2. First, for each
typing rule in both source languages, she proves that a corresponding lemma
holds in terms of the model. In order to do that, we first need to define
closing substitutions and an open logical relation:

GJ·K = {·}

GJx : ⌧ , �K = {(x 7! v , �) | v 2 VJ⌧K ^ � 2 GJ�K}
GJx : ⌧ , �K = {(x 7! v , �) | v 2 VJ⌧K ^ � 2 GJ�K}

�; � ✏ e : ⌧ , 8� 2 GJ�K, � 2 GJ�K. �(�(e)) 2 EJ⌧K
�; � ✏ e : ⌧ , 8� 2 GJ�K, � 2 GJ�K. �(�(e)) 2 EJ⌧K

Then, she proves the following lemmas. Here, we elide all proofs except
the boundary cases, as those are the only ones that di↵er materially from
what was presented in Chapter 2.

Lemma 3.0.1 (Compatibility p). �; � ✏ true : P

Lemma 3.0.2 (Compatibility q). �; � ✏ true : Q

Lemma 3.0.3 (Compatibility b1). �; � ✏ true : B

Lemma 3.0.4 (Compatibility b1). �; � ✏ true : B

Lemma 3.0.5 (Compatibility b2). �; � ✏ false : B

Lemma 3.0.6 (Compatibility b2). �; � ✏ false : B
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Lemma 3.0.7 (Compatibility bop). If �; � ✏ e : B then �; � ✏ (�x .if x x fail) e :
B

Lemma 3.0.8 (Compatibility bop). If �; � ✏ e : B then �; � ✏ (�x .if x x fail) e :
B

Lemma 3.0.9 (Compatibility x). If x : ⌧ 2 � then �; � ✏ x : ⌧

Lemma 3.0.10 (Compatibility x). If x : ⌧ 2 � then �; � ✏ x : ⌧

Lemma 3.0.11 (Compatibility fun). If �; �, x : ⌧ ✏ e : ⌧ 0 then �; � ✏ �x .e :
⌧ ! ⌧ 0

Lemma 3.0.12 (Compatibility fun). If �; �, x : ⌧ ✏ e : ⌧ 0 then �; � ✏ �x .e :
⌧ ! ⌧ 0

Lemma 3.0.13 (Compatibility e(e0)). If �; � ✏ e1 : ⌧ ! ⌧ 0 and �; � ✏ e2 : ⌧
then �; � ✏ e1 e2 : ⌧ 0

Lemma 3.0.14 (Compatibility e(e0)). If �; � ✏ e1 : ⌧ ! ⌧ 0 and �; � ✏ e2 : ⌧
then �; � ✏ e1 e2 : ⌧ 0

Lemma 3.0.15 (Compatibility LeM⌧ ). If ⌧ ⇠ ⌧ and �; � ✏ e : ⌧ then
�; � ✏ C⌧ 7!⌧ (e) : ⌧

Proof. This follows directly from the proof in 3.0.4.

Lemma 3.0.16 (Compatibility LeM⌧ ). If ⌧ ⇠ ⌧ and �; � ✏ e : ⌧ then
�; � ✏ C⌧ 7!⌧ (e) : ⌧

Proof. This follows directly from the proof in 3.0.4.

Then, by induction over a typing derivation, she can show that any term
that is statically well-typed belongs to the model: the Fundamental Property.
Belonging to the model, in turn, can be used to show type soundness as a
corollary, since the expression relation captures exactly what we mean by
type soundness.

Theorem 3.0.17 (Fundamental Property). If �; � ` e : ⌧ then �; � ✏ e+ : ⌧ ,
and if �; � ` e : ⌧ then �; � ✏ e+ : ⌧ .

Proof. By induction over the typing derivations, using the compatibility
lemmas.

Corollary 3.0.18 (Type Soundness for SimpleFunLangP). If ·; · ` e : ⌧
and e+

⇤
! e 0 then one of:

• e 0 is a value.



a recipe for sound language interoperability 39

• e 0 is fail .

• e 0 ! e 00 for some e 00.

Proof. By application of the Fundamental Property and definition of the
logical relation.

Corollary 3.0.19 (Type Soundness for SimpleFunLangQ). If ·; · ` e : ⌧
and e+

⇤
! e 0 then one of:

• e 0 is a value.

• e 0 is fail .

• e 0 ! e 00 for some e 00.

Proof. By application of the Fundamental Property and definition of the
logical relation.



4
CASE STUDY : MUTABLE REFERENCES

Results from this section (Chapters 4,5,6) appeared in (Patterson
et al., 2022), which was joint work with Noble Mushtak, Andrew
Wagner, and Amal Ahmed.

Aliased mutable data is challenging to deal with no matter the context,
but aliasing across languages is especially di�cult because giving a pointer
to a foreign language can allow for unknown data to be written to its address.
Specifically, if the pointer has a particular type in the host language, then
only certain data should be written to it, but the foreign language may
not respect or even know about that restriction. One existing approach to
this problem is to create proxies, where data is guarded or converted before
being read or written (Dimoulas et al., 2012; Strickland et al., 2012; Mates
et al., 2019). While sound, this comes with significant runtime overhead.
Here, our framework suggests a di↵erent safe possibility.

languages In this case study, we explore this problem using two
simply-typed functional source languages with dynamically allocated mu-
table references, RefHL and RefLL (for “higher-level” and “lower-level”).
RefHL has boolean, sum, and product types, whereas RefLL has arrays
([e1, . . . , en] : [⌧ ]). Their syntax is given in Figure 4.1 and their static
semantics in Figure 4.2.

RefHL and RefLL are compiled (Figure 4.4—note that we write e+ to
indicate e0, where e  e0) into an untyped stack-based language called
StackLang (inspired by (Kle↵ner, 2017)), whose syntax and small-step oper-
ational semantics — a relation on configurations hH # S # Pi comprised of a
heap, stack, and program — are given in Figure 4.3; here we describe a few
highlights. First, we note that StackLang values include not only numbers,
thunks, and locations, but arrays of values, a simplification we made for
the sake of presentation. We could have put all large values on the heap,
but that would have necessitated pointer o↵setting, more indirection when
encoding values, and generally, cluttered up the presentation.

Second, notice the interplay between thunk and lam: thunks are suspended
computations, whereas lam is an instruction (not a value) responsible solely
for substitution. We can see how these features are combined, or used sepa-The notion that

lambdas only
substitute follows

Call-by-push-value
(Levy, 2001).

rately, in our compilers (Figure 4.4). Finally, note that for any instruction
where the precondition on the stack is not met, the configuration steps to a
program with fail Type (a dynamic type error).

40
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RefHL Type ⌧ ::= unit | bool | ⌧ + ⌧ | ⌧ ⇥ ⌧ | ⌧ ! ⌧ | ref ⌧
Expr. e ::= () | true | false | x | inl e | inr e | (e, e)

| fst e | snd e | if e e e | �x : ⌧.e | e e
| match e x{e} y{e} | ref e | !e | e := e | LeM⌧

RefLL Type ⌧ ::= int | [⌧ ] | ⌧ ! ⌧ | ref ⌧
Expr. e ::= n | x | [e, . . .] | e[e] | �x : ⌧.e | e e | e + e

| if0 e e e | ref e | !e | e := e | LeM⌧

Figure 4.1: Syntax for RefHL and RefLL.

convertibility In our source languages, we may syntactically embed
a term from one language into the other using the boundary forms LeM⌧A
and LeM⌧B . The typing rules for boundary terms require that the boundary
types be convertible, written ⌧A ⇠ ⌧B. Those typing rules are:

�;� ` e : ⌧A ⌧A ⇠ ⌧B

�;� ` LeM⌧B : ⌧B

�;� ` e : ⌧B ⌧A ⇠ ⌧B

�;� ` LeM⌧A : ⌧A

Note that the convertibility judgment is a declarative, extensible judgment
that describes closed types in one language that are interconvertible with
closed types in the other, allowing for the possibility of well-defined runtime
errors. By separating this judgment from the rest of the type system,
the language designer can allow additional conversions to be added later,
whether by implementers or even end-users. The second thing to note is that
this presentation allows for open terms to be converted, so we must maintain
a type environment for both languages during typechecking (both � and �),
as we have to carry information from the site of binding—possibly through
conversion boundaries—to the site of variable use. A simpler system, which
we have explored, would only allow closed terms to be converted. In that
case, the typing rules still use the ⌧A ⇠ ⌧B judgment but do not thread
foreign environments (using only � for RefHL and only � for RefLL).

Figure 4.5 contains the convertibility rules we have defined for this case
study. Each come with target-language instruction sequences that perform
the conversions, written C⌧A 7!⌧B (some are no-ops). An instruction sequence
C⌧A 7!⌧B , while ordinary target code, when appended to a program in the
model at type ⌧A, should result in a program in the model at type ⌧B. An
implementer can write these conversions based on understanding of the
sets of target terms that inhabit each source type, before defining a proper
semantic model (or possibly, without defining one, if formal soundness is
not required). They would do this based on inspection of the compiler and
the target.

From Figure 4.4, we see that bool and int both compile to target integers,
and importantly, that if compiles to if0, which means the compiler interprets
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�;� ` e : ⌧

�;� ` () : unit �;� ` true : bool �;� ` false : bool

x : ⌧ 2 �

�;� ` x : ⌧

�;� ` e : ⌧1 ` ⌧2

�;� ` inl e : ⌧1 + ⌧2

�;� ` e : ⌧2 ` ⌧1

�;� ` inr e : ⌧1 + ⌧2

�;� ` e : bool �;� ` e1 : ⌧ �;� ` e2 : ⌧

�;� ` if e e1 e2 : ⌧

�;� ` e : ⌧1 + ⌧2 �;�, x : ⌧1 ` e1 : ⌧ �;�, y : ⌧2 ` e2 : ⌧

�;� ` match e x{e1} y{e2} : ⌧

�;�, x : ⌧1 ` e : ⌧2

�;� ` �x:⌧1.e : ⌧1 ! ⌧2

�;� ` e : ⌧1 ! ⌧2 �;� ` e0 : ⌧1

�;� ` e e0 : ⌧2

�;� ` e1 : ⌧1 �;� ` e2 : ⌧2

�;� ` (e1, e2) : ⌧1 ⇥ ⌧2

�;� ` e : ⌧1 ⇥ ⌧1

�;� ` fst e : ⌧1

�;� ` e : ⌧1 ⇥ ⌧1

�;� ` snd e : ⌧2

�;� ` e : ⌧

�;� ` ref e : ref ⌧

�;� ` e : ref ⌧

�;� ` !e : ⌧

�;� ` e1 : ref ⌧ �;� ` e2 : ⌧

�;� ` e1 := e2 : unit

�;� ` e : ⌧ ⌧ ⇠ ⌧

�;� ` LeM⌧ : ⌧

�;� ` e : ⌧

�;� ` n : int

�;� ` e1 : int �;� ` e2 : int

�;� ` e1 + e2 : int

x : ⌧ 2 �

�;� ` x : ⌧

�;� ` e1 : ⌧ . . . �;� ` en : ⌧

�;� ` [e1, . . . , en] : [⌧ ]

�;� ` e1 : [⌧ ] �;� ` e2 : int

�;� ` e1[e2] : ⌧

�;�, x : ⌧1 ` e : ⌧2

�;� ` �x:⌧1.e : ⌧1 ! ⌧2

�;� ` e : ⌧1 ! ⌧2 �;� ` e0 : ⌧1

�;� ` e e0 : ⌧2

�;� ` e : int �;� ` e1 : ⌧ �;� ` e2 : ⌧

�;� ` if0 e e1 e2 : ⌧

�;� ` e : ⌧

�;� ` ref e : ref ⌧

�;� ` e : ref ⌧

�;� ` !e : ⌧

�;� ` e1 : ref ⌧ �;� ` e2 : ⌧

�;� ` e1 := e2 : unit

�;� ` e : ⌧ ⌧ ⇠ ⌧

�;� ` LeM⌧

Figure 4.2: Static semantics for RefHL and RefLL.
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Program P ::= · | i,P Value v ::= n | thunk P | ` | [v, . . .]
Instruction i ::= push v | add | less? | if0 P P | lam x.P | call

| idx | len | alloc | read | write | fail c
Error Code c ::= Type | Idx | Conv
Heap H ::= {` :v, . . .} Stack S ::= v, . . . , v | Fail c

hH # S # push v,Pi!hH # S, v # Pi (S 6= Fail c)
hH # Fail c # push v,Pi!hH # Fail c # fail Typei
hH # S, n2, n1 # add,Pi!hH # S, (n1 + n2) # Pi

hH # S # add,Pi!hH # S # fail Typei (S 6= S0, n2, n1)
hH # S, n2, n1 # less?,Pi!hH # S, 0 # Pi (n1 < n2)
hH # S, n2, n1 # less?,Pi!hH # S, 1 # Pi (n1 � n2)

hH # S # less?,Pi!hH # S # fail Typei (S 6= S0, n2, n1)
hH # S, 0 # if0 P1 P2,Pi!hH # S # P1,Pi
hH # S, n # if0 P1 P2,Pi!hH # S # P2,Pi (n 6= 0)
hH # S # if0 P1 P2,Pi!hH # S # fail Typei (S 6= S0, n)

hH # S, v # lam x.P1,P2i!hH # S # [x 7! v]P1,P2i

hH # S # lam x.P1,P2i!hH # S # fail Typei (S 6= S0, v)
hH # S, thunk P1 # call,P2i!hH # S # P1,P2i

hH # S # call,P2i!hH # S # fail Typei (S 6= S0, thunk P1)
hH # S, [v0, . . . , vn2 ], n1 # idx,Pi!hH # S, vn1 # Pi (n1 2 [0, n2])
hH # S, [v0, . . . , vn2 ], n1 # idx,Pi!hH # S # fail Idxi (n1 /2 [0, n2])

hH # S # idx,Pi!hH # S # fail Typei (S 6= S0, [v0, . . . , vn2 ], n1)
hH # S, [v0, . . . , vn] # len,Pi!hH # S, (n+ 1) # Pi

hH # S # len,Pi!hH # S # fail Typei (S 6= S0, [v0, . . . , vn])
hH # S, v # alloc,Pi!hH ] {` 7! v} # S, ` # Pi

hH # · # alloc,Pi!hH # · # fail Typei
hH ] {` 7! v} # S, ` # read,Pi!hH ] {` 7! v} # S, v # Pi

hH # S # read,Pi!hH # S # fail Typei (S 6= S0, `)
hH ] {` 7! } # S, `, v # write,Pi!hH ] {` 7! v} # S # Pi

hH # S # write,Pi!hH # S # fail Typei (S 6= S0, `, v)
hH # S # fail c,Pi!hH # Fail c # ·i

Figure 4.3: Syntax and operational semantics for StackLang
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SWAP , lam x.(lam y.push x, push y)
DROP , lam x.() DUP , lam x.(push x, push x)

e P

()  push 0
true  push 0
false  push 1
x  push x
inl e  e+, lam x.(push [0, x])
inr e  e+, lam x.(push [1, x])
if e e1 e2  e+, if0 e1

+ e2
+

match e x{e1} y{e2}  e+,DUP, push 1, idx, SWAP, push 0, idx,
if0 (lam x.e1+) (lam y.e2+)

(e1, e2)  e1
+, e2+, lam x2.lam x1.(push [x1, x2])

fst e  e+, push 0, idx
snd e  e+, push 1, idx
�x : ⌧.e  push (thunk lam x.e+)
e1 e2  e1

+, e2+, SWAP, call
ref e  e+, alloc
!e  e+, read
e1 := e2  e1

+, e2+,write, push 0
LeM⌧  e+, C⌧ 7!⌧

e P

n  push n
x  push x
[e1, . . . , en]  e1+, . . . , en+, lam xn. . . . lam x1.(push [x1, . . . , xn])
e1[e2]  e1+, e2+, idx
if0 e e1 e2  e+, if0 e1+ e2+

�x : ⌧.e  push (thunk lam x.e+)
e1 e2  e1+, e2+, SWAP, call
e1 + e2  e1+, e2+, add
ref e  e+, alloc
!e  e+, read
e1 := e2  e1+, e2+,write, push 0
LeM⌧  e+, C⌧ 7!⌧

Figure 4.4: Compilers for RefHL and RefLL.
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false as any non-zero integer. Hence, conversions between bool and int
are identities.

We convert pairs to two-element arrays, assuming both elements of the
pair can be converted to the same type. Since pairs are represented by
StackLang arrays, the conversion code projects out and converts each element
before wrapping both back up in an array. If we provided a specialized
conversion where the element types were already equivalent (say, bool and
int), this code could be a no-op, since the structure of a pair and a two
element array is equivalent in the target. To convert the other direction, we
first have to ensure that the array only has two elements, failing otherwise.
Otherwise, the conversion is analogous.

For sums, we use the tags 0 and 1, and as for if, we use if0 to branch in
the compilation of match. Therefore, we can choose if the inl and inr tags
should be represented by 0 and 1, or by 0 and any other integer n. Given
that tags could be added later, we choose the former, thus converting a sum
to an array of integers is mostly a matter of converting the payload. In the
other direction, we have to handle the case that the array is too short, and
error.

The final case, between ref bool and ref int, is the reason for this case
study. Intuitively, if you exchange pointers, any value of the new type can
now be written at that address, and thus must have been compatible with
the old type (as aliases could still exist). Thus, we require that bool and
int are somehow “identical” in the target, so conversions are unnecessary.

semantic model Declaring that a type bool is “identical” to int or
that ⌧ is convertible to ⌧ and providing the conversion code is not su�cient
for soundness. In order to show that these conversions are sound, and
indeed to understand which conversions are even possible, we define a model
for source types that is inhabited by target terms. Since both languages
compile to the same target, the range of their relations will be the same
(i.e., composed of terms and values from StackLang), and thus we will be
able to easily and directly compare the inhabitants of two types, one from
each language.

Our model, which is a standard step-indexed unary logical relation for
a language with mutable state (essentially following Ahmed (2004)), is
presented in Figure 4.6.

We give value interpretations for each source type ⌧ , written VJ⌧K as
sets of target values v paired with worlds W that inhabit that type. A
world W is comprised of a step index k and a heap typing  , which maps
locations to type interpretations in Typ. As is standard, Typ is the set of
valid type interpretations, which must be closed under world extension. A
future world W 0 extends W , written W 0

w W , if W 0 has a potentially lower
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Cbool 7!int,Cint7!bool : bool ⇠ int

Cref bool 7!ref int,Cref int7!ref bool : ref bool ⇠ ref int

C⌧1 7!⌧ ,C⌧ 7!⌧1 : ⌧1 ⇠ ⌧ C⌧2 7!⌧ ,C⌧ 7!⌧2 : ⌧2 ⇠ ⌧

C⌧1⇥⌧2 7![⌧ ],C[⌧ ]7!⌧1⇥⌧2 : ⌧1 ⇥ ⌧2 ⇠ [⌧ ]

C⌧1 7!int,Cint 7!⌧1 : ⌧1 ⇠ int C⌧2 7!int,Cint 7!⌧2 : ⌧2 ⇠ int

C⌧1+⌧2 7![int],C[int] 7!⌧1+⌧2 : ⌧1 + ⌧2 ⇠ [int]

Cbool 7!int , ·

Cint 7!bool , ·

Cref bool 7!ref int , ·

Cref int7!ref bool , ·

C⌧1⇥⌧2 7![⌧ ] , DUP, push 0, idx, C⌧1 7!⌧ , SWAP, push 1, idx, C⌧2 7!⌧ ,
lam x2.lam x1.push [x1, x2]

C[⌧ ]7!⌧1⇥⌧2 , DUP, len, push 2, SWAP, less?, if0 fail Conv,
DUP, push 0, idx, C⌧ 7!⌧1 , SWAP, push 1, idx, C⌧ 7!⌧2 ,
lam x2.lam x1.push [x1, x2]

C⌧1+⌧2 7![int] , DUP, push 1, idx, SWAP, push 0, idx, DUP,
if0 (SWAP, C⌧1 7!int) (SWAP, C⌧2 7!int),
lam xv.lam xt.push [xt, xv]

C[int] 7!⌧1+⌧2 , DUP, len, push 2, SWAP, less?, if0 fail Conv,
DUP, push 1, idx, SWAP, push 0, idx, DUP,
if0 (SWAP, Cint7!⌧1)

(DUP, push �1, add, if0 (SWAP, Cint7!⌧2) fail Conv) ,
lam xv.lam xt.push [xt, xv]

Figure 4.5: Conversions for RefHL and RefLL.
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AtomV aln = {(W , v) | W 2 Worldn}

Worldn = {(k, ) | k < n ^  ⇢ HeapTyk}

HeapTyn = {` 7! Typn, . . .}

Typn = {R 2 2AtomV aln | 8(W , v) 2 R.
8W 0. W v W 0 =) (W 0, v) 2 R}

VJunitK = {(W , 0)}
VJboolK = {(W , n)}
VJ⌧1 ⇥ ⌧2K = {(W , [v1, v2]) | (W , v1) 2 VJ⌧1K ^ (W , v2) 2 VJ⌧2K}
VJ⌧1 + ⌧2K = {(W , [0, v]) | (W , v) 2 VJ⌧1K}

[ {(W , [1, v]) | (W , v) 2 VJ⌧2K}
VJ⌧1 ! ⌧2K = {(W , thunk lam x.P) | 8v,W 0 AW . (W 0, v) 2 VJ⌧1K

=) (W 0, [x 7! v]P) 2 EJ⌧2K}
VJref ⌧K = {(W , `) | W . (`) = bVJ⌧KcW .k}

VJintK = {(W , n)}
VJ[⌧ ]K = {(W , [v1, . . . , vn]) | (W , vi) 2 VJ⌧ K}
VJ⌧1 ! ⌧2K = {(W , thunk lam x.P) | 8v,W 0 AW . (W 0, v) 2 VJ⌧1K

=) (W 0, [x 7! v]P) 2 EJ⌧2K}
VJref ⌧ K = {(W , `) | W . (`) = bVJ⌧ KcW .k}

EJ⌧K = {(W , P ) | 8H:W , S 6= Fail ,H0, S0, j < W .k.

hH # S # P i
j
! hH0 # S0 # ·i =) S0 = Fail c ^ c 2 {Conv, Idx}

_9v,W 0
w W.

�
S0 = S, v ^ H0 : W 0

^ (W 0, v) 2 VJ⌧K)
�
}

J�;� ` e : ⌧K ⌘ 8W �� �� .(W , ��) 2 GJ�K ^ (W , ��) 2 GJ�K
=) (W , close(��, close(��, e+))) 2 EJ⌧K

J�;� ` e : ⌧ K ⌘ 8W �� �� .(W , ��) 2 GJ�K ^ (W , ��) 2 GJ�K
=) (W , close(��, close(��, e+))) 2 EJ⌧ K

Figure 4.6: Logical relation for RefHL and RefLL.
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step budget j  W .k and all locations in W. still have the same types (to
approximation j).

Intuitively, (W , v) 2 VJ⌧K says that the target value v belongs to (or
behaves like a value of) type ⌧ in world W . For example, VJunitK is
inhabited by 0 in any world. A more interesting case is VJboolK, which
is the set of all target integers, not just 0 and 1, though we could choose
to define our model that way (provided we compiled bools to 0 or 1). An
array VJ[⌧ ]K is inhabited by an array of target values vi in world W if each
vi is in VJ⌧ K with W .

Functions follow the standard pattern for logical relations, appropriately
adjusted for our stack-based target language: VJ⌧1 ! ⌧2K is inhabited by
values thunk lam x.P in world W if, for any future world W 0 and argument v
in VJ⌧1K at that world, the result of substituting the argument into the body
([x 7!v]P) is in the expression relation at the result type EJ⌧2K. Reference
types VJref ⌧K are inhabited by a location ` in world W if the current
world’s heap typing W . maps ` to the value relation VJ⌧K approximated to
the step index in the world W .k. (The j-approximation of a type, written
bVJ⌧Kcj , restricts VJ⌧K to inhabitants with worlds in Worldj .)

Our expression relation EJ⌧K defines when a program P in world W
behaves as a computation of type ⌧ . It says that for any heap H that
satisfies the current world W , written H : W , and any non-Fail stack S, if
the machine hH # S # Pi terminates in j steps (where j is less than our step
budget W .k), then either it ran to a non-type error or there exists some
value v and some future world W 0 such that the resulting stack S0 is the
original stack with v on top, the resulting heap H0 satisfies the future world
W 0 and W 0 and v are in VJ⌧K.

At the bottom of Fig. 4.6, we show a syntactic shorthand, J�;� ` e : ⌧ K,
for showing that well-typed source programs, when compiled and closed o↵
with well-typed substitutions � that map variables to target values, are in
the expression relation. Note GJ�K contains closing substitutions � in world
W that assign every x : ⌧ 2 � to a v such that (W, v) 2 VJ⌧K.
With our logical relation in hand, we can now state formal properties

about our convertibility judgments.

Lemma 4.0.1 (Convertibility Soundness).

If ⌧ ⇠ ⌧ , then 8(W , P ) 2 EJ⌧K.(W , (P,C⌧ 7!⌧ )) 2 EJ⌧ K ^ 8(W , P ) 2
EJ⌧ K.(W , (P,C⌧ 7!⌧ ))2EJ⌧K.

Proof. We sketch the ref bool ⇠ ref int case; for the full proofs, which
are mostly mechanical unfoldings of the definitions, see Appendix A. For
ref bool ⇠ ref int, what we need to show is that given any expression in
EJref boolK, if we apply the conversion (which does nothing), the result
will be in EJref intK. That requires we show VJref boolK = VJref intK.



case study: mutable references 49

The value relation at a reference type says that if you look up the location
` in the heap typing of the world (W . ), you will get the value interpretation
of the type. That means a ref bool must be a location ` that, in the model,
points to the value interpretation of bool (i.e., VJboolK). In our model,
this must be true for all future worlds, which makes sense for ML-style
references. Thus, for this proof to go through, VJboolK must be the same
as VJintK, which it is.

Once we have proved Lemma 4.0.1, we can prove semantic type soundness
in the standard two-step way for our entire system. First, for each source
typing rule, we state and prove a compatibility lemma that is a semantic
analog to that rule. We provide all of the lemma statements here; the proofs,
which are quite mechanical, are provided in Appendix A.

Lemma 4.0.2 (Compat ()). J�;� ` () : unitK

Proof. See A.0.7.

Lemma 4.0.3 (Compat B). b 2 B =) J�;� ` b : boolK

Proof. See A.0.8.

Lemma 4.0.4 (Compat x). J�;�, x : ⌧ ` x : ⌧K

Proof. See A.0.9.

Lemma 4.0.5 (Compat inl e). J�;� ` e : ⌧1K =) J�;� ` inl e :
⌧1 + ⌧2K

Proof. See A.0.10.

Lemma 4.0.6 (Compat inr e). J�;� ` e : ⌧2K =) J�;� ` inr e :
⌧1 + ⌧2K

Proof. See A.0.11.

Lemma 4.0.7 (Compat if). J�;� ` e : boolK ^ J�;� ` e1 : ⌧K ^ J�;� `

e2 : ⌧K =) J�;� ` if e e1 e2 : ⌧K

Proof. See A.0.12.

Lemma 4.0.8 (Compat match).

J�;� ` e : ⌧1 + ⌧2K ^ J�;�, x : ⌧1 ` e1 : ⌧K ^ J�;�, y : ⌧2 ` e2 : ⌧K
=) J�;� ` match e x{e1} y{e2} : ⌧1 + ⌧2K

Proof. See A.0.13.
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Lemma 4.0.9 (Compat (e1, e2)). J�;� ` e1 : ⌧1K ^ J�;� ` e2 : ⌧2K =)
J�;� ` (e1, e2) : ⌧1 ⇥ ⌧2K

Proof. See A.0.14.

Lemma 4.0.10 (Compat fst e). J�;� ` e : ⌧1 ⇥ ⌧2K =) J�;� ` fst e :
⌧1K

Proof. See A.0.15.

Lemma 4.0.11 (Compat snd e). J�;� ` e : ⌧1 ⇥ ⌧2K =) J�;� ` snd e :
⌧2K

Proof. See A.0.16.

Lemma 4.0.12 (Compat �x : ⌧.e). J�;�, x : ⌧1 ` e : ⌧2K =) J�;� `

�x : ⌧1.e : ⌧1 ! ⌧2K

Proof. See A.0.17.

Lemma 4.0.13 (Compat e1 e2). J�;� ` e1 : ⌧1 ! ⌧2K^J�;� ` e2 : ⌧1K =)
J�;� ` e1 e2 : ⌧2K

Proof. See A.0.18.

Lemma 4.0.14 (Compat ref e). J�;� ` e : ⌧K =) J�;� ` ref e : ref ⌧K

Proof. See A.0.19.

Lemma 4.0.15 (Compat !e). J�;� ` e : ref ⌧K =) J�;� ` !e : ⌧K

Proof. See A.0.20.

Lemma 4.0.16 (Compat e1 := e2). J�;� ` e1 : ref ⌧K ^ J�;� ` e2 :
⌧K =) J�;� ` e1 := e2 : unitK

Proof. See A.0.21.

Lemma 4.0.17 (Compat LeM⌧ ). J�;� ` e : ⌧ K^⌧ ⇠ ⌧ =) J�;� ` LeM⌧ : ⌧K

Proof. See A.0.22.

Lemma 4.0.18 (Compat n). J�;� ` n : intK

Proof. See A.0.23.

Lemma 4.0.19 (Compat x). J�;�,x : ⌧ ` x : ⌧ K

Proof. See A.0.24.

Lemma 4.0.20 (Compat [e1, . . . , en]). J�;� ` e1 : ⌧ K ^ . . . ^ J�;� ` en :
⌧ K =) J�;� ` [e1, . . . , en] : [⌧ ]K
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Proof. See A.0.25.

Lemma 4.0.21 (Compat e1[e2]). J�;� ` e1 : [⌧ ]K ^ J�;� ` e2 : intK =)
J�;� ` e1[e2] : ⌧ K

Proof. See A.0.26.

Lemma 4.0.22 (Compat if0). J�;� ` e : intK ^ J�;� ` e1 : ⌧ K ^ J�;� `

e2 : ⌧ K =) J�;� ` if0 e e1 e2 : ⌧ K

Proof. See A.0.27.

Lemma 4.0.23 (Compat �x : ⌧.e). J�;�, x : ⌧1 ` e : ⌧2K =) J�;� `

�x : ⌧1.e : ⌧1 ! ⌧2K

Proof. See A.0.28.

Lemma 4.0.24 (Compat e1 e2). J�;� ` e1 : ⌧1 ! ⌧2K ^ J�;� ` e2 :
⌧1K =) J�;� ` e1 e2 : ⌧2K

Proof. See A.0.29.

Lemma 4.0.25 (Compat e1 + e2). J�;� ` e1 : intK^J�;� ` e2 : intK =)
J�;� ` e1 + e2 : intK

Proof. See A.0.30.

Lemma 4.0.26 (Compat ref e). J�;� ` e : ⌧ K =) J�;� ` ref e : ref ⌧ K

Proof. See A.0.31.

Lemma 4.0.27 (Compat !e). J�;� ` e : ref ⌧ K =) J�;� ` !e : ⌧ K

Proof. See A.0.32.

Lemma 4.0.28 (Compat e1 := e2). J�;� ` e1 : ref ⌧ K ^ J�;� ` e2 :
⌧ K =) J�;� ` e1 := e2 : intK

Proof. See A.0.33.

Lemma 4.0.29 (Compat LeM⌧ ). J�;� ` e : ⌧K ^ ⌧ ⇠ ⌧ =) J�;� ` LeM⌧ :
⌧ K

Proof. See A.0.34.

Once we have all compatibility lemmas we can prove the following theo-
rems:

Theorem 4.0.30 (Fundamental Property).
If �;� ` e : ⌧ then J�;� ` e : ⌧ K and if �;� ` e : ⌧ then J�;� ` e : ⌧K.
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Proof. By induction on the typing derivations, using the compatibility
lemmas.

Theorem 4.0.31 (Type Safety for RefLL). If ·; · ` e : ⌧ then for any
H : W, if hH # · # e+i ⇤

! hH0 # S0 #P0
i, then either hH0 # S0 #P0

i ! hH00 # S00 #P00
i,

or P0 = · and either S0 = Fail c for some c 2 {Conv, Idx} or S0 = v.

Proof. Suppose hH # · # e+i n
! hH0 # S0 #P0

i for some natural number n. Then,
either hH0 #S0 #P0

i ! hH00 #S00 #P00
i or hH0 #S0 #P0

i is irreducible. If hH0 #S0 #P0
i

is irreducible, then P0 = · by Lemma A.0.1.
Next, by the Fundamental Property, since e typechecks under empty

environments, ((n+1, ;), e+) 2 EJ⌧ K·. Thus, since n < n+1 and hH#·#e+i n
!

hH0 # S0 # ·i, we find that either S0 = Fail c for some c 2 OkErr or S0 = ·, v,
as was to be proven.

Theorem 4.0.32 (Type Safety for RefHL). If ·; · ` e : ⌧ then for any
H : W, if hH # · # e+i ⇤

! hH0 # S0 #P0
i, then either hH0 # S0 #P0

i ! hH00 # S00 #P00
i,

or P0 = · and either S0 = Fail c for some c 2 {Conv, Idx} or S0 = v.

Proof. This proof is identical to that of RefLL.

discussion In addition to directly passing across pointers, there are
two alternative conversion strategies, both of which our framework would
accommodate: first, we could create a new location and copy and convert
the data. This would allow the more flexible convertibility which does not
require references to “identical” types, but would not allow aliasing, which
may be desirable. Second, rather than converting ref ⌧ and ref ⌧ , we could
instead convert (unit ! ⌧)⇥ (⌧ ! unit) and (unit ! ⌧ ) ⇥ (⌧ ! unit)
(assuming we had pairs)—i.e., read/write proxies to the reference (similar
to that used in (Dimoulas et al., 2012)). This allows aliasing, i.e., both
languages reading / writing to the same location, and is sound for arbitrary
convertibility relations, but it comes at a significant runtime cost, as we
introduce overhead at each read / write.
The choice to use the encoding described in this case study, or either

of these options, is not, of course, exclusive—we could provide di↵erent
options for di↵erent types in the same system, depending on the performance
characteristics we need.



5
CASE STUDY : AFF INE FUNCTIONS

In our second case study, we consider an a�ne language, A�, interacting
with an unrestricted one, MiniML. Since A� is a�ne rather than linear,
its substructural features can be enforced dynamically. In particular, we See Figure 5.7 for

how a�ne
variables are
compiled.

adopt the classic technique, described in (Tov and Pucella, 2010), where
a�ne resources are protected behind thunks with stateful flags that indicate
failure on a second force.

This case study includes two variants: first, we develop a simple one,
where our a�ne language A� is compiled to target code that enforces,
at runtime, that a�ne variables are used at most once. This allows for
unrestricted and a�ne code to be safely mixed, as the type invariant of the
a�ne language will be enforced at runtime. However, this calling convention
comes at a runtime cost: even A� code that will never interact with MiniML

is still subject to the overhead of checking variable use, checks that statically
we know will always succeed. This motivates the second variant, where
we distinguish between a�ne function types (dynamic) that may interact
with MiniML code and those (static) ones that will not. Only the dynamic
a�ne variables need be protected at runtime, as only they will possibly be
interacting with code that is not subject to the a�ne static type discipline.

languages Both MiniML and A� are compiled to the same untyped
Scheme-like functional target LCVM. As described above, we have two
variants of A�, dynamic and static (which we will label A�# and A� 

where needed for clarity), where the latter is an extension of the former.
We present the syntax of all three languages in Figure 5.1. Our target
LCVM is an untyped lambda calculus with functions, pattern matching,
mutable references, and a standard operational semantics defined via steps
hH, ei ! hH0, e0i over heap and expression pairs, presented in Figure 5.2.
The operational semantics of our source languages are defined solely via
compilation to LCVM.

For the static semantics of MiniML and A�, as in the previous case
study, we will support open terms across language boundaries, and thus
need to carry environments for both languages. In this case study, we can
protect a�ne resources that cross boundaries. That means that our a�ne
environments ⌦ need to be split, even within MiniML, to respect the a�ne
invariant. We present the static semantics of MiniML in Figure 5.5, and the
static semantics for A� in Figures 5.3 (A�#) and 5.4 (A� ).

53
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A�#

Type ⌧ ::= unit | bool | int | ⌧–# ⌧ | !⌧ | ⌧&⌧ | ⌧ ⌦ ⌧
Expr. e ::= () | true | false | n | x | aG# | �aG# : ⌧.e

| e e | LeM⌧ | !v| let !x = e in e0 | he, e0i
| e.1 | e.2 | (e, e) | let (a , a0 ) = e in e0

Value v ::= () | �aG# : ⌧.e | !v | he, e0i | (v, v0)
Mode G# ::= #

A� 

Type ⌧ ::= . . . | ⌧– ⌧
Mode G# ::= # |  

MiniML
Type ⌧ ::= unit | int | ⌧ ⇥ ⌧ | ⌧ + ⌧ | ⌧ ! ⌧ | 8↵.⌧ | ↵ | ref ⌧
Expr. e ::= () | n | x | (e, e) | fst e | snd e | inl e | inr e

| match e x{e} y{e} | �x : ⌧.e | e e | ⇤↵.e | e[⌧ ]
| ref e | !e | e := e | LeM⌧

LCVM
Expr e ::= () | n | ` | x | (e, e) | fst e | snd e | inl e | inr e

| if e {e} {e} | match e x{e} y{e} | let x = e in e
| �x{e} | e e | ref e | !e | e := e | fail c

Evaluation Context K ::= [·] | (K, e) | (v,K) | inl K | inr K | match K x{e} y{e}
| if K {e} {e} | let x = K in e | K e | v K | ref K
| !K | K := e | v := K

Values v ::= () | n | ` | (v, v) | �x.e
Err Code c ::= Type | Conv

Figure 5.1: Syntax for A� (dynamic and static), MiniML and LCVM.
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hH, fst (v, v0)i ! hH, vi

v 6= (v1, v2)

hH, fst vi ! hH, fail Typei

hH, snd (v0, v)i ! hH, vi

v 6= (v1, v2)

hH, snd vi ! hH, fail Typei

hH, if 0 {e1} {e2}i ! hH, e1i

n 6= 0

hH, if n {e1} {e2}i ! hH, e2i

v 62 Z
hH, if v {e1} {e2}i ! hH, fail Typei

hH,match inl v x{e1} y{e2}i ! hH, [x 7!v]e1i

hH,match inr v x{e1} y{e2}i ! hH, [y 7!v]e2i

v 62 {inr v0, inl v0}

hH,match v x{e1} y{e2}i ! hH, fail Typei hH, let x = v in ei ! hH, [x 7!v]ei

hH,�x{eb} vi ! hH, [x 7!v]ebi

v 6= �x{e}

hH, v v0i ! hH, fail Typei

fresh `

hH, ref vi ! hH[` 7!v], `i

H[`] = v

hH, !`i ! hH, vi

v 6= `

hH, !vi ! hH, fail Typei

hH, ` := vi ! hH[` 7!v], ()i

v 6= `

hH, v := v0i ! hH, fail Typei

hH, ei ! hH0, e0i

hH,K[e]i ! hH0,K[e0]i

K 6= [·]

hH,K[fail c]i ! hH, fail ci

Figure 5.2: Dynamic semantics for LCVM.
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a : ⌧ 2 ⌦

�;�;�;⌦ ` a : ⌧

x : ⌧ 2 �

�;�;�;⌦ ` x : ⌧ �;�;�;⌦ ` () : unit

�;�;�;⌦ ` n : int �;�;�;⌦ ` true : bool �;�;�;⌦ ` false : bool

�;�;�;⌦[a := ⌧1] ` e : ⌧2

�;�;�;⌦ ` �a : ⌧1.e : ⌧1 ( ⌧2

⌦ = ⌦1 ] ⌦2 �;�;�;⌦1 ` e1 : ⌧1 ( ⌧2 �;�;�;⌦2 ` e2 : ⌧1

�;�;�;⌦ ` e1 e2 : ⌧2

�;�;�; · ` v : ⌧

�;�;�; · ` !v : !⌧

⌦ = ⌦1 ] ⌦2 �;�;�;⌦1 ` e : !⌧ �;�;�[x := ⌧ ];⌦2 ` e0 : ⌧ 0

�;�;�;⌦ ` let !x = e in e0

�;�;�;⌦ ` e1 : ⌧1 �;�;�;⌦ ` e2 : ⌧2

�;�;�;⌦ ` he1, e2i : ⌧1&⌧2

�;�;�;⌦ ` e : ⌧1&⌧2

�;�;�;⌦ ` e.1 : ⌧1

�;�;�;⌦ ` e : ⌧1&⌧2

�;�;�;⌦ ` e.2 : ⌧2

⌦ = ⌦1 ] ⌦2 �;�;�;⌦1 ` e1 : ⌧1 �;�;�;⌦2 ` e2 : ⌧2

�;�;�;⌦ ` (e1, e2) : ⌧1 ⌦ ⌧2

⌦ = ⌦1 ] ⌦2

�;�;�;⌦1 ` e : ⌧1 ⌦ ⌧2 �;�;�;⌦2[a := ⌧1, a
0 := ⌧1] ` e0 : ⌧ 0

�;�;�;⌦ ` let (a, a0) = e in e0 : ⌧ 0

�;�;�;⌦ ` e : ⌧ : ⌧ ⇠ ⌧

�;�;�;⌦ ` LeM⌧ : ⌧

Figure 5.3: Static semantics for for A� (dynamic).
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a# : ⌧ 2 ⌦

�;�;�;⌦ ` a# : ⌧

a : ⌧ 2 ⌦

�;�;�;⌦ ` a : ⌧

x : ⌧ 2 �

�;�;�;⌦ ` x : ⌧

�;�;�;⌦ ` () : unit �;�;�;⌦ ` n : int �;�;�;⌦ ` true : bool

�;�;�;⌦ ` false : bool

�;�;�;⌦[a# := ⌧1] ` e : ⌧2 no (⌦)

�;�;�;⌦ ` �a# : ⌧1.e : ⌧1–# ⌧2

�;�;�;⌦[a := ⌧1] ` e : ⌧2

�;�;�;⌦ ` �a : ⌧1.e : ⌧1– ⌧2

⌦ = ⌦1 ] ⌦2 �;�;�;⌦1 ` e1 : ⌧1–# ⌧2 �;�;�;⌦2 ` e2 : ⌧1

�;�;�;⌦ ` e1 e2 : ⌧2

⌦ = ⌦1 ] ⌦2 �;�;�;⌦1 ` e1 : ⌧1– ⌧2 �;�;�;⌦2 ` e2 : ⌧1

�;�;�;⌦ ` e1 e2 : ⌧2

�;�;�; · ` v : ⌧

�;�;�; · ` !v : !⌧

⌦ = ⌦1 ] ⌦2 �;�;�;⌦1 ` e : !⌧ �;�;�[x := ⌧ ];⌦2 ` e0 : ⌧ 0

�;�;�;⌦ ` let !x = e in e0

�;�;�;⌦ ` e1 : ⌧1 �2;�;�;⌦ ` e2 : ⌧2

�;�;�;⌦ ` he1, e2i : ⌧1&⌧2

�;�;�;⌦ ` e : ⌧1&⌧2

�;�;�;⌦ ` e.1 : ⌧1

�;�;�;⌦ ` e : ⌧1&⌧2

�;�;�;⌦ ` e.2 : ⌧2

⌦ = ⌦1 ] ⌦2 �;�;�;⌦1 ` e1 : ⌧1 �;�;�;⌦2 ` e2 : ⌧2

�;�;�;⌦ ` (e1, e2) : ⌧1 ⌦ ⌧2

⌦ = ⌦1 ]⌦2

�;�;�;⌦1 ` e : ⌧1 ⌦ ⌧2 �;�;�;⌦2[a := ⌧1, a
0 := ⌧1] ` e0 : ⌧ 0

�;�;�;⌦ ` let (a , a
0
 ) = e in e0 : ⌧ 0

�;�;�;⌦ ` e : ⌧ : ⌧ ⇠ ⌧

�;�;�;⌦ ` LeM⌧ : ⌧

Figure 5.4: Static semantics for for A� (static).
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⌦;�;�;� ` () : unit ⌦;�;�;� ` Z : int

� ` ⌧ x : ⌧ 2 �

⌦;�;�;� ` x : ⌧

⌦1;�;�;� ` e1 : ⌧1 ⌦2;�;�;� ` e2 : ⌧2

⌦1 ] ⌦2;�;�;� ` (e1, e2) : ⌧1 ⇥ ⌧2

⌦;�;�;� ` e : ⌧1 ⇥ ⌧2

⌦;�;�;� ` fst e : ⌧1

⌦;�;�;� ` e : ⌧1 ⇥ ⌧2

⌦;�;�;� ` snd e : ⌧2

� ` ⌧2 ⌦;�;�;� ` e : ⌧1

⌦;�;�;� ` inl e : ⌧1 + ⌧2

� ` ⌧1 ⌦;�;�;� ` e : ⌧2

⌦;�;�;� ` inr e : ⌧1 + ⌧2

⌦1;�;�;� ` e : ⌧1 + ⌧2
⌦2;�;�;�[x : ⌧1] ` e1 : ⌧ ⌦2;�;�;�[y : ⌧2] ` e2 : ⌧

⌦1 ] ⌦2;�;�;� ` match e x{e1} y{e2} : ⌧

⌦;�;�;�[x : ⌧1] ` e : ⌧2

⌦;�;�;� ` �x : ⌧1.e : ⌧1 ! ⌧2

⌦1;�;�;� ` e : ⌧ 0 ! ⌧ ⌦2;�;�;� ` e0 : ⌧

⌦1 ] ⌦2;�;�;� ` e e0 : ⌧

⌦;�;�,↵;� ` e : ⌧

⌦;�;�;� ` ⇤↵.e : 8↵.⌧

⌦;�;� ` ⌧ ⌦;�;�;� ` e : 8↵.⌧

⌦;�;�;� ` e[⌧ 0] : ⌧ [⌧ 0/↵]

⌦;�;�;� ` e : ⌧

⌦;�;�;� ` ref e : ref ⌧

⌦;�;�;� ` e : ref ⌧

⌦;�;�;� ` !e : ⌧

⌦1;�;�;� ` e1 : ref ⌧ ⌦2;�;�;� ` e2 : ⌧

⌦1 ] ⌦2;�;�;� ` e1 := e2 : unit

⌦;�;�;� ` e : ⌧ : ⌧ ⇠ ⌧

⌦;�;�;� ` LeM⌧ : ⌧

Figure 5.5: Static semantics for for MiniML.
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A� exists in order to avoid unnecessary dynamic enforcement of at-
most-once variable use. To facilitate that, it has two kinds of a�ne function
types: –# and – . This creates a distinction between A� functions (and
thus bindings) that may be passed across the boundary (our “dynamic”
a�ne arrows –# , written with a hollow circle and bind dynamic a�ne
variables a#), and ones that will only ever be used within A� (our “static”
a�ne arrows – , written with a solid circle and bind static a�ne variables
a ).

We can see in both Figure 5.3 and Figure 5.4 how A�’s a�ne-variable
environment ⌦ is maintained: variables are introduced by lambda and
tensor-destructuring let, and environments are split across subterms, but
all bindings are not required to be used, as we can see, in the variable rule.
Since a�ne resources can exist within unrestricted MiniML terms, our a�ne
environments ⌦ need to be split, even in MiniML typing rules, shown in
Figure 5.5.

Our compilers, presented in Figures 5.6 and 5.7, are primarily interesting
in the cases that address a�ne bindings; otherwise, they do standard type
erasure for polymorphic types, etc. We use a compiler macro, once(·), which
expands to a nullary function closing over a freshly-allocated reference—
called a flag—initialized to 1. When called, this function fails if the flag
is 0. Otherwise, it sets the flag to 0 and returns the macro’s argument.
Throughout this chapter, we will use the constants unused and used for 1
and 0. We use once(·) when introducing a�ne bindings, and then we compile
uses of a�ne variable to expressions that force the thunk. Unrestricted A�
variables x and variables from MiniML are una↵ected by this strategy. And,
of course, static bindings in A� do not introduce the runtime check, since
it is unnecessary.

convertibility We define convertibility relations and conversions
for A� and MiniML in Figure 5.8. Note that since the additions to A�#

to make A� involve unconvertible types, the two variants share these
definitions. In the figure we define base type conversions between unit and
unit, bool and int, tensors and pairs, and between ! and (. The last
is most interesting and challenging. Our compiler is designed to support
a�ne code being mixed directly with unrestricted code. Intuitively, an a�ne
function should be able to behave as an unrestricted one, but the other
direction is harder to accomplish, and higher-order functions mean both
must be addressed at once. In order to account for this, we convert ⌧1 ( ⌧2
not to ⌧1 ! ⌧2 (not even for some convertible argument/return types), but
rather to (unit ! ⌧1) ! ⌧2. That is, to a MiniML function that expects its
argument to be a thunk containing a ⌧1 rather than a ⌧1 directly. Provided
that the thunk fails if invoked more than once, we can ensure, dynamically,
that a MiniML function with that type behaves as an A� function of a
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()  ()
Z  Z

x  x

�x : ⌧.e  �x.{e+}
e1 e2  e+

1
e+
2

(e1, e2)  (e+
1
, e+

2
)

fst e  fst e+

snd e  snd e+

inl e  inl e+

inr e  inr e+

match e  match e+

x{e1} y{e2} x{e+
1
} y{e+

2
}

⇤↵.e  � .{e+}
e[⌧ ]  e+ ()
ref e  ref e+

!e  !e+

e1 := e2  e+
1
:= e+

2

LeM⌧  C⌧ 7!⌧ (e+)

Figure 5.6: Compiler for MiniML.

related type. These invariants are ensured by appropriate wrapping and use
of the compiler macro once(·).

examples. Using our conversions, we investigate several small examples,
presented (with their compilations) in Figure 5.9. Program P1 converts a
MiniML function that projects the first element of a pair of integers to A�
and applies it to (true, false), producing true successfully. By contrast,
P1† tries to use the pair twice (sites of errors are highlighted ), which once
converted to A�, is a violation of the type invariant, and thus this produces
a runtime error, which we can see in the compiled code will occur at the
second invocation of x (), which contains the contents of a once(·).

Program P2 defines an a�ne function (and immediately applies it) that
binds a variable a in A�, then uses it (inside a closure) in MiniML, returning
a pair made up of that variable and a value from MiniML. This works fine,
evaluating to (true, true). Program P2† attempts to do an analogous
thing, but uses the variable twice, which is a violation of the a�ne type and
thus results in a runtime failure. We can see that in the invocations of a (),
which contain once(0).

Note that we do not allow a dynamic function �a#: . e to close over static
resources, as it may be duplicated if passed to MiniML, and thus the static
resources would be unprotected. However, we do allow a dynamic function
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()  ()
n  n
true  0
false  1
x  x
a  a ()
�a : ⌧.e  �a.{e+}

e1 e2  e+1 (let x = e+2 in once(x))
(e1, e2)  (e+1 , e+2 )
e.1  (fst e+) ()
e.2  (snd e+) ()
he1, e2i  (� .{e+1 },� .{e+2 })
let (a1, a2) = e1  let xfresh = e+1 , x0fresh = fst xfresh,
in e2 x00fresh = snd xfresh, a1 = once(x0fresh),

a2 = once(x00fresh) in e+2
!e  e+

let !x = e1  let x = e+1 in e+2
in e2

LeM⌧  C⌧ 7!⌧ (e+)

()  ()
true  0
false  1
x  x
a#  a ()
a  a 
�a# : ⌧.e  �a.{e+}
�a : ⌧.e  �a .{e+}
(e1 : ⌧1–# ⌧2) e2  e1+ (let x = e2+ in once(x))
(e1 : ⌧1– ⌧2) e2  e1+ e2+

!v  v+

let !x = e in e0  let x = e+ in e0+

he, e0i  (� .{e+},� .{e0+})
e.1  (fst e+) ()
e.2  (snd e+) ()
(e, e0)  (e+, e0+)
let (a , a0 ) = e in e0  let xfresh = e+ in let a = fst xfresh in let a0 = snd xfresh in e0+

Le : ⌧M⌧  C⌧ 7!⌧ (e+)

once(e) , let rfresh = ref unused in � .{if !rfresh {fail Conv} {rfresh := used; e}}
where used = 0 and unused = 1

Figure 5.7: Compilers for A� (static and dynamic).
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Cunit7!unit, Cunit7!unit : unit ⇠ unit

Cint7!bool, Cbool7!int : int ⇠ bool

C⌧1 7!⌧1 , C⌧1 7!⌧1 : ⌧1 ⇠ ⌧1 C⌧2 7!⌧2 , C⌧2 7!⌧2 : ⌧2 ⇠ ⌧2

C⌧1⌦⌧2 7!⌧1 ⇥ ⌧2 , C⌧1 ⇥ ⌧2 7!⌧1⌦⌧2
: ⌧1 ⌦ ⌧2 ⇠ ⌧1 ⇥ ⌧2

C⌧1 7!⌧1 , C⌧1 7!⌧1 : ⌧1 ⇠ ⌧1 C⌧2 7!⌧2 , C⌧2 7!⌧2 : ⌧2 ⇠ ⌧2

C
⌧1(⌧2 7!(unit ! ⌧1) ! ⌧2

, C(unit ! ⌧1) ! ⌧2 7!⌧1(⌧2
: ⌧1 ( ⌧2 ⇠ (unit ! ⌧1) ! ⌧2

Cunit7!unit(e) , Cint7!bool(e) , Cunit7!unit(e) , e Cbool7!int(e) , if e 0 1

C⌧1⌦⌧2 7!⌧1 ⇥ ⌧2(e) , let x = e in (C⌧1 7!⌧1(fst x),C⌧2 7!⌧2(snd x))
C⌧1 ⇥ ⌧2 7!⌧1⌦⌧2

(e) , let x = e in (C⌧1 7!⌧1(fst x),C⌧2 7!⌧2(snd x))
C
⌧1(⌧2 7!(unit ! ⌧1) ! ⌧2

(e) , let x = e in �xthnk.let xconv = C⌧1 7!⌧1(xthnk ())

in let xacc = once(xconv) in C⌧2 7!⌧2(x xacc)
C(unit ! ⌧1) ! ⌧2 7!⌧1(⌧2

(e) , let x = e in �xthnk.let xacc = once(C⌧1 7!⌧1(xthnk ()))

in C⌧2 7!⌧2(x xacc)

Figure 5.8: Convertibility for MiniML and A�.

P1 = L(�x : (unit ! int⇥ int).fst (x ()))Mbool⌦bool(bool (true, false)

P1† = L(�x : (unit ! int⇥ int).(fst (x ()), snd ( x () )))Mbool⌦bool(bool⌦bool

(true, false)
P2 = (�a : bool.L(�y : int.(LaMint, y)) 0Mbool⌦bool) true
P2† = (�a : bool.L(�y : int.(LaMint, L a Mint)) 0Mbool⌦bool) true

compile⇤(P1) =
(�x1

thnk
.(�x.{fst (x ())})
once(let x2 = (x1

thnk
()) in (if (fst x2) 0 1, if (snd x2) 0 1))

(once((0, 1)))
compile⇤(P1†) =

(�x1
thnk

.(let x3 = (�x.{(fst (x ()), snd( x () )})

(once(let x2 = (x1
thnk

()) in (if (fst x2) 0 1, if (snd x2) 0 1)))
in (fst x3, snd x3))

(once((0, 1)))
compile⇤(P2) =
(�a.(let x2 = ((�y.(if (a ()) 0 1, y)) 0) in (fst x2, snd x2)))
(let x1 = 0 in once(x1))

compile⇤(P2†) =

(�a.(let x2 = ((�y.(if (a ()) 0 1, if ( a () ) 0 1)) 0) in (fst x2, snd x2)))

(let x1 = 0 in once(x1))

Note: compile⇤(·) performs basic simplifications after compiling.

Figure 5.9: Examples of interoperability for MiniML and A�, with compilations.
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Atomn , {(W , e1, e2) | W 2 Worldn} AtomV aln , {(W , v1, v2) 2 Atomn}

AtomVal , S
n AtomValn

Worldn , {(k, ,⇥) | k < n ^  ⇢ HeapTyk ^ dom( )#dom(⇥)}
HeapTyn , {(`1, `2) 7! Typn, . . .}
Typn , {R 2 2AtomV aln | 8(W , v1, v2) 2 R. 8W 0. W v W 0 =) (W 0, v1, v2) 2 R}

Typ , {R 2 2AtomV al
| 8k.bRck 2 Typk}

⇥ , {(`1, `2) 7! {used,unused}, . . .} where used = 0 and unused = 1
W v W 0 , W 0.k  W .k ^ 8(`1, `2) 2 dom(W . ).bW . (`1, `2)cW 0.k = W 0. (`1, `2)

^ 8(`1, `2) 2 dom(W .⇥).(`1, `2) 2 dom(W 0.⇥)
^(W .⇥(`1, `2) = used =) W 0.⇥(`1, `2) = used)

H1,H2 : W , (8(`1, `2) 7! R 2 W . . (BW ,H1(`1),H2(`2)) 2 R)
^ (8(`1, `2) 7! b 2 W .⇥.H1(`1) = H2(`2) = b)

Figure 5.10: Supporting definitions for logical relation for MiniML and A�.

to accept a static closure as argument. This is safe because the dynamic
guards will ensure that the static closure is called at most once. Once called,
any static resources in its body will be used safely because the static closure
typechecked.

semantic model for Affi (dynamic) Each variant has a separate
model, as what we need to track in our semantics varies significantly. We
present the simpler case of A�# first. To reason about this system, we
create a step indexed binary logical relation, shown in Figures 5.10 and 5.11.
Although there is some overlap with the previous case study and prior work,
the treatment of a�ne resources is novel. In our worlds W , we keep the step
index, a standard heap typing  , and a novel a�ne flag store ⇥. Following
prior work,  maintains a simple bijection between locations of the two
programs (this doesn’t support sophisticated reasoning about equivalence in
the presence of “local state” (Ahmed et al., 2009) but su�ces for soundness),
whereas ⇥ maintains a bijection on flags (locations) that track whether
a�ne variables have been used. The latter is a subset of the heap, disjoint
from  , and restricted by the model to only contain either 0 or 1, which
for convenience we write using the constants used and unused. Our world
extension relation, W v W 0, shows that flags cannot be removed from ⇥,
and once a flag is marked as used, it cannot be marked unused. With
this setup, our expression relation EJ⌧K⇢ is quite ordinary, as the described
structure is entirely about characterizing the heaps that programs will run
in, not about how they will run. Note that EJ⌧K⇢ allows for the possibility
of e1 raising a conversion error (fail Conv) at runtime.

Most cases of the value relation are standard, though of the realizability
flavor. Unlike the previous case study, this is a binary relation, which
means that it is composed of triples of worlds W and pairs of values or
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VJunitK⇢ = {(W , (), ())}
VJintK⇢ = {(W , n, n) | n 2 Z}
VJ⌧1 ⇥ ⌧2K⇢ = {(W , (v1a, v2a), (v1b, v2b)) | (W , v1a, v1b) 2 VJ⌧1K⇢

^(W , v2a, v2b) 2 VJ⌧2K⇢}
VJ⌧1 + ⌧2K⇢ = {(W , inl v1, inl v2) | (W , v1, v2) 2 VJ⌧1K⇢}

[ {(W , inr v1, inr v2) | (W , v1, v2) 2 VJ⌧2K⇢}
VJ⌧1 ! ⌧2K⇢ = {(W ,�x.{e1},�x.{e2}) | 8v1 v2 W 0.W @W 0

^ (W 0, v1, v2) 2 VJ⌧1K⇢
=) (W 0, [x 7!v1]e1, [x 7!v2]e2) 2 EJ⌧2K⇢}

VJref ⌧K⇢ = {(W , `1, `2) | W . (`1, `2) = bVJ⌧K⇢cW .k}

VJ8↵.⌧K⇢ = {(W ,� .e1,� .e2) | 8R 2 Typ, W 0.W @W 0

=) (W 0, e1, e2) 2 EJ⌧K⇢[↵ 7!R]}

VJ↵K⇢ = ⇢(↵)
VJunitK· = {(W , (), ())}
VJboolK⇢ = {(W , 0, 0)} [ {(W , n1, n2) | n1 6= 0 ^ n2 6= 0}
VJintK· = {(W , n, n) | n 2 Z}
VJ⌧1 ( ⌧2K· = {(W ,� a.e1,� a.e2) | 8v1 v2 W 0 `1 `2.

W @W 0
^ (W 0, v1, v2) 2 VJ⌧1K·

^(`1, `2) /2 dom(W 0. ) [ dom(W 0.⇥)
=) ((W 0.k,W 0. ,W 0.⇥ ] (`1, `2) 7! unused),
[a 7!guard(v1, `1)]e1, [a 7!guard(v2, `2)]e2) 2 EJ⌧2K·}

VJ!⌧ K· = {(W , v1, v2) | (W , v1, v2) 2 VJ⌧ K·}
VJ⌧1 ⌦ ⌧2K· = {(W , (v1a, v2a), (v1b, v2b)) | (W , v1a, v1b) 2 VJ⌧1K·

^(W , v2a, v2b) 2 VJ⌧2K·}
VJ⌧1&⌧2K· = {(W , (� .{e1a},� .{e2a}), (� .{e1b},� .{e2b}))

| (W , e1a, e1b) 2 EJ⌧1K· ^ (W , e2a, e2b) 2 EJ⌧2K·}

guard(e, `) , � .{if !` {fail Conv} {` := used; e}}

EJ⌧K⇢ = {(W , e1, e2) | freevars(e1) = freevars(e2) = ; ^

8H1,H2:W , e0
1
, H0

1, j < W .k. hH1, e1i
j
! hH0

1, e
0
1
i 9

=) e0
1
= fail Conv _ (9v2H0

2W
0.hH2, e2i

⇤
! hH0

2, v2i
^W v W 0

^ H0
1,H

0
2 : W 0

^ (W 0, e0
1
, v2) 2 VJ⌧K⇢)}

GJ·K⇢ = {(W , ·) | W 2 World}
GJ�, x : ⌧K⇢ = {(W , �;x 7!(v1, v2)) | (W , v1, v2) 2 VJ⌧K⇢ ^ (W , �) 2 GJ�K⇢}
GJ�, x : ⌧ K⇢ = {(W , �;x 7!(v1, v2)) | (W , v1, v2) 2 VJ⌧ K⇢ ^ (W , �) 2 GJ�K⇢}
GJ⌦, a : ⌧ K⇢ = {(W , �; a 7!(guard(v1, `1), guard(v2, `2))) |

(`1, `2) 2 W .⇥ ^ (W , v1, v2) 2 VJ⌧ K⇢ ^ (W , �) 2 GJ⌦K⇢
^`1 /2 FL(v1) [ FL(cod(�1)) ^ `2 /2 FL(v2) [ FL(cod(�2))}

�1 , {` ! v1 | ` ! (v1, v2) 2 �} �2 , {` ! v2 | ` ! (v1, v2) 2 �}

DJ·K = {·} DJ�,↵K = {⇢[↵ 7! R] | R 2 Typ ^ ⇢ 2 DJ�K}

�;⌦;�;� ` e1 � e2 : ⌧ ⌘ 8W .8⇢ �� �� �⌦
⇢ 2 DJ�K ^ (W , ��) 2 GJ�K⇢ ^ (W , ��) 2 GJ�K· ^ (W , �⌦) 2 GJ⌦K·
=) (W , close1(��, close1(��, close1(�⌦, e1+))),

close2(��, close2(��, close2(�⌦, e2+)))) 2 EJ⌧K⇢
�;⌦;�;� ` e1 � e2 : ⌧ ⌘ 8W .8⇢ �� �� �⌦
⇢ 2 DJ�K ^ (W , ��) 2 GJ�K⇢ ^ (W , ��) 2 GJ�K· ^ (W , �⌦) 2 GJ⌦K·
=) (W , close1(��, close1(��, close1(�⌦, e1+))),

close2(��, close2(��, close2(�⌦, e2+)))) 2 EJ⌧ K⇢

Figure 5.11: Logical Relation for MiniML and A�.
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terms. Note the step indexing stratification, with Worldn built out of
heap typings for smaller step index, and HeapTyn composed of relations
on world, value, value triples for world at the given index. As is standard,
Typn is made up of relations that are closed under world extension. The
value relations themselves mostly follow the same pattern as the previous
case study, though MiniML has polymorphism, which we interpret in the
standard way using relational substitutions: 8↵.⌧ is inhabited by thunks
which are in the relation extended with an arbitrary relation R, and ↵ is
exactly that relation.

The only true novelty in the relation is the a�ne arrow( case. A pair of
functions �a.e1 and �a.e2 are related if, given a pair of arguments v1 and v2
related at a future world W 0, we get related results in W 0 extended with a
new entry in the flag store W 0.⇥ for some fresh locations `1, `2. Importantly,
what we substitute into the body is not v1 and v2, but rather wrapped forms,
guard(v1, `1) and guard(v2, `2), each of which closes over the fresh location
in the flag store and thus ensures that the argument is not used more than
once. This makes sense, since in the target, our calling convention is that
a�ne variables should be thunks, and will be forced upon use.
With the logical relation in hand, we prove semantic soundness in the

standard way, first establishing convertibility soundness and compatibility
lemmas for all of our typing rules. We provide the lemma statements here;
the proofs, which are quite mechanical, are provided in Appendix B.

Theorem 5.0.1 (Convertibility Soundness).
If ⌧ ⇠ ⌧ then 8 (W , e1, e2) 2 EJ⌧K· =) (W , C⌧ 7!⌧ (e1), C⌧ 7!⌧ (e2)) 2 EJ⌧ K·

8 (W , e1, e2) 2 EJ⌧ K· =) (W , C⌧ 7!⌧ (e1), C⌧ 7!⌧ (e2)) 2 EJ⌧K·

Proof. See B.1.13.

Lemma 5.0.2 (Compat unit).

�;⌦;�;� ` () � () : unit

Proof. See B.1.14.

Lemma 5.0.3 (Compat int).

�;⌦;�;� ` Z � Z : int

Proof. See B.1.15.

Lemma 5.0.4 (Compat x).

� ` ⌧ ^ x : ⌧ 2 � =) �;⌦;�;� ` x � x : ⌧

Proof. See B.1.16.
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Lemma 5.0.5 (Compat ⇥).

�1;⌦1;�;� ` e1 � e1 : ⌧1 ^ �2;⌦2;�;� ` e2 � e2 : ⌧2
=) �1;⌦1 ] ⌦2;�;� ` (e1, e2) � (e1, e2) : ⌧1 ⇥ ⌧2

Proof. See B.1.17.

Lemma 5.0.6 (Compat fst).

�;⌦;�;� ` e � e : ⌧1 ⇥ ⌧2 =) �;⌦;�;� ` fst e � fst e : ⌧1

Proof. See B.1.18.

Lemma 5.0.7 (Compat snd).

�;⌦;�;� ` e � e : ⌧1 ⇥ ⌧2 =) �;⌦;�;� ` snd e � snd e : ⌧2

Proof. See B.1.19.

Lemma 5.0.8 (Compat inl).

� ` ⌧2 ^ �;⌦;�;� ` e � e : ⌧1 =) �;⌦;�;� ` inl e � inl e : ⌧1 + ⌧2

Proof. See B.1.20.

Lemma 5.0.9 (Compat inr).

� ` ⌧1 ^ �;⌦;�;� ` e � e : ⌧2 =) �;⌦;�;� ` inr e � inr e : ⌧1 + ⌧2

Proof. See B.1.21.

Lemma 5.0.10 (Compat match).

�1;⌦1;�;� ` e � e : ⌧1 + ⌧2
^�2;⌦2;�;�[x : ⌧1] ` e1 � e1 : ⌧
^�2;⌦2;�;�[y : ⌧2] ` e2 � e2 : ⌧

=) �1;⌦1 ] ⌦2;�;� ` match e x{e1} y{e2} � match e x{e1} y{e2} : ⌧

Proof. See B.1.22.

Lemma 5.0.11 (Compat !).

�;⌦;�;�[x : ⌧1] ` e � e : ⌧2 =) �;⌦;�;� ` �x : ⌧1.e � �x : ⌧1.e : ⌧1 ! ⌧2

Proof. See B.1.23.
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Lemma 5.0.12 (Compat app).

�1;⌦1;�;� ` e1 � e1 : ⌧1 ! ⌧2 ^ �2;⌦2;�;� ` e2 � e2 : ⌧1 =)
�1;⌦1 ] ⌦2;�;� ` e1 e2 � e1 e2 : ⌧2

Proof. See B.1.24.

Lemma 5.0.13 (Compat 8).

�;⌦;�,↵;� ` e � e : ⌧ =) �;⌦;�;� ` ⇤↵.e � ⇤↵.e : 8↵.⌧

Proof. See B.1.25.

Lemma 5.0.14 (Compat [⌧/↵]).

� ` ⌧ 0 ^ �;⌦;�;� ` e � e : 8↵.⌧ =) �;⌦;�;� ` e[⌧ 0] � e[⌧ 0] : ⌧ [⌧ 0/↵]

Proof. See B.1.26.

Lemma 5.0.15 (Compat ref).

�;⌦;�;� ` e � e : ⌧ =) �;⌦;�;� ` ref e � ref e : ref ⌧

Proof. See B.1.27.

Lemma 5.0.16 (Compat !).

�;⌦;�;� ` e � e : ref ⌧ =) �;⌦;�;� ` !e �!e : ⌧

Proof. See B.1.28.

Lemma 5.0.17 (Compat :=).

�1;⌦1;�;� ` e1 � e1 : ref ⌧ ^ �2;⌦2;�;� ` e2 � e2 : ⌧
=) �1;⌦1 ] ⌦2;�;� ` e1 := e2 � e1 := e2 : unit

Proof. See B.1.29.

Lemma 5.0.18 (Compat LeM⌧ ).

�;�;�;⌦ ` e � e : ⌧ ^ ⌧ ⇠ ⌧ =) �;⌦;�;� ` LeM⌧ � LeM⌧ : ⌧ ^ : ⌧ ⇠ ⌧

Proof. See B.1.30.

Lemma 5.0.19 (Compat unit).

�;�;�;⌦ ` () � () : unit

Proof. See B.1.31.
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Lemma 5.0.20 (Compat true).

�;�;�;⌦ ` true � true : bool

Proof. See B.1.32.

Lemma 5.0.21 (Compat false).

�;�;�;⌦ ` false � false : bool

Proof. See B.1.33.

Lemma 5.0.22 (Compat int).

�;�;�;⌦ ` n � n : int

Proof. See B.1.34.

Lemma 5.0.23 (Compat a).

a : ⌧ 2 ⌦ =) �;�;�;⌦ ` a � a : ⌧

Proof. See B.1.35.

Lemma 5.0.24 (Compat x).

x : ⌧ 2 � =) �;�;�;⌦ ` x � x : ⌧

Proof. See B.1.36.

Lemma 5.0.25 (Compat ().

�;�;�;⌦,a : ⌧1 ` e � e : ⌧2 =) �;�;�;⌦ ` �a : ⌧1.e � �a : ⌧1.e : ⌧1 ( ⌧2

Proof. See B.1.37.

Lemma 5.0.26 (Compat app).

�1;�1;�;⌦1 ` e1 � e1 : ⌧1 ( ⌧2 ^ �2;�2;�;⌦2 ` e2 � e2 : ⌧1
=) �1;�1;�;⌦1 ] ⌦2 ` e1 e2 � e1 e2 : ⌧2

Proof. See B.1.38.

Lemma 5.0.27 (Compat !).

�;�;�; · ` v � v : ⌧ =) �;�;�; · ` !v �!v : !⌧

Proof. See B.1.39.
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Lemma 5.0.28 (Compat let!).

�;�;�;⌦1 ` e1 � e1 : !⌧ ^ �;�;�, x : ⌧ ;⌦2 ` e2 � e2 : ⌧ 0

=) �;�;�;⌦1 ] ⌦2 ` let !x = e1 in e2 � let !x = e1 in e2 : ⌧ 0

Proof. See B.1.40.

Lemma 5.0.29 (Compat &).

�;�;�;⌦ ` e1 � e1 : ⌧1 ^ �;�;�;⌦ ` e2 � e2 : ⌧2
=) �;�;�;⌦ ` he1, e2i � he1, e2i : ⌧1&⌧2

Proof. See B.1.41.

Lemma 5.0.30 (Compat .1).

�;�;�;⌦ ` e � e : ⌧1&⌧2 =) �;�;�;⌦ ` e.1 � e.1 : ⌧1

Proof. See B.1.42.

Lemma 5.0.31 (Compat .2).

�;�;�;⌦ ` e � e : ⌧1&⌧2 =) �;�;�;⌦ ` e.2 � e.2 : ⌧2

Proof. See B.1.43.

Lemma 5.0.32 (Compat ⌦).

�;�;�;⌦1 ` e1 � e1 : ⌧1 ^ �;�;�;⌦2 ` e2 � e2 : ⌧2
=) �;�;�;⌦1 ] ⌦2 ` (e1, e2) � (e1, e2) : ⌧1 ⌦ ⌧2

Proof. See B.1.44.

Lemma 5.0.33 (Compat let).

�;�;�;⌦1 ` e1 � e1 : ⌧1 ⌦ ⌧2 ^ �;�;�;⌦2,a : ⌧1, a0 : ⌧2 ` e2 � e2 : ⌧
=) �;�;�;⌦1 ] ⌦2 ` let (a, a0) = e1 in e2 � let (a, a0) = e1 in e2 : ⌧

Proof. See B.1.45.

Lemma 5.0.34 (Compat LeM⌧ ).

�;⌦;�;� ` e � e : ⌧ ^ ⌧ ⇠ ⌧ =) �;�;�;⌦ ` LeM⌧ � LeM⌧ : ⌧

Proof. See B.1.46.

Theorem 5.0.35 (Fundamental Property).
If �;⌦;�;� ` e : ⌧ then �;⌦;�;� ` e � e : ⌧ and if �;�;�;⌦ ` e : ⌧

then �;�;�;⌦ ` e � e : ⌧ .
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Proof. By induction on typing derivation, relying on the compatibility
lemmas, which exist for every typing rule in both source languages.

Theorem 5.0.36 (Type Safety for MiniML).

For any MiniML term e where ·; ·; ·; · ` e : ⌧ and for any heap H, if
hH, e+i

⇤
! hH0, e0i, then either e0 = fail Conv, e0 is a value, or there exist

H00, e00 such that hH0, e0i ! hH00, e00i.

Proof. This follows as a consequence of the fundamental property and the
definition of the logical relation, as follows: if hH, e+i

n
! hH0, e0i, then

consider a trivial world W with k > n, an empty heap typing and empty
a�ne store. Then, since the term is closed, the fundamental property says
that (W , e+, e+) 2 EJ⌧K·. This means that it runs to a stuck state, which is
either at n or greater than n. If it’s greater than n, then we have a further
step that can be taken. If it gets stuck at n, then we know that is either
fail Conv or a value.

Theorem 5.0.37 (Type Safety for A�).

For any A� term e where ·; ·; ·; · ` e : ⌧ and for any heap H, if hH, e+i
⇤
!

hH0, e0i, then we know from the logical relation that either e0 = fail Conv, e0

is a value, or there exist H00, e00 such that hH0, e0i ! hH00, e00i.

Proof. This proof is identical to that of MiniML.

semantic model for Affi (static) For our variant with purely
static a�ne functions, A� , we have to do significantly more in our model.
In particular, we have to show that both the dynamic and static a�ne
bindings within A� are used at most once. For a dynamic binding, this, as
in the dynamic variant, is tracked in target code by the dynamic reference
flag created by the macro thunk. For a static binding, we use a similar
strategy of tracking use via a flag, but rather than a target-level dynamic
runtime flag, we create a phantom flag that exists only within our model.

Specifically, we define an augmented target operational semantics that
exists solely for the model, and any program that runs without getting stuck
under the augmented semantics has a trivial erasure to a program that
runs under the standard semantics. This means we are using the model to
identify a subset of target programs (the erasures of well-behaved augmented
programs) that behave sensibly and do not violate source type constraints
(i.e., do not use static variables more than once), even if there is nothing in
the target programs that actually witnesses those constraints (i.e., dynamic
checks or static types).

We build the model as follows. First, we extend our machine configurations
to keep track of phantom flags f — i.e., in addition to a heap H and term
e, we have a phantom flag set �. Second, the augmented semantics uses



case study: affine functions 71

one additional term, protect, which consumes one of the aforementioned
phantom flags when it reduces:

Expressions e ::= . . . protect(e, f )

h� ] {f },H, protect(e, f )i 99K h�,H, ei

And finally, we modify the two rules that introduce bindings such that
whenever a binding in the syntactic category  is introduced, we create a
new phantom flag (where “f fresh” means f is disjoint from all the flags
generated thus far during this execution):

f fresh

h�,H, let a = v in ei99Kh� ] {f },H, [a 7!protect(v, f )]ei
f fresh

h�,H,�a .e vi99Kh� ] {f },H, [a 7!protect(v, f )]ei

Note that we write 99K for a step in this augmented semantics, to distinguish
it from the true operational step !. While phantom flags in the augmented
operational semantics play a similar role in protecting static a�ne resources
as dynamic reference flags in the dynamic case, the critical di↵erence is that
in the augmented semantics, a protect(·)ed resource for which there is no
phantom flag will get stuck, and thus be excluded from the logical relation
by construction. This is very di↵erent from the dynamic case, where we
want — and, in fact, need — to include terms that can fail in order to mix
MiniML and A� without imposing an a�ne type system on MiniML itself.
What this means for the model is that dynamic reference flags are a shared
resource that can be accessed from many parts of the program and therefore
tracked in the world, while phantom flags are an unique resource which our
type system ensures is owned/used by at most one part of the program,
which is what allows us to prove that the augmented semantics will not get
stuck.

The definitions are shown in Figures 5.12 and 5.13, where much of the
strutures is similar to the previous variant.

Our expression relation, EJ⌧K⇢, is made up of tuples of worlds W and
phantom flag stores / term pairs (�i, ei), where each flag store represents
the phantom variables owned by the expression. Our worlds W keep the
step index, a standard heap typing  (as in Chapter 4), but also an a�ne
flag store ⇥, which maps dynamic flags ` to either a marker that indicates
a dynamic a�ne variable has been used (0, written used), or the phantom
flags � that it closes over if it has not been used (a set that can be empty,
of course). These dynamic flags ` are a subset of the heap, disjoint from
 (which tracks the rest of the heap, i.e., all the normal/non-dynamic-flag
references).
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The expression relation then says that, given a heap that satisfies the
world and arbitrary “rest” of phantom flag store �r (disjoint from that
closed over by the world and the owned portion), the term e will either:
(i) run longer than the step index accounts for, (ii) fail Conv (error while
converting a value), or (iii) terminate at some value e0, where the flag store
� has been modified to �f ] �g, the heap has changed to H0, and the new
world W 0 is an extension of W . World extension (v�r) is defined over
worlds that do not contain phantom flags from �r, since phantom flags are
a local resource and the world contains what is global. It allows the step
index to decrease, the heap typing to gain (but not overwrite or remove)
entries, and the a�ne store to mark (but not unmark) dynamic bindings as
used.

At that future world, we know that the resulting value, along with their
�f , will be in the value relation VJ⌧K⇢. The phantom flag store �g is
“garbage” that is no longer needed, and the “rest” is unchanged. Note that,
while running, some phantom flags may have moved into the world, which
has changed, but the world cannot have absorbed what was in the “rest”.

Our value relation cases are now mostly standard, so we will focus only on
the interesting ones: –# and – . VJ⌧1–# ⌧2K· is defined to take an arbitrary
argument from VJ⌧1K·, which may own static phantom flags in �, and add
a new location ` that will be used in the thunk that prevents multiple uses,
but also store the phantom flags in the a�ne store. The idea is that a
function �a# : .e can be applied to an expression that closes over static
phantom flags, like let (b , c ) = (1, 2) in �a .b —the latter will have
phantom flags for both b and c . The body is then run with the argument
substituted with a guarded expression.

Now, consider what happens when the variable is used: the guard(·)
wrapper will update the location to used, which means that in the world,
the phantom flags that were put at that location are no longer there —
i.e., they are no longer returned by flags(W 0), which returns all phantom
flags closed over by dynamic flags. That means, for the reduction to be
well-formed, the phantom flags have to move somewhere else—either back
to being owned by the term (in �f ) or in the discarded “garbage” �g. Once
the phantom flag set has been moved back out of the world, the flags can
again be used by protect(·) expressions.

The static function, VJ⌧1– ⌧2K·, has a similar flavor, but it may itself
own static phantom flags. That means that the phantom flag set for the
argument must be disjoint, and when we run the body, we combine the set
along with a fresh phantom flags f for the argument, which are then put
inside the protect(·) expressions.

With the logical relation in hand, we take the same approach as before to
prove type soundness. Our lemma statements are analogous to the previous
section, as the significant details are in the model, not in the static type



case study: affine functions 73

Atomn = {(W , (�1, e1), (�2, e2)) | W 2 Worldn ^ �1,�2 : W }

�1,�2 : W , 8i 2 {1, 2}.�i#flags(W , i)

AtomV aln = {(W , (�1, v1), (�2, v2)) 2 Atomn}

AtomVal =
S

n AtomValn

Worldn = {(k, ,⇥) | k < n ^  ⇢ HeapTyk ^ dom( )#dom(⇥)
^ (8(`1, `2) 7! (�1,�2), (`01, `

0
2) 7! (�0

1,�
0
2) 2 ⇥.

(`1, `2) 6= (`01, `
0
2) =) �1 \ �0

1 = �2 \ �0
2 = ;)}}

⇥ = {(`1, `2) 7! used} [ {(`1, `2) 7! (�1,�2)}
� = {f } flags(W , i) =

S
(`1,`2) 7!(�1,�2)2W .⇥ �i

Typn = {R 2 2AtomV aln | 8(W , (�1, v1), (�2, v2)) 2 R. 8W 0.
W v�1,�2 W 0 =) (W 0, (�1, v1), (�2, v2)) 2 R}

Typ = {R 2 2AtomV al
| 8k.bRck 2 Typk}

UnrTyp = {R 2 Typ | 8(W , (�1, v1), (�2, v2)) 2 R. �1 = �2 = ;}

H1,H2 : W , (8(`1, `2) 7! R 2 W . . (BW ,H1(`1),H2(`2)) 2 R)
^ (8(`1, `2) 7! used 2 W .⇥.8i 2 {1, 2}. Hi(`i) = used)
^ (8(`1, `2) 7! (�1,�2) 2 W .⇥.8i 2 {1, 2}. Hi(`i) = unused)

guard(e, `) , � .{if !` {fail Conv} {` := used; e}}

Figure 5.12: MiniML & A� Logical Relation Supporting Definitions (static).

system, so we defer both the lemma statements and proofs to Appendix B.
With the compatibility lemmas in place, as before we prove Type Safety in
the standard two-step way as follows:

Theorem 5.0.38 (Fundamental Property).

If �;⌦;�;� ` e : ⌧ then �;⌦;�;� ` e � e : ⌧ and if �;�;�;⌦ ` e : ⌧
then �;�;�;⌦ ` e � e : ⌧ .

Proof. By induction on typing derivation, relying on the compatibility
lemmas, which exist for every typing rule in both source languages.

Theorem 5.0.39 (Type Safety for MiniML).

For any MiniML term e where ·; ·; ·; · ` e : ⌧ and for any heap H, if
hH, e+i

⇤
! hH0, e0i, then either e0 = fail Conv, e0 is a value, or there exist

H00, e00 such that hH0, e0i ! hH00, e00i.

Proof. Suppose hH, e+i
n
! hH0, e0i for some natural number n. Either

hH0, e0i ! hH00, e00i, in which case we are done, or hH0, e0i is irreducible.

Consider a trivial world W that has an arbitrary k > 2n, an empty
heap typing and an empty a�ne store. Then, since the term is closed, by
the Fundamental Property, (W , (;, e+), (;, e+)) 2 EJ⌧K·. Now by Lemma

B.2.20, we know that for any �r1,�r2, h�r1 ] flags(W , 1),H1, e1+i
j99K

h�0
1,H

0
1, e

0
1
i 9 where j  2n and if e0

1
is a value, then Z(e0

1
) = e0.
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VJunitK⇢ = {(W , (;, ()), (;, ()))}
VJintK⇢ = {(W , (;, n), (;, n)) | n 2 Z}
VJ⌧1 ⇥ ⌧2K⇢ = {(W , (;, (v1a, v2a)), (;, (v1b, v2b)))

| (W , (;, v1a), (;, v1b)) 2 VJ⌧1K⇢
^(W , (;, v2a), (;, v2b)) 2 VJ⌧2K⇢}

VJ⌧1 + ⌧2K⇢ = {(W , (;, inl v1), (;, inl v2))
| (W , (;, v1), (;, v2)) 2 VJ⌧1K⇢}

[ {(W , (;, inr v1), (;, inr v2)) | (W , (;, v1), (;, v2)) 2 VJ⌧2K⇢}
VJ⌧1 ! ⌧2K⇢ = {(W , (;,�x.{e})) | 8v W 0.

W @; W 0
^ (W 0, (;, v)) 2 VJ⌧1K⇢

=) (W 0, (;, [x 7!v]e)) 2 EJ⌧2K⇢}
VJref ⌧K⇢ = {(W , (;, `1), (;, `2)) | W . (`1, `2) = bVJ⌧K⇢cW .k}

VJ8↵.⌧K⇢ = {(W , (;,�.e1), (;,�.e2)) | 8R 2 UnrTyp, W 0.
W @;,; W 0 =) (W 0, (;, e1), (;, e2)) 2 EJ⌧K⇢[↵ 7!R]}

VJ↵K⇢ = ⇢(↵)
VJunitK· = {(W , (;, ()), (;, ()))}
VJboolK⇢ = {(W , (;, 0), (;, 0))}

[ {(W , (;, n1), (;, n2)) | n1 6= 0 ^ n2 6= 0}
VJintK· = {(W , (;, n), (;, n)) | n 2 Z}
VJ⌧1–# ⌧2K· = {(W , (;,� x{e})) | 8� v W 0.

W @; W 0
^ (W 0, (�, v)) 2 VJ⌧1K·

=) ((W 0.k,W 0. ,W 0.⇥ ] ` 7! �),
(;, [x 7!guard(v, `)]e)) 2 EJ⌧2K·}

VJ⌧1– ⌧2K· = {(W , (�,� a .{e})) |
8�0 f1 v W 0.W @� W 0

^ (W 0, (�0, v)) 2 VJ⌧1K·
^� \ �0 = ; ^ f /2 � ] �0

] flags(W 0)
=) (W 0, (� ] �0

] {f }, [a 7!protect(v, f )]e))
2 EJ⌧2K·}

VJ!⌧ K· = {(W , (;, v1), (;, v2)) | (W , (;, v1), (;, v2)) 2 VJ⌧ K·}
VJ⌧1 ⌦ ⌧2K· = {(W , (�1 ] �0

1, (v1a, v2a)), (�2 ] �0
2, (v1b, v2b)))

| (W , (�1, v1a), (�2, v1b)) 2 VJ⌧1K·
^(W , (�0

1, v2a), (�
0
2, v2b)) 2 VJ⌧2K·}

VJ⌧1&⌧2K· = {(W , (�1, (� .{e1a},� .{e2a})),
(�2, (� .{e1b},� .{e2b})))

| (W , (�1, e1a), (�2, e1b)) 2 EJ⌧1K·
^(W , (�1, e2a), (�2, e2b)) 2 EJ⌧2K·}

EJ⌧K⇢ = {(W , (�, e)) | freevars(e) = ; ^

8�r,H:W , e0, H0, j < W .k. �r#� ^ �r ] � : W^

h�r ] flags(W ) ] �,H, ei
j99K h�0,H0, e0i 9

=) e0 = fail Conv _ (9�f �g W 0.
�0 = �r ] flags(W 0) ] �f ] �g

^ W v�r W 0
^ H0 : W 0

^ (W 0, (�f , e0)) 2 VJ⌧K⇢)}

(k, ,⇥) v� (j, 0,⇥0) , (j, 0,⇥0) 2 Worldj ^

j  k ^ �#flags(k, ,⇥) ^ �#flags(j, 0,⇥0)
^ 8` 2 dom( ).b (`)cj =  0(`) ^

8` 2 dom(⇥).(`) 2 dom(⇥0)^
(⇥(`) = used =) ⇥0(`) = used)
^ (⇥(`) = � =) ⇥0(`) = (used _ �))

Figure 5.13: MiniML & A� Value and Expression Relation (static).
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Then, by applying (W , (;, e+), (;, e+)) 2 EJ⌧K·, we find that either e0
1
=

fail Conv or there exist �00,H00
2, v2 such that h�0

2 ] flags(W , 2),H0
2, e

0
2
i

⇤99K
h�00,H00

2, v2i and e0
1
and v2 are in the value relation with some world and

sets of static flags. Ergo, since expressions in the value relation are values,
e0
1
is a value. Finally, since e0

1
being a value implies e0 = Z(e0

1
), we find that

e0 is a value.

Theorem 5.0.40 (Type Safety for A�). For any A� term e where
·; ·; ·; · ` e : ⌧ and for any heap H, if hH, e+i

⇤
! hH0, e0i, then we know from

the logical relation that either e0 = fail Conv, e0 is a value, or there exist
H00, e00 such that hH0, e0i ! hH00, e00i.

Proof. This proof is identical to that of MiniML.

Note that to prove our type safety theorems, Theorems 5.0.39 and 5.0.40
we used Lemma B.2.20 which states that, if hH, ei

⇤
! hH0, e0i 9, then for

any �, h�,H, ei
⇤99K h�0

1,H
0
1, e

0
1
i 9. This lemma is necessary because the

given assumption of the type safety theorem is that the configuration hH, ei
steps under the normal operational semantics, but to apply the expression
relation, we need that a corresponding configuration steps to an irreducible
configuration under the phantom operational semantics.

Although our phantom flag realizability model was largely motivated by
e�ciency concerns with the dynamic enforcement of a�nity, more broadly,
it demonstrates how one can build complex static reasoning into the model
even if such reasoning is absent from the target. Indeed, the actual target
language, which source programs are compiled to and run in, has not changed;
the augmentations exist only in the model. In this way, the preservation
of source invariants is subtle: it is not that the types actually exist in the
target (via runtime invariants or actual target types), but rather that the
operational behavior of the target is exactly what the type interpretations
characterize.



6
CASE STUDY : MEMORY MANAGEMENT AND
POLYMORPHISM

Our final case study for value interoperability considers how MiniML, whose
references are garbage collected, can interoperate with core L3, a language
with safe strong updates despite memory aliasing, supported via linear
capabilities (Morrisett et al., 2005; Ahmed et al., 2007). This case study
primarily highlights how di↵erent memory management strategies can in-
teroperate safely, in particular, that manually managed linear references
can be converted to garbage-collected references without copying. This is of
particular interest as more low-level code is written in Rust, a language with
an ownership discipline on memory that similarly could allow safe transfer
of memory to garbage-collected languages.
We also use this case study to explore how polymorphism/generics in

one language can be used, via a form of interoperability, from the other.
This is interesting because significant e↵ort has gone into adding generics
to languages that did not originally support them, in order to more easily
build certain re-usable libraries.1 While we are not claiming that inter-
operability could entirely replace built-in polymorphism, sound support
for cross-language type instantiation and polymorphic libraries presents a
possible alternative, especially for smaller, perhaps more special-purpose,
languages. This would allow us to write something like:

mapL(�x : int.x + 1)Mhinti!hintiL[1, 2, 3]Mlist hinti

where the blue language supports polymorphism, and has a generic map

function, while the pink language does not. Of course, since convertibility
is still driving this, in addition to using a concrete intlist, [1, 2, 3], as
above, the language without polymorphism could convert entirely di↵erent
(non-list) concrete representations into similar polymorphic ones — i.e.,
implementing a sort of polymorphic interface at the boundary. For example,
rather than an intlist (or a stringlist), in the example above, one could
start with an intarray or intbtree, or any number of other traversable
data structures that could be converted to list int (or any list ↵).

languages We present the syntax of L3 and MiniML, augmented with
forms for interoperability, in Figure 6.1. Their static semantics are in

1 e.g., Java 1.5/5, C# 2.0 (Kennedy and Syme, 2001) and more recently, in the Go
programming language

76
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L3

Type ⌧ ::= unit | bool | ⌧ ⌦ ⌧ | ⌧ ( ⌧ | !⌧
| ptr ⇣ | cap ⇣ ⌧ | 8⇣.⌧ | 9⇣.⌧

Value v ::= �x : ⌧.e | () | B | (v, v) | !v | ⇤⇣.e | p⇣, vq
MiniML
Expr. e ::= v | x | (e, e) | e e | let () = e in e | if e e e

| let (x, x) = e in e | let !x = e in e | dupl e
| drop e | new e | free e | swap e e e | e [⇣]
| p⇣, eq | let p⇣, xq = e in e | LeM⌧ | hei⌧

Duplicable = {unit,bool,ptr ⇣, !⌧}

Type ⌧ := ↵ | unit | ⌧ ! ⌧ | 8↵.⌧ | ref ⌧ | h⌧ i
Expression e := x | () | �x : ⌧.e | ⇤↵.e | e e | e [⌧ ] | ref e | !e | e := e | LeM⌧

Figure 6.1: Syntax for L3 and MiniML.

Figures 6.2 and 6.3 respectively. L3 has linear capability types cap ⇣ ⌧
(capability for abstract location ⇣ storing data of type ⌧ ), unrestricted
pointer types ptr ⇣ to support aliasing, and location abstraction (⇤⇣.e :
8⇣.⌧ and p⇣, vq : 9⇣.⌧ ). The key design idea behind L3 is that the
pointer can be separated from the capability and passed around in the
program separately. At runtime, the capabilities will be erased, but the
static discipline only allows pointers to be used with their capabilities (tied
together with the type variables ⇣), and requires capabilities to be used
linearly. This enables safe in-place updates and low-level manual memory
management while still supporting some flexibility in terms of pointer
manipulation.

We highlight the key instructions here. new allocates memory and returns
an existential package containing a capability and pointer (9⇣.cap ⇣ ⌧ ⌦ ptr ⇣).
swap takes a matching capability (cap ⇣ ⌧1) and pointer ptr ⇣ and a value
(of a possibly di↵erent type ⌧2) and replaces what is stored, returning the
capability and old value cap ⇣ ⌧2 ⌦ ⌧1. Note that since capabilities record
the type of what is in the heap and are unique, strong updates are safe. Fi-
nally, free takes a package of a capability and pointer (9⇣.cap ⇣ ⌧ ⌦ ptr ⇣)
and frees the memory, consuming both in the process and returning what
was stored there—any lingering pointers are harmless, as the necessary
capability is now gone.

We compile both L3 and MiniML to an extension of the Scheme-like target
LCVM that we used in the previous case study (see Figure 6.6 for L3 and
Figure 6.7 for MiniML). The syntax of LCVM is shown in Figure 6.4, and
it adds manual memory allocation to the version used in the previous case
study. Its operational semantics is given in Figure 6.5. Whereas previously,
we only had alloc, we now have free (which will error on a garbage-collected
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�;�;�;x : ⌧ ` x : ⌧

�;�;�;�,x : ⌧1 ` e : ⌧2

�;�;�;� ` �x : ⌧1e : ⌧1 ( ⌧2

�;�;�;�1 ` e1 : ⌧1 ( ⌧2 �;�;�;�2 ` e2 : ⌧1

�;�;�;�1 ] �2 ` e1 e2 : ⌧2 �;�;�;; ` () : unit

�;�;�;�1 ` e1 : unit �;�;�;�2 ` e2 : ⌧

�;�;�;�1 ] �2 ` let () = e1 in e1 : ⌧ �;�;�;; ` B : bool

�;�;�;�1 ` e1 : bool �;�;�;�2 ` e2 : ⌧ �;�;�;�2 ` e3 : ⌧

�;�;�;�1 ] �2 ` if e1 e2 e3 : ⌧

�;�;�;�1 ` e1 : ⌧1 �;�;�;�2 ` e2 : ⌧2

�;�;�;�1 ] �2 ` (e1, e2) : ⌧1 ⌦ ⌧2

�;�;�;�1 ` e1 : ⌧1 ⌦ ⌧2 �;�;�;�2,x1 : ⌧1,x2 : ⌧2 ` e2 : ⌧

�;�;�;�1 ] �2 ` let (x1, x2) = e1 in e2 : ⌧

�;�;�; !� ` v : ⌧

�;�;�; !� ` !v : !⌧

�;�;�;�1 ` e1 : !⌧1 �;�;�;�2,x : ⌧1 ` e2 : ⌧2

�;�;�;�1 ] �2 ` let !x = e1 in e2 : ⌧2

�;�;�;� ` e : !⌧

�;�;�;� ` dupl e : !⌧ ⌦ !⌧

�;�;�;� ` e : !⌧

�;�;�;� ` drop e : unit

�;�;�;� ` e : ⌧

�;�;�;� ` new e : 9⇣.cap ⇣ ⌧ ⌦ !ptr ⇣

�;�;�;� ` e : 9⇣.cap ⇣ ⌧ ⌦ !ptr ⇣

�;�;�;� ` free e : 9⇣.⌧

�;�;�;�1 ` e1 : cap ⇣ ⌧1 �;�;�;�2 ` e2 : ptr ⇣ �;�;�;�3 ` e3 : ⌧3

�;�;�;�1 ] �2 ] �3 ` swap e1 e2 e3 : cap ⇣ ⌧3 ⌦ ⌧1

�;�;�, ⇣;� ` e : ⌧

�;�;�;� ` ⇤⇣.e : 8⇣.⌧
�;�;�;� ` e : 8⇣.⌧ ⇣0

2 �

�;�;�;� ` e [⇣0] : [⇣ 7! ⇣0]⌧

�;�;�;� ` e : [⇣ 7! ⇣0]⌧ ⇣0
2 �

�;�;�;� ` p⇣0, eq : 9⇣.⌧

�;�;�;�1 ` e1 : 9⇣.⌧1 �;�;�, ⇣;�2,x : ⌧1 ` e2 : ⌧2 FLV (⌧2) ✓ �

�;�;�;�1 ` let p⇣, xq = e1 in e2

�; !�;�;� ` e : ⌧ ⌧ ⇠ ⌧

�;�;�; !� ` LeM⌧ : ⌧

Figure 6.2: Static semantics for L3.
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x : ⌧ 2 �

�; !�;�;� ` x : ⌧ �; !�;�;� ` () : unit

�; !�;�;�, x : ⌧1 ` e : ⌧2

�; !�;�;� ` �x : ⌧1.e : ⌧1 ! ⌧2

�; !�;�;� ` e1 : ⌧1 ! ⌧2 �; !�;�;� ` e2 : ⌧1

�; !�;�;� ` e1 e2 : ⌧2

�; !�;�,↵;� ` e : ⌧

�; !�;�;� ` ⇤↵.e : 8↵.⌧

�; !�;�;� ` e : 8↵.⌧2

�; !�;�;� ` e [⌧1] : [↵ 7! ⌧1]⌧2

�; !�;�;� ` e : ⌧

�; !�;�;� ` ref e : ref ⌧

�; !�;�;� ` e : ref ⌧

�; !�;�;� ` !e : ⌧

�; !�;�;� ` e1 : ref ⌧ �; !�;�;� ` e2 : ⌧

�; !�;�;� ` e1 := e2 : unit

�;�;�; !� ` e : ⌧ ⌧ ⌧

�; !�;�;� ` LeM⌧ : ⌧

Figure 6.3: Static semantics for MiniML.

location), an instruction (gcmov) to convert a manually managed location
to garbage collected, and an instruction (callgc) to explicitly invoke the
garbage collector. The last allows the compiler to decide where the GC can
intercede (before allocation, in compiled code), and in doing so simplifies
our model slightly. The memory management itself is captured in our heap
definition, which allows the same location names to be used as either GC’d
(
gc
7!) or manually managed (

m
7!), and re-used after garbage collection or

manual free. Dereference (!e) and assignment (e := e) work on both types
of reference (failing, of course, if it is manually managed and has been
freed). This strategy of explicitly invoking the garbage collector and using a
single pool of locations retains significant challenging aspects about garbage
collectors while remaining simple enough to expose the interesting aspects
of interoperation.

A few more detailed notes on the operational semantics of the target, given
in Figure 6.5. Consider the third to last evaluation rule: Let H : MHeap
denote that H contains only mappings of the form `

m
7! v and let H : GCHeap

denote that H contains only mappings of the form `
gc
7! v.

Next, let FL(e) and FL(K[·]) be the set of locations that appear free in
e and K, respectively. Then, we say that a location ` is directly reachable
from a location `0 in the heap H if `0 2 dom(H) and ` 2 FL(H(`0)). We say
that ` is reachable from `0 in H if one can construct a sequence of locations
`0 = `0, `1, `2, . . . , `n = ` where `i is directly reachable from `i�1 in H for all
1  i  n. (Note that, for any location ` and heap H, ` is reachable from `
in H because we can construct the singleton sequence `0 = `.)
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Expressions e := () | Z | ` | x | (e, e) | fst e | snd e | inl e | inr e | if e {e} {e}
| match e x{e} y{e} | let x = e in e | �x{e} | e e | ref e
| alloc e | free e | callgc | gcmov e | !e | e := e | fail c

Values v ::= () | Z | ` | (v, v) | �x.e
Error Code c ::= Type | Conv | Ptr

Heap H ::= `
gc
7!v, . . . | `

m
7!v, . . .

Evaluation Context K ::= [·] | (K, e) | (v,K) | inl K | inr K | match K x{e} y{e}
| if K {e} {e} | let x = K in e | K e | v K | ref K | alloc K
| free K | gcmov K | !K | K := e | v := K

Figure 6.4: Syntax for LCVM.

Finally, let reachablelocs(H,L) be the set of all locations in dom(H)
reachable from L in H. (Note that L ✓ reachablelocs(H,L) by the previous
parenthetical obversation.)

Using the above definitions, we can define a step on whole programs
that performs garbage collection. This step is indexed by a set of locations
L denoting the locations that must be preserved and can not be garbage
collected. The step shrinks the heap non-deterministically, ensuring that
garbage-collectable locations which are reachable from either the program or
L are not removed from the heap. Finally, we also allow whole programs to
take steps according to Z) and to lift fail c errors out of evaluation contexts.

Returning to our source languages, as in the previous case study, we have
boundary terms, LeM⌧ and LeM⌧ , for converting a term and using it in the
other language. Now, we also add new types h⌧ i, pronounced “foreign type”,
and allow conversions from ⌧ to h⌧ i for opaquely embedding2 types for use
in polymorphic functions.

If a language supports polymorphism, then its type abstractions should
be agnostic to the types that instantiate them, allowing them to range
over not only host types, but indeed any foreign types as well. Doing so
should not violate parametricity. However, the non-polymorphic language
may need to make restrictions on how this power can be used, so as to
not allow the polymorphic language to violate its invariants. To make
this challenge material, our non-polymorphic language in this case study
has linear resources (heap capabilities) that cannot, if we are to maintain
soundness, be duplicated. This means, in particular, that whatever interop-
erability strategy we come up with cannot allow a linear capability from L3

to flow over to a MiniML function that duplicates it, even if such function is
well-typed (and parametric) in MiniML.

2 Similar to “lumps” in Matthews-Findler(Matthews and Findler, 2007), though they give
a single lump type for all foreign types, i.e., they would have only hi, rather than h⌧ i.
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hH, fst (v, v0)i Z) hH, vi

v 6= (v1, v2)

hH, fst vi Z) hH, fail Typei

hH, snd (v0, v)i Z) hH, vi

v 6= (v1, v2)

hH, snd vi Z) hH, fail Typei

hH, if 0 {e1} {e2}i Z) hH, e1i

n 6= 0

hH, if n {e1} {e2}i Z) hH, e2i

v 62 Z
hH, if v {e1} {e2}i Z) hH, fail Typei

hH,match inl v x{e1} y{e2}i Z) hH, [x 7!v]e1i

hH,match inr v x{e1} y{e2}i Z) hH, [y 7!v]e2i

v 62 {inr v0, inl v0}

hH,match v x{e1} y{e2}i Z) hH, fail Typei hH, let x = v in ei Z) hH, [x 7!v]ei

hH,�x{eb} vi Z) hH, [x 7!v]ebi

v 6= �x{e}

hH, v v0i Z) hH, fail Typei

` /2 dom(H)

hH, ref vi Z) hH[`
gc
7!v], `i

` /2 dom(H)

hH, alloc vi Z) hH[`
m
7!v], `i

`
m
7!v 2 H

hH, free `i Z) hH \ `, ()i

`
gc
7!v 2 H

hH, free `i Z) hH, fail Ptri

` 62 dom(H)

hH, free `i Z) hH, fail Ptri

`
m
7!v 2 H

hH, gcmov `i Z) hH[`
gc
7!v], `i

H[`] = v

hH, !`i Z) hH, vi

` 62 dom(H)

hH, !`i Z) hH, fail Ptri

v 6= `

hH, !vi Z) hH, fail Typei

`
m
7! v 2 H

hH, ` := v0i Z) hH[`
m
7!v0], ()i

`
gc
7! v 2 H

hH, ` := v0i Z) hH[`
gc
7!v0], ()i

` /2 dom(H)

hH, ` := v0i Z) hH, fail Ptri

v 6= `

hH, v := v0i Z) hH, fail Typei

Hgc : GCHeap Hm : MHeap
reachablelocs(Hgc ] Hm, dom(Hm) [ FL(K[·]) [ L) \ dom(Hgc) ✓ dom(H0

gc)
H0

gc ✓ Hgc

hHgc ] Hm,K[callgc]i !L hH0
gc ] Hm,K[()]i

hH, ei Z) hH0, e0i

hH,K[e]i !L hH0,K[e0]i

K 6= [·]

hH,K[fail c]i !L hH, fail ci

Figure 6.5: Operational semantics for LCVM.
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x  x
�x : ⌧.e  �x.e+

e1 e2  e1+ e2+

()  ()
let () = e1 in e2  let = e1+ in e2+

true  0
false  1
if e1 e2 e3  if e1+ e2+ e3+

(e1, e2)  (e1+, e2+)
let (x1, x2) = e1 in e2  let p = e1+ in let x1 = fst p in let x2 = snd p in e2+

!v  v+

let !x = e1 in e2  let x = e1+ in e2+

dupl e  let x = e+ in (x, x)
drop e  let = e+ in ()
new e  let = callgc in let x` = alloc e+ in ((), x`)
free e  let x = e+ in let xr =!(snd x) in let = free (snd x) in xr
swap ec ep ev  let xp = ep+ in let = ec in let xv0 = !xp in

let = (xp := ev+) in ((), xv0)
⇤⇣.e  � .e+

e [⇣]  e+ ()
p⇣, eq  e+

let p⇣, xq = e1 in e2  let x = e1+ in e2+

LeM⌧  C⌧ 7!⌧ (e+)

Figure 6.6: Compiler for L3.

x  x
()  ()
�x : ⌧.e  �x.e+

e1e2  e1
+e2

+

⇤↵.e  � .e+

e [⌧ ]  e+()
ref e  let = callgc in ref e+

!e  !e+

e1 := e2  e1
+ := e2

+

LeM⌧  C⌧ 7!⌧ (e+)

Figure 6.7: Compiler for MiniML.
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convertibility The first conversion that we want to highlight is
between references. In L3, pointers have capabilities that convey ownership,
and thus to convert a pointer we also need the corresponding capability.
For brevity, we may use REF ⌧ to abbreviate a capability+pointer package
type.

C⌧ 7!⌧ ,C⌧ 7!⌧ : ⌧ ⇠ ⌧

CREF ⌧ 7!ref ⌧ ,Cref ⌧ 7!REF ⌧ : ref ⌧ ⇠ 9⇣.cap ⇣ ⌧ ⌦ !ptr ⇣

CREF ⌧ 7!ref ⌧ (e) , let x = snd e in
let = (x := C⌧ 7!⌧ (!x)) in gcmov x

Cref ⌧ 7!REF ⌧ (e) , let x = alloc C⌧ 7!⌧ (!e) in ((), x)

The glue code itself is quite interesting: going from L3 to MiniML, since
the L3 type system guarantees that the capability in the capability+pointer
package being converted is the only capability to this pointer, we can safely
directly convert the pointer into a MiniML pointer with gcmov after in-place
replacing the contents with the result of converting.3 Going the other
direction, from MiniML to L3, there is no way for us to know if there are
other aliases to the reference, so we can’t re-use the pointer. While we could
simply disallow this conversion, and error if it were attempted, instead we
copy and convert data into a freshly allocated manually managed location
(note how, in the target, capabilities are erased to unit). In this case, as in
many, there are multiple sound ways of converting, and it may be that a
particular one makes more sense for your use case: we took the position that
it was useful to get a copy of the data, unaliased, but perhaps a language
designer would rather force the pointer to be dereferenced on the MiniML

side and the underlying data converted.

We account for interoperability of polymorphism in two parts. First, we
have a foreign type, h⌧ i, which embeds an L3 type into the type grammar of
MiniML. This foreign type, like any MiniML type, can be used to instantiate
type abstractions, define functions, etc, but MiniML has no introduction or
elimination rules for it—terms of foreign type must come across from, and
then be sent back to, L3. These come by way of the conversion rule h⌧ i ⇠ ⌧ ,
which allow terms of the form LeMh⌧ i (to bring an L3 term to MiniML) and
LeM⌧ (the reverse). Moreover, the conversion rule for foreign types restricts
⌧ to a safe Duplicable subset of types, but has no runtime consequences:

⌧ 2 Duplicable

Ch⌧i7!⌧ ,C⌧ 7!h⌧i : h⌧ i ⇠ ⌧

Ch⌧i7!⌧ (e) , e
C⌧ 7!h⌧i(e) , e

3 a less general rule that had a di↵erent premise might not need to convert, e.g., if the data
was already compatible—see the case study in Chapter 4 for more details
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To prove soundness we need to show that Duplicable types are indeed
safe to embed. The soundness condition depends on the expressive power of
the two languages when viewed through the lens of polymorphism. In our
case, since the non-polymorphic language is linear but the polymorphic one
is not, we need to show that a Duplicable type can be copied (i.e., none
of its values own linear capabilities)—this includes unit and bool, but also
ptr ⇣ and any type of the form !⌧ . Now, consider examples using foreign
types:

(⇤↵.�x:↵.�y:↵.y)[hbooli] LtrueMhbooli LfalseMhbooli (1)

(�x : BOOL.x)LtrueMBOOL where BOOL , 8↵.↵ ! ↵ ! ↵ (2)

In (1), the leftmost expression is a polymorphic MiniML function that
returns the second of its two arguments. It is instantiated with a foreign type,
hbooli. Next, two terms of type bool in L3 are embedded via the foreign
conversion, L·Mhbooli, which requires that bool 2 Duplicable. Not only
does this mechanism allow L3 programmers to use polymorphic functions,
but also MiniML programmers to use new base types. Of course, we could
also convert the actual values, as in (2). To do so, we can define conversions
between Church booleans in MiniML (which has no booleans) and ordinary
booleans in L3:

8↵.↵ ! ↵ ! ↵ ⇠ bool

CBOOL 7!bool(e) , e () 0 1
Cbool7!BOOL(e) , if0 e {⇤↵.�x:↵.�y:↵.x}

{⇤↵.�x:↵.�y:↵.y}

semantic model In Figure 6.8, we present the logical relation that
we use to prove our conversions and entire languages sound. Supporting
definitions relating to worlds and heaps are given in Figure 6.9.

Our model is inspired by that of core L3 (Ahmed et al., 2007), though
ours is significantly more complex to account for garbage collection and
interoperation with MiniML. The key is a careful distinction between owned
(linear) manual memory, which is local and described by heap fragments
associated with terms, and garbage-collected memory, which is global and
described by the worldW . Since memory can be freed (via garbage collection
or manual free), reused, and moved from manual memory to garbage-
collected memory, there are several constraints on how heap fragments and
worlds may evolve so we can ensure safe memory usage.

With that in mind, our value interpretation of source types VJ⌧K⇢ are
sets of worlds and related heap-fragments-and-values (H, v), where the heap
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VJ↵K⇢ = ⇢.F(↵)
VJunitK⇢ = {(W , (;, ()), (;, ()))}
VJ⌧1 ! ⌧2K⇢ = {(W , (;,�x1.e1), (;,�x2.e2)) |

8W 0, v1, v2.W v• ;,;,e1,e2W
0
^ (W 0, (;, v1), (;, v2)) 2 VJ⌧1K⇢ =)

(W 0, (;, [x1 7! v1]e1), (;, [x2 7! v2]e2)) 2 EJ⌧2K⇢}
VJ8↵.⌧K⇢ = {(W , (;,� .e1), (;,� .e2)) |

8R 2 RelT,W 0.W @• ;,;,e1,e2W
0 =) (W 0, (;, e1), (;, e2)) 2 EJ⌧K⇢[F(↵) 7!R]}

VJref ⌧K⇢ = {(W , (;, `1), (;, `2)) | W . (`1, `2) = bVJ⌧K⇢cW .k}

VJh⌧ iK⇢ = VJ⌧ K⇢
VJunitK⇢ = {(W , (;, ()), (;, ()))}
VJboolK⇢ = {(W , (;, b), (;, b)) | b 2 {0, 1}}
VJ⌧1 ⌦ ⌧2K⇢ = {(W , (H1l ] H1r, (v1l, v1r)), (H2l ] H2r, (v2l, v2r))) |

(W , (H1l, v1l), (H2l, v2l)) 2 VJ⌧1K⇢^
(W , (H1r, v1r), (H2r, v2r)) 2 VJ⌧2K⇢}

VJ⌧1 ( ⌧2K⇢ = {(W , (H1,�x1.e1), (H2,�x2.e2)) | 8W 0,H1v, v1,H2v, v2.
W v• H1,H2,e1,e2W

0
^ (W 0, (H1v, v1), (H2v, v2)) 2 VJ⌧1K⇢

=) (W 0, (H1 ] H1v, [x1 7! v1]e1), (H2 ] H2v, [x2 7! v2]e2)) 2 EJ⌧2K⇢}
VJ!⌧ K⇢ = {(W , (;, v1), (;, v2)) | (W , (;, v1), (;, v2)) 2 VJ⌧ K⇢}
VJptr ⇣K⇢ = {(W , (;, `1), (;, `2)) | ⇢.L3(⇣) = (`1, `2)}
VJcap ⇣ ⌧ K⇢ = {(W , (H1 ] {`1 7! v1}, ()), (H2 ] {`2 7! v2}, ())) |

⇢.L3(⇣) = (`1, `2) ^ (W , (H1, v1), (H2, v2)) 2 VJ⌧ K⇢}
VJ8⇣.⌧ K⇢ = {(W , (H1,� .e1), (H2,� .e2)) | 8`1`2. (W , (H1, e1), (H2, e2)) 2 EJ⌧ K⇢[L3(⇣) 7!(`1,`2)]}

VJ9⇣.⌧ K⇢ = {(W , (H1, v1), (H2, v2) | 9`1`2. (W , (H1, v1), (H2, v2)) 2 VJ⌧ K⇢[L3(⇣) 7!(`1,`2)]}

EJ⌧K⇢ = {(W , (H1, e1), (H2, e2)) |
8L1,L2, v1,H1g+,H2g+ : W ,H1+ : MHeap,H1⇤.

(H1g+ ] H1 ] H1+, e1)
⇤
!L1 (H1⇤, v1) 9L1

=) 9H0
1,H

0
1g.8H2+ : MHeap.9H0

2,W
0,H0

2g, v2.
H1⇤ = H0

1g ] H0
1 ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (H0
1, v1), (H

0
2, v2)) 2 VJ⌧K⇢ ^

(H2g+ ] H2 ] H2+, e2)
⇤
!L2 (H0

2g ] H0
2 ] H2+, v2) 9L2

^ H10 = H20 = ;}

Note that the parts highlighted in MiniML colors only apply to types ⌧ from MiniML,
not types ⌧ from L3.

�locs(⇢)⌘ {x⇣ 7! (`1, `2) | ⇣ 7! (`1, `2) 2 ⇢}

GJ·K⇢ = {(W , ·)}
GJ�, x : ⌧K⇢ = {(W , �[x 7! (v1, v2)]) | (W , �) 2 GJ�K⇢ ^ (W , (;, v1), (;, v2)) 2 VJ⌧K⇢}
GJ·K⇢ = {(W , ;, ;, ·)}
GJ�,x : ⌧ K⇢ = {(W ,H1 ] H1x,H2 ] H2x, �[x 7! (v1, v2)]) |

(W ,H1,H2, �) 2 GJ�K⇢ ^ (W , (H1x, v1), (H2x, v2)) 2 VJ⌧ K⇢}
DJ·K = {·}

DJ�,↵K = {⇢[↵ 7! R] | ⇢ 2 DJ�K ^R 2 RelT}
DJ�, ⇣K = {⇢[⇣ 7! (`1, `2)] | ⇢ 2 DJ�K}

�;�;�;� ` e1 � e2 : ⌧ ⌘

8⇢, �L, ��.⇢.L3 2 DJ�K ^ ⇢.F 2 DJ�K ^ (;, ;, �L.�) 2 GJ�K⇢ ^ �� 2 GJ�K⇢ ^ �L.� = �locs(⇢.L3)
=) (;, �1

L(�
1
�(e1

+)), ;, �2
L(�

2
�(e2

+))) 2 EJ⌧K⇢
�;�;�;� ` e1 � e2 : ⌧ ⌘

8⇢, ��, �L,H1,H2.⇢.F 2 DJ�K ^ ⇢.L3 2 DJ�K ^ �� 2 GJ�K⇢ ^ (H1,H2, �L.�) 2 GJ�K⇢ ^ �L.� = �locs(⇢.L3)
=) (H1, �1

�(�
1
L(e1

+)),H2, �2
�(�

2
L(e2

+))) 2 EJ⌧ K⇢

Figure 6.8: Logical Relation for MiniML and L3.
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Worldn = {(k, ) | k < n ^  ⇢ HeapTyk ^ dom( ) is a bijection}

World =
[

n

Worldn

HeapTyn = {(`1, `2) 7! Typn, . . .}

Atomn = {(W , (H1, e1), (H2, e2)) | W 2 Worldn ^ dom(H1)#dom((W . )1)
^dom(H2)#dom((W . )2)
^ H1 : MHeap ^ H2 : MHeap}

AtomV aln = {(W , (H1, v1), (H2, v2)) 2 Atomn}

Atom =
[

n

Atomn

AtomVal =
[

n

AtomValn

bRcj = {(W , (H1, e1), (H2, e2)) | (W , (H1, e1), (H2, e2)) 2 R ^W .k < j}

b cj = {(`1, `2) 7! bRcj | (`1, `2) 7! R 2  }

H = {`
m
7! v, . . . } ] {`

gc
7! v, . . . }

H1 : GCHeap ^ H2 : GCHeap ^

8(`1, `2) 7! R 2 W . . 9v1, v2.`1
gc
7! v1 2 H1 ^ `2

gc
7! v2 2 H2 ^ (BW , (;, v1), (;, v2)) 2 R

j  k
^ L.1#dom(( 0)1) ^ L.2#dom(( 0)2)
^ 8(`1, `2) 2 ⌘. 0(`1, `2) = b (`1, `2)cj

W1 @L,⌘ W2 ,W1.k > W2.k ^W1 vL,⌘ W2

W1 v• H1,H2,e1,e2W2 ,W1 v(dom(H1),dom(H2)),⌘ W2

⌘ = rchgclocs(W1,FL(cod(H1)) [ FL(e1),FL(cod(H2)) [ FL(e2))

Typn = {R 2 2AtomV aln | 8(W , (H1, v1), (H2, v2)) 2 R. 8W 0. W v• H1,H2,v1,v2W
0

=) (W 0, (H1, v1), (H2, v2)) 2 R}

Typ = {R 2 2AtomV al
| 8k.bRck 2 Typk}

Figure 6.9: Supporting definitions for Logical Relation for MiniML and L3.
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fragment H paired with value v is the portion of the manually managed
heap that v owns.

The relational substitution ⇢ maps type variables ↵ to arbitrary type
interpretations R and location variables ⇣ to concrete locations `. Since
MiniML cannot own manual (linear) memory, all cases of VJ⌧K⇢ have empty ;

heap fragments. However, during evaluation, memory could be allocated and
subsequently freed so the expression relation does not have that restriction.
In L3, pointer types ptr ⇣ do not own locations, so they can be freely copied.
Rather, linear capabilities cap ⇣ ⌧ convey ownership of the location ` that
⇣ maps to and the heap fragment H pointed to by `.

In the expression relation EJ⌧K⇢, we run the expression with a set of pinned
locations (L) that the garbage collector should not touch (which may come
from an outer context if we are evaluating a subterm), a garbage-collected
heap fragment that satisfies the world (Hg+), an arbitrary disjoint manually
allocated (MHeap) “rest” of the heap (Hr), composed with the owned
fragment (H). Then, assuming e terminates at v, we expect the following
four facts: (1) the “rest” heap Hr is unchanged, (2) the garbage-collected
portion Hg+ has been transformed to H0

g, (3) the owned portion H has been
transformed into H0, and (4) (W 0, (H0, v)) 2 VJ⌧ K⇢, where W 0 is a future
world the transformed GC’d portion of the heap H0

g must satisfy.s

Critical to the relation is world extension, written vL,⌘, which indicates
how our logical worlds can evolve over time. In typical logical relations
for state, the heap grows monotonically and no location ever has its type
change, which world extension captures. But, in our setting, the future
heap might have deallocated, overwritten, re-used memory (and re-used
it between the GC and manual allocation). We can’t just allow arbitrary
future states, however, as the semantics of types do dictate restrictions on
what has to happen in the heap. In particular, there are two sets of locations
that we need to keep careful track of; the rest can change freely. The first
are manually managed locations that the GC can’t disturb, which index L
captures. Those are generally just the owned locations of term that we are
currently running. The second are the garbage collected locations that we
must preserve in the heap, at the same type (but we can change the value
of), captured by ⌘. We also have a syntactic shorthand, denoted by v• , that
is indexed by the heap H and the expressions e. This syntactic shorthand is
defined so that L takes its manually managed locations from the domain of
H while ⌘ takes its garbage collected locations as the locations in the original
world that are present in either some value in the heap H or the expression
e. Finally, we often use rchgclocs in order to compute ⌘ when using world
extension; rchgclocs(W , S) is the set of locations in the world W that are
actually mentioned in the set S; i.e., rchgclocs(W , S) = dom(W ) \ S.

While our target supports dynamic failure (in the form of the fail term),
our logical relation rules out that possibility, ensuring that there are no
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errors from the source nor from the conversion. This is, of course, a choice we
made, which may be stronger than desired for some languages (and, indeed,
for our previous two case studies), but given our choice of conversions, it is
possible.
With the logical relation in hand, we can prove type soundness in the

same manner as for the previous two case studies. As before, we include
the lemma and theorem statements below, but defer the proofs, which are
quite mechanical, to Appendix C.
Our convertibility soundness result proves that our conversions above

between garbage-collected and manual references, as well as L3 booleans
and MiniML Church booleans (described above) are sound. We also show
that ⌧1 ! ⌧2 ⇠ !(!⌧1 ( ⌧2) assuming ⌧1 ⇠ ⌧1 and ⌧2 ⇠ ⌧2.

Theorem 6.0.1 (Convertibility Soundness). If ⌧A ⇠ ⌧B then for all ⇢,

1. 8(W , (H1, e1), (H2, e2)) 2 EJ⌧AK⇢. (W , (H1,C⌧A 7!⌧B
e1) , (H2,C⌧A 7!⌧B

e2)) 2
EJ⌧BK⇢; and

2. 8(W , (H1, e1), (H2, e2)) 2 EJ⌧BK⇢. (W , (H1,C⌧B 7!⌧A
e1) , (H2,C⌧B 7!⌧A

e2)) 2
EJ⌧AK⇢

Proof. See C.0.15.

Lemma 6.0.2 (Compat x).

�; !�;�;�, x : ⌧ ` x � x : ⌧

Proof. See C.0.16.

Lemma 6.0.3 (Compat ()).

�; !�;�;� ` () � () : unit

Proof. See C.0.17.

Lemma 6.0.4 (Compat �x : ⌧.e). If �; !�;�;�, x : ⌧1 ` e � e : ⌧2, then

�; !�;�;�, x : ⌧1 ` �x : ⌧1.e � �x : ⌧1.e : ⌧1 ! ⌧2

Proof. See C.0.18.

Lemma 6.0.5 (Compat e1 e2). If �; !�;�;� ` e1 � e1 : ⌧1 ! ⌧2 and
�; !�;�;� ` e2 � e2 : ⌧1, then

�; !�;�;� ` e1 e2 � e1 e2 : ⌧2

Proof. See C.0.19.
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Lemma 6.0.6 (Compat ⇤↵.e). If �; !�;�,↵;� ` e � e : ⌧ , then

�; !�;�;� ` ⇤↵.e � ⇤↵.e : 8↵.⌧

Proof. See C.0.20.

Lemma 6.0.7 (Compat e [⌧ ]). If �; !�;�;� ` e � e : 8↵.⌧2, then

�; !�;�;� ` e [⌧1] � e [⌧1] : [↵ 7! ⌧1]⌧2

Proof. See C.0.21.

Lemma 6.0.8 (Compat ref e). If �; !�;�;� ` e � e : ⌧ , then

�; !�;�;� ` ref e � ref e : ref ⌧

Proof. See C.0.22.

Lemma 6.0.9 (Compat !e). If �; !�;�;� ` e � e : ref ⌧ then

�; !�;�;� ` !e � !e : ⌧

Proof. See C.0.23.

Lemma 6.0.10 (Compat e := e). If �; !�;�;� ` e1 � e1 : ref ⌧ and
�; !�;�;� ` e2 � e2 : ⌧ then

�; !�;�;� ` e1 := e2 � e1 := e2 : unit

Proof. See C.0.24.

Lemma 6.0.11 (Compat LeM⌧ ). If �;�;�; !� ` e � e : ⌧ and ⌧ ⇠ ⌧ , then

�; !�;�;� ` LeM⌧ � LeM⌧ : ⌧

Proof. See C.0.25.

Lemma 6.0.12 (Compat x).

�;�;�;x : ⌧ ` x � x : ⌧

Proof. See C.0.26.

Lemma 6.0.13 (Compat �x : ⌧.e). If �;�;�;�,x : ⌧1 ` e � e : ⌧2, then

�;�;�;� ` �x : ⌧.e � �x : ⌧.e : ⌧1 ( ⌧2

Proof. See C.0.27.
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Lemma 6.0.14 (Compat e1 e2). If �;�;�;�1 ` e1 � e1 : ⌧1 ( ⌧2 and
�;�;�;�2 ` e2 � e2 : ⌧1 , then

�;�;�;�1 ] �2 ` e1 e2 � e1 e2 : ⌧2

Proof. See C.0.28.

Lemma 6.0.15 (Compat ()).

�;�;�;; ` () � () : Unit

Proof. See C.0.29.

Lemma 6.0.16 (Compat B). If b 2 B, then

�;�;�;; ` b � b : Bool

Proof. See C.0.30.

Lemma 6.0.17 (Compat let ()). If �;�;�;�1 ` e1 � e1 : Unit and
�;�;�;�2 ` e2 � e2 : ⌧ , then

�;�;�;�1 ] �2 ` let () = e1 in e2 � let () = e1 in e2 : ⌧

Proof. See C.0.31.

Lemma 6.0.18 (Compat if). If �;�;�;�1 ` e1 � e1 : Bool and
�;�;�;�2 ` e2 � e2 : ⌧ and �;�;�;�2 ` e3 � e3 : ⌧ , then

�;�;�;�1 ] �2 ` if e1 e2 e3 � if e1 e2 e3 : ⌧

Proof. See C.0.32.

Lemma 6.0.19 (Compat (e1, e2)). If �;�;�;�1 ` e1 � e1 : ⌧1 and
�;�;�;�2 ` e2 � e2 : ⌧2 , then

�;�;�;�1 ] �2 ` (e1, e2) � (e1, e2) : ⌧1 ⌦ ⌧2

Proof. See C.0.33.

Lemma 6.0.20 (Compat let (x1, x2)). If �;�;�;�1 ` e1 � e1 : ⌧1 ⌦ ⌧2
and �;�;�;�2,x1 : ⌧1,x2 : ⌧2 ` e2 � e2 : ⌧ , then

�;�;�;�1 ] �2 ` let (x1, x2) = e1 in e2 � let (x1, x2) = e1 in e2 : ⌧

Proof. See C.0.34.
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Lemma 6.0.21 (Compat !v). If �;�;�; !� ` v � v : ⌧ , then

�;�;�; !� ` !v � !v : !⌧

Proof. See C.0.35.

Lemma 6.0.22 (Compat let !x). If �;�;�;�1 ` e1 � e1 : !⌧1 and
�;�;�;�2,x : ⌧1 ` e2 � e2 : ⌧2 , then

�;�;�;�1 ] �2 ` let !x = e1 in e2 � let !x = e1 in e2 : ⌧2

Proof. See C.0.36.

Lemma 6.0.23 (Compat dupl e). If �;�;�;� ` e � e : !⌧ , then

�;�;�;� ` dupl e � dupl e : !⌧⌦!⌧

Proof. See C.0.37.

Lemma 6.0.24 (Compat drop e). If �;�;�;� ` e � e : !⌧ , then

�;�;�;� ` drop e � drop e : Unit

Proof. See C.0.38.

Lemma 6.0.25 (Compat new e). If �;�;�;� ` e � e : ⌧ , then

�;�;�;� ` new e � new e : 9⇣.cap ⇣ ⌧ ⌦ !ptr ⇣

Proof. See C.0.39.

Lemma 6.0.26 (Compat free e). If �;�;�;� ` e � e : 9⇣.cap ⇣ ⌧ ⌦ !ptr ⇣
, then

�;�;�;� ` free e � free e : 9⇣.⌧

Proof. See C.0.40.

Lemma 6.0.27 (Compat swap e). If �;�;�;�1 ` e1 � e1 : cap ⇣ ⌧1,
�;�;�;�2 ` e2 � e2 : ptr ⇣, and �;�;�;�3 ` e3 � e3 : ⌧3 , then

�;�;�;� ` swap e1 e2 e3 � swap e1 e2 e3 : cap ⇣ ⌧3 ⌦ ⌧1

Proof. See C.0.41.

Lemma 6.0.28 (Compat ⇤⇣.e). If �;�;�, ⇣;� ` e � e : ⌧ , then

�;�;�;� ` ⇤⇣.e � ⇤⇣.e : 8⇣.⌧

Proof. See C.0.42.
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Lemma 6.0.29 (Compat e [⇣0]). If �;�;�;� ` e � e : 8⇣.⌧ and ⇣0 2 �,
then

�;�;�;� ` e [⇣0] � e [⇣0] : [⇣ 7! ⇣0]⌧

Proof. See C.0.43.

Lemma 6.0.30 (Compat p⇣, eq). If �;�;�;� ` e � e : [⇣ 7! ⇣0]⌧ , then

�;�;�;� ` p⇣0, eq � p⇣0, eq : 9⇣.⌧

Proof. See C.0.44.

Lemma 6.0.31 (Compat let p⇣, xq). If �;�;�;�1 ` e1 � e1 : 9⇣.⌧1,
�;�;�, ⇣;�2,x : ⌧1 ` e2 � e2 : ⌧2 and FLV (⌧2) ✓ �, then

�;�;�;�1 ] �2 ` let p⇣, xq = e1 in e2 � let p⇣, xq = e1 in e2 : ⌧2

Proof. See C.0.45.

Lemma 6.0.32 (Compat LeM⌧ ). If �; !�;�;� ` e � e : ⌧ and ⌧ ⇠ ⌧ , then

�;�;�; !� ` LeM⌧ � LeM⌧ : ⌧

Proof. See C.0.46.

Lemma 6.0.33 (Fundamental Property). If �;�;�;� ` e : ⌧ , then
�;�;�;� ` e � e : ⌧ and if �;�;�;� ` e : ⌧ , then �;�;�;� ` e � e : ⌧ .

Proof. By induction on typing derivation, relying on the following compat-
ibility lemmas, which have to exist for every typing rule in both source
languages.

Theorem 6.0.34 (Type Safety for MiniML). If ·; ·; ·; · ` e : ⌧ , then
for any heap H, if (H, e+)

⇤
! ⇤(H0, e0), either there exist H00, e00 such that

(H0, e0) ! (H00, e00) or e0 is a vlaue.

Proof. By the fundamental property, since the environments under which e

is typechecked are empty, (·, (;, e+), (;, e+)) 2 EJ⌧K·.
Then, either (H0, e0) ! (H00, e00) or (H0, e0) is irreducible. If (H, e0) is

irreducible, we can apply the expression relation and find that there exists
a world W and expression v2 such that (W , (;, e0), (;, v2)) 2 VJ⌧K·. Since
expressions in the value relation are target values, this su�ces to show that
e0 is a value.

Theorem 6.0.35 (Type Safety for L3). If ·; ·; ·; · ` e : ⌧ , then for any heap
H, if (H, e+)

⇤
! ⇤(H0, e0), either there exist H00, e00 such that (H0, e0) ! (H00, e00)

or e0 is a vlaue.
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Proof. By the fundamental property, since the environments under which e
is typechecked are empty, (·, (;, e+), (;, e+)) 2 EJ⌧ K·.
Then, either (H0, e0) ! (H00, e00) or (H0, e0) is irreducible. If (H, e0) is irre-

ducible, we can apply the expression relation and find that there exists a
worldW , heaps H0

1,H
0
2, and an expression v2 such that (W , (H0

1, e
0), (H0

2, v2)) 2
VJ⌧ K·. Since expressions in the value relation are target values, this su�ces
to show that e0 is a value.



7
DISCUSS ION : VALUE INTEROPERAB IL ITY

7.1 asymmetric convertibility

Throughout this dissertation, we have presented convertibility as a symmetric
relation ⌧A ⇠ ⌧B, to mean that ⌧A and ⌧B are interconvertible via some
target-level glue code. We have shown how this setup can apply to many
di↵erent situations: even if two types are not isomorphic, the conversion can
fail in either direction. However, there is a downside to this approach: if trulyThus, we have

“partial type
equivalences” as

described in
(Dagand et al.,

2016).

only one direction should ever be possible, we defer errors when converting
in the other direction to runtime. We could instead implement the system
with a directed convertibility relation, ⌧A�⌧B . In that case, each conversion
would still admit the possibility of dynamic failure, and thus ⌧A ⇠ ⌧B can
be recovered by ⌧A�⌧B ^ ⌧B�⌧A. But the benefit is that if we never wanted
a particular direction to succeed (for example, converting garbage-collected
pointers to linear ones, as in Chapter 6), we could only provide one direction
and yield a static error in the other direction. Now, there is a slight usability
downside to the asymmetric approach: if higher-order values can cross the
boundary, then the direction of conversion that is needed switches with the
polarity of the type: i.e., to convert a function ⌧1 ! ⌧2 to ⌧ 01 ! ⌧ 02, we would
need ⌧ 01�⌧1 and ⌧2�⌧ 02. For a type like (⌧1 ! ⌧2) ! ⌧3, it becomes more
confusing, and perhaps the runtime errors would be more descriptive. But
an asymmetric presentation of our framework could account for both, and
all the underlying development would be identical.

precision There is another way that we could make the relations
asymmetric: have ⌧A�⌧B mean not that there is no conversion from ⌧B to
⌧A, but that errors can only occur in that conversion, and that ⌧A to ⌧B
will always succeed. In some ways, this is a reasonable proposal, because
only in artificially created scenarios have we found we want errors in both
directions. Rather, usually one type is more precise than the other, and
thus converting to the more precise type may fail, but converting from it
never will. This notion of type precision is of critical importance to gradual
typing, as it underlies the notion of the gradual guarantee (Siek et al., 2015)
or graduality (New and Ahmed, 2018; New et al., 2020). In our more general
interoperability setting, we haven’t yet discovered analogous theorems, so
making the convertibility relation capture precision doesn’t seem of value.
It’s possible that will change in the future!
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7.2 rust and unsafe

One of the most important features of the Rust programming language,
and the subject of the RustBelt research project (Jung et al., 2018), is
the unsafe language feature. unsafe allows a few things, but primarily,
dereferencing raw pointers, which clearly can violate invariants of Rust’s
type system if done incorrectly. This functionality is used to implement
data structures and code that would not otherwise typecheck, and the claim
is that it is better to have Rust and unsafe than to do the alternative:
link against C. But there are issues that make us question this. First, the
semantics of unsafe are still up for debate at the writing of this dissertation.
Indeed, the semantics of C are much better understood, as there have been
significant e↵orts to explain precise pointer provenance behavior. And, more
broadly, we wonder if a better approach than building the escape hatch
into the language, as with Rust unsafe, would be to have a separate proper
low-level language that had precise semantics and could be linked against.
One candidate is the Clight language defined within the CompCert project
(Leroy, 2009), which is a significant subset of the C programming language,
fully specified. A Rust compiler linking against Clight could rely on exactly
what behavior could occur, which would seem to be a benefit over as-yet
unclear semantics of unsafe. Of course, the downside is that programmers
would have to write in Clight rather than in (almost) Rust, but the benefit
is that data structures defined this way could be re-used in other languages
that adopted the same FFI-with-Clight strategy.

7.3 existential types

In Chapter 6, we showed how to build conversions involving universal
types by providing foreign opaque types, but handling existential types
likely requires additional work. With the same “foreign type” mechanism,
we could support defining data structures and operations over them and
passing both across. For example, we could pass an expression of type
hinti ⇥ (hinti ! hinti)⇥ (hinti ! int), for a counter defined as an integer.
That provides some degree of abstraction, but doesn’t, for example, disallow
passing the hinti back to some other code that expects that type. We could,
however, in the language with existential types, pack that to 9↵.↵⇥ (↵ !

↵)⇥ (↵ ! int).

More interesting is when both languages have polymorphism. In that
case, if we wanted to convert abstract types, we would need to generalize
our convertibility rules to handle open types, i.e., � ` ⌧ ⇠ ⌧ 0. If the
interpretation of type variables were the same in both languages (i.e., in
our model this would mean that both were drawn from the same relation),
this would be su�cient. If, however, the interpretation of type variables
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were di↵erent in the two languages (e.g., we do this in the case study in
Chapter 5, where you can see the use of UnrTyp in VJ8↵.⌧K⇢), we would
need, in our source type systems, some form of bounded polymorphism in
order to restrict the judgment to variables that were equivalent. Otherwise,
it would be impossible to prove convertibility rules sound, since a proof of
convertibility would allow too many values in the interpretation of type
variables.



Part III

MOVING BEHAVIOR ACROSS LANGUAGE
BOUNDARIES



8
A RECIPE FOR SOUNDLY INCORPORATING
FORE IGN BEHAVIOR

In this chapter, we present a recipe for proving soundness of
languages that import inexpressible behavior via an FFI, and
in particular, prove that interaction sound by giving novel and
precise types to that imported code. This chapter demonstrates
the framework by extending the simple language used in the
tutorial in Chapter 2. By seeing the full framework in the small,
the reader should be prepared for the more substantive case
studies in Chapters 9 and 10.

Throughout Part II, we considered how to exchange values across language
boundaries. What this required was that there be a type in the core language
that could accurately describe the foreign code. But what if there isn’t such
a type? Consider a pure language that wishes to use state to implement
a particular algorithm more e�ciently. We take, as assumption, that the
pure language should remain pure, since if it were stateful, it would have
types to capture the stateful behavior and the approach of Part II would
apply. What can we do? The simplest approach is to implement the entire
stateful algorithm in the stateful language, and only return the result back
to the pure language. In an appropriate model, we should be able to argue
that such computation is extensionally pure and, thus, does not threaten
the soundness of our pure language. This is similar to the proof mechanism
used by Timany et al. (2017); Jacobs et al. (2022) to show the purity of
Haskell’s ST monad. Further, since the code is extensionally pure, it can be
given a type from our pure language, and thus our value interoperability
strategy would work.
However, there is a downside to this approach: all of the code that uses

the stateful behavior must be written in the stateful language, and only once
it has been essentially encapsulated can the result be brought across, as an
opaque entity, to the pure language. In this part of the dissertation, we
present a novel design for interoperability that maintains soundness while
eliminating this weakness. The core idea is to enrich, in a controlled way, the
types of our core language such that we can import the foreign constructs
that we wish to use. We call these novel types “linking types”. The foreign
behavior, with its linking types, will then be encapsulated from the rest
of the program so that the original invariants of the core language are not
disrupted by these novel types. But, unlike in the alternative proposed
solution, this approach allows the core-language programmer to still use

98



a recipe for soundly incorporating foreign behavior 99

most of their abstractions, albeit with some novel behavior to account for,
when writing their code.

In the concrete example of a pure language programmer wanting to use
state to implement a particular algorithm more e�ciently, they may import
state primitives for reading and writing from the heap, but the core of
the algorithm would all be written in their core language. Encapsulation
would be responsible for taking the resulting stateful computation (which is
given linking types that capture that it is stateful) and ensuring that it was
extensionally pure; i.e., that it could have been implemented purely, if less
e�ciently or in a more verbose way.

One important restriction to our approach is that we require that the
target have some way of performing that encapsulation, which for some
e↵ects may be di�cult or maybe even impossible. For state, we accomplish
this by means of a region-like mechanism: the stateful code is encapsulated
by ensuring that any heap it used is discarded. Encapsulating exceptions is
easier: all escaping exceptions must be caught. But, other e↵ects may be
harder to encapsulate: e.g., non-termination could be accounted for, but
only by turning all computations into computations that might time out and
thus return no value. It also should be stated that doing almost any of this
encapsulation requires that the target have features that the source does
not have, as the type of reflective computation necessary for encapsulation
is often what is ruled out by safe type systems. Thus, while our choice of
untyped and lower-level targets is not a requirement, we do require aspects
of expressivity that are more common in those types of languages.

The remainder of this chapter demonstrates the idea in recipe form, using
a small example, along the same lines as Chapter 3. Then, in Chapters 9
and 10 we will explore in detail two more complex instantiations of the
linking types approach, showing how to encapsulate foreign behavior while
maintaining soundness.

the framework

The inputs to the framework are a core language, SimpleFunLang (reused
from Chapter 2); a target language Lambda; and a compiler, e+ = e.
Implicitly, there is a (or many) foreign language(s), but the framework
only interacts with them after compilation, and thus the only thing we will
need to know is the behavior, in terms of Lambda code, that we wish to
link with cannot be captured by a type in SimpleFunLang. This can, in We take positive

and negative
expressivity from
Patterson and
Ahmed (2017),
where positive
expressivity is
expressive power
defined by Felleisen
(1990).

general, be both code that captures behavior more positively expressive (can
distinguish programs that are equivalent in SimpleFunLang, e.g., stateful
code from the perspective of a pure language) or negatively expressive (has
equivalences that can be violated by SimpleFunLang, e.g., types that capture
finer distinctions than possible in your core language). For this section, we
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will use a negative expressivity example: a type � that includes only the
target value true. The example in this section serves both as a roadmap of
what is to come and a reference to refer back to. Also, the two subsequent
case studies are both examples of positive expressivity, so this demonstrates
the other possibility.

The first three steps of the recipe, extending the type system, defining type
function relating core types to extended types, and building encapsulation
wrappers (§8.0.1, §8.0.2, and §8.0.3) must be performed by the designer of
the interoperability system, whereas the last six, which develop realizability
models that prove soundness and encapsulation (§8.0.4, §8.0.5, and §8.0.6,
§8.0.7, §8.0.8, and §8.0.9) should be performed by the verifier of the system.
As we did for Part II, we make this distinction to highlight that we believe
there is value in attempting an approximation of soundness; and in this
case, we think the linking types design is an interesting contribution to the
interoperability design space, even outside of the question of how such an
interoperability system is proven sound.

SimpleFunLang

Type ⌧ ::= B | ⌧ ! ⌧
Expression e ::= b1 | b2 | bop | x | fun(x : ⌧){e} | e(e)
Value v ::= b1 | b2 | fun(x : ⌧){e}

Lambda
Expression e ::= true | false | if e e e | x | �x : ⌧.e | e e | fail
Value v ::= true | false | �x : ⌧.e
Evaluation context E ::= [·] | if E e e | E e | (� x .e) E

We reproduce both the static semantics and compiler from Chapter 2 for
easy reference.

� ` b1 : B � ` b2 : B

� ` e : B

� ` bop(e) : B

x : ⌧ 2 �

� ` x : ⌧

�, x : ⌧ ` e : ⌧ 0

� ` fun(x : ⌧){e} : ⌧ ! ⌧ 0
� ` e : ⌧ ! ⌧ 0 � ` e0 : ⌧

� ` e(e0) : ⌧ 0

e e+

b1  true
b2  false
bop  �x .if x true fail
fun(x : ⌧){e}  �x .e+

e(e0)  e+ e0+
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8.0.1 Extend the type system (`+)

Our goal is to accommodate additional behavior: in this case, we want to
have a type � that includes only true, as distinct from B, which includes true
and false. This may seem a silly example, but such subsets are relevant and
non-trivial in reality—consider tracking the sign of integers, or functions
that are linear—in both cases, the type (a positive/negative integer, or
a linear ⌧ ! ⌧ 0) is a smaller set of target values than the type that our
signless/unrestricted language had (integer and unrestricted ⌧ ! ⌧ 0).

Our first task, then, is to give ourselves a way to reason statically about
code that includes this novel type �. The first step for that is to give ourselves
syntax for separating code that involves this novel type, which we will usually
refer to as “linking code”, from the rest of our SimpleFunLang program. We
call it “linking code”, as it is the code that uses the imported functionality,
and will be eventually encapsulated. Programmers who write this code
will need to have some understanding of the semantics of the imported
functionality they are using, whereas programmers not writing linking
code need not concern themselves with anything beyond SimpleFunLang

semantics. In the examples in this dissertion, we will use a “wrap” expression
(or boundary) to delineate this boundary, written {e}+⌧ , where e is the
aforementioned linking code, and ⌧ is the type that the wrapped expression
should be treated as in the rest of the SimpleFunLang program, and +
identifies the particular linking types extension (as multiple extensions can
coexist). We do not provide wrapping in the other direction, but will allow
bindings defined outside the wrapper to be used inside.

The code inside this expression will be typed according to our extended
type system `+. In general, the idea behind linking types extensions is
that they give the minimal static reasoning that allows the programmer
to use the feature. In particular, we will not give introduction rules for �,
since values of this type will arise from linked code, not in code written in
SimpleFunLang. Whether we give elimination rules depends on the use: in
this case, we could avoid it, judging that all � values should be consumed
by linked functions (i.e., with signature �! ⌧), but doing so makes the
example slightly too small. Instead, we will allow Bop on � values, and have
it return a B value. This means the changes to the type system are to add
one new base type in the grammar and add one new rule. We inherit the
rest of the rules and syntax from SimpleFunLang.

Type ⌧ ::= � | B | ⌧ ! ⌧

� `+ e : �

� `+ bop(e) : B
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While we call this an “extension”, and in some cases it may be, in our
presentation it is a proper new type system, formally related to the old one
by the next step in the recipe. In more realistic implementations, we would
want the extended type system to be able to significantly re-use the existing
type infrastructure, perhaps via some plugin mechanism. We’ll discuss this
more in Chapter 12.

technical note In the examples in Chapters 9 and 10, we have our
changed type system distinguish between code that has the novel e↵ect
and does not. While this is in some sense clearer, and makes the proof
obligations a bit more obvious, in the positive expressivity cases we need
only have our types be able to express the more expressive behavior: i.e.,
it would su�ce to have a single type for possibly stateful arrows, so long
as our model was su�ciently powerful to distinguish between pure and
stateful computations. In that case, the original language would have a
pure function type and the extended type system would have a possibly
stateful function type, but since we only typecheck one type of code at a
time, we avoid the complexity of a modality. In the negative expressivity
cases, we cannot simplify by avoiding modalities, since we need to be able
to re-use core code (and thus our extended types must be able to capture
these types) and the smaller types that form the extension. For example,
if we had an extension for a�ne functions, we would need to be able to
express both a�ne and unrestricted functions in the extended type system.

8.0.2 Define lift ("⌧) and lower (#⌧)

We relate our original types, ⌧ , with our new types, which we write ⌧ , via
two type functions: lift (written ") converts a blue ⌧ to a pink ⌧ and lower
(written #) converts a pink ⌧ to a blue ⌧ .

Intuitively, lift exists so that any value that has type ⌧ should have type "⌧ :
this allows us to write code in SimpleFunLang and then within linking code
reuse, at type "⌧ , bindings that were defined outside the wrapping boundary.
In the case presented in this section, all of the types from SimpleFunLang

are available in our extended language, so lift behaves as an identity. In the
case studies examined in Chapters 9 and 10, this isn’t the case.

Lower, on the other hand, should faithfully summarize a linking type
⌧ with a core type ⌧ . Clearly, since ⌧ includes more behavior than ⌧ , we
cannot get the same implication as for lift, but the intention (later proved)
is that the type is what results when the ⌧ computation is encapsulated.
Indeed, the type #⌧ is the only interface through which SimpleFunLang can
access the results of the linking code computation.
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"B = B

"⌧1 ! ⌧2 = "⌧1!"⌧2

#� = B

#B = B

#⌧1!⌧2 = #⌧1!#⌧2

8.0.3 Develop encapsulation wrappers (h#⌧i)

The typing rule for our wrappers is the following:

"� ` e : ⌧

� ` {e}+#⌧ : #⌧

i.e., if the term inside has type ⌧ , then the wrapped term has type #⌧ . For
some types this may be a consequence of the static types, but for others,
when we compile we may need to insert operational code (written h#⌧i) that
enforces this encapsulation. That is, we need to ensure that even if the type
⌧ allows extra behavior, once wrapped, the term has no more behavior than
#⌧ . For linking types that capture positive expressivity this may require
some runtime code to ensure the extra behavior does not escape, whereas
linking types that capture negative expressivity likely will not need any such
code. For example, in our the case study we will see in Chapter 10, our
linking code can raise exceptions but our core language cannot, so when we
compile these boundaries we would insert code that catches any escaping
exceptions.

In the example we are using in this section, since � is a subset of B, and
all other types already exist in SimpleFunLang, so our target-level wrapping
code is a no-op:

h#⌧i[e] = e

8.0.4 Design a core realizability model (✏ ⌧)

Stable languages
may only require
this step once,
since the same core
model can be
reused by multiple
extensions.

The first three steps are all that the linking types designer needs to do:
they now have an extended language in which programmers can write linking
code, and lift (") and lower (#) relate code in SimpleFunLang to the linking
code. However, to prove that the resulting language, including the linking
code, is sound, the verifier still has work to do.

First, if they have not already, they should characterize precisely which
Lambda programs behave like which SimpleFunLang types. We build real-
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izability models, rather than another mechanism for proving soundness, as
we will later rely upon their ability to reason about target code that did
not originate in our source.
First, we build a value relation: V J⌧K includes the set of values that

behave as ⌧ .

V JBK = {true, false}
V J⌧1 ! ⌧2K = {�x .e | 8v 2 V J⌧1K. [x 7! v ]e 2 E J⌧2K}

Then, we build a model for computations, E J⌧K. This should exactly
mirror the statement of type soundness for SimpleFunLang, so it is crucial
that it be agnostic to foreign behaviors. It may be that certain general
behavior, like raising errors, should be included in this model, even when
the errors are not relevant yet, since we will need to use this model to prove
our encapsulation correct, and encapsulation may rely upon runtime errors.

E J⌧K = {e | 9e 0. e
⇤
! e 0 ^ (e 0 = fail _ e 0 2 V J⌧K)}

8.0.5 Design an extended realizability model (✏E ⌧)

In the previous step, we built a model for our core language, indexing
our relation by blue ⌧ . Now, we build one for our extended language,
indexing our relation by the pink ⌧ . If the linking code allows for more
positive expressivity, then these relations should include more values and
computations than in the model for the core language. If, like in the example
in this section, the linking code allows for more negative expressivity, the
model will include relations with finer granularity than existed in the model
for the core language.

V
+J�K = {true}

V
+JBK = {true, false}

V
+J⌧1 ! ⌧2K = {�x .e | 8v 2 V

+J⌧1K. [x 7! v ]e 2 E
+J⌧2K}

E
+J⌧K = {e | 9e 0. e

⇤
! e 0 ^ (e 0 = fail _ e 0 2 V

+J⌧K)}

8.0.6 Prove lift ("⌧) sound

In §8.0.2 we insisted that lift maps SimpleFunLang types to identical linking
types. We must verify this by showing an isomorphism between V J⌧K and
V
+J"⌧K, exploiting the fact that both are inhabited by Lambda values. We

need both directions of this proof at di↵erent places. We need to prove that
essentially V J⌧K ✓ V

+J"⌧K (modulo di↵erence in world structure) to be able
to use bindings defined outside linking code within it (at lifted type). We
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use the other direction V
+J"⌧K ✓ V J⌧K as part of our encapsulation proof,

shown in the next step §8.0.7.
Note that these proofs do not rely upon our relations having the same

logical structure. Indeed, we’ll see in the case study in Chapter 9 that our
core language, which is pure, has no logical heap, but our extended language
has state and thus a logical heap. While this means that the pure model is
inhabited by pairs of step indices and terms and the stateful model has a
heap typing in addition to the step index and term, the meaning of the lifted
types should ensure that that additional structure should not be relevant
for the types in question.

8.0.7 Prove encapsulation h#⌧i enforces lower (#⌧)

In §8.0.3 we insisted that h#⌧i encapsulate its result such that it behaves
like a #⌧ in SimpleFunLang. We verify this by showing, for every e 2 E

+J⌧K,
that h#⌧i[e] 2 E J⌧K. To do so, it su�ces to show that h#⌧i[e] 2 E

+J"#⌧K
and appeal to the second half of the soundness of lifting from §8.0.6.

8.0.8 Prove “compatibility” lemmas

As is typical, we define semantic closing substitutions GJ�K and G
+J�K,

where for every binding x : ⌧ or x : ⌧ , we map x to a value v 2 V J⌧K or
V
+J⌧K respectively:

GJ·K = {·}

GJx : ⌧ ,�K = {(x 7! v , �) | v 2 V J⌧K ^ � 2 GJ�K}
G
+J·K = {·}

G
+Jx : ⌧ ,�K = {(x 7! v , �) | v 2 V

+J⌧K ^ � 2 G
+J�K}

Using that substitution, we then prove that the compilation of any well-
typed term � ` e : ⌧ , when closed by a substitution in GJ�K, is in E J⌧K.
Similarly, we show that the compilation of �+

` e : ⌧ , when closed by a
substitution in G

+J�K, is in E
+J⌧K. For the boundary case, which must

relate the core and extended models, appeal to the lemmas from §8.0.6 and
§8.0.7.

8.0.9 Prove libraries semantically well-typed

For every compiled library ef that we wish to link with, we must prove that
the Lambda code ef belongs to E

+J⌧K.
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Although we present the framework linearly, a full treatment will likely
require many iterations of these steps. In particular, di�cult (or impossible)
proof cases may require changes to the implementation of the encapsulation
wrappers. In such cases, we recommend looking to the models for guidance;
since they are all inhabited by Lambda programs with the same operational
semantics, they often suggest opportunities for (and threats to) enforcing
encapsulation. Indeed, the division between implementation and verification
is a soft one: most likely, the two will be developed together interactively.
At the same time, we stress that the implementation steps can stand on
their own as a valuable recipe for building better approximations of sound
FFIs.



9
CASE STUDY : MUTABLE STATE

This section (Chapters 9 and 10) includes joint unpublished
work with Andrew Wagner and Amal Ahmed.

In this case study, we exhibit the linking types design methodology by
incorporating a library for mutable references into a language that otherwise
has no access to the heap. In the linking code we will be able to allocate,
read, and write to mutable references, but encapsulation means that the
linking code must extensionally behave as if it were pure. This is not, of
course, pointless, as mutable state is often used to improve the performance
of algorithms that could, in principle, be implemented by threading a pure
data structure, and thus are extensionally pure.

9.1 a functional language

For this case study and the next, our core language, FunLang is a standard
pure, eager, non-terminating functional language with imports.

It has both iso-recursive types (with fold/unfold) and recursive func-
tions, as well as sums, products, and simple base types (unit, int, bool).
We present the syntax (typeset in blue typewriter font) and static se-
mantics in Figure 9.1. Despite the definition-like syntax, functions are still
anonymous expressions; the function’s name is only bound in its body, for
recursive calls. Most of the rest of the syntax and static semantics is quite
standard, with the exceptions of the imports and our wrapping term {e}⌧ ,
which bear some explanation. In plenty of work, imports are ignored, and
linking is defined by way of function application. While we could try to do
this, having imports be explicit entities is useful for our work, as it allows
us to be clear about where the imports can be used. For this reason, we put
imports in a separate, explicit environment I, distinct but threaded along
with our normal environment �. Importantly, since imports exist to support
linking code, the imports are only in scope within the wrapped linking code.
We will show the typing rule for the wrapping term later, since the body will
be checked with a linking types extension type system (which will also be
introduced later), but it will typecheck under an environment that includes
I, unlike any of the terms outside the linking code.

In the remainder of this part of the dissertation, we will use the following
as a running example:
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fun fib(n : int){
if n < 1 { 0 } { if n = 1 { 1 } { fib(n+�1) + fib(n+�2) } }

}

We choose this example not because it is a particularly fascinating pro-
gram, but because it is small enough to serve as a good example yet large
enough to permit a non-trivially useful incorporation of linked code.

Like many real languages, we do not provide a formal operational se-
mantics for FunLang, though clearly we could. Although one certainly has
an operational semantics in mind, the observable semantics in our case is
defined by an implementation. Here, that implementation is via compilation
to a stack-based target language, StackLang, similar to the target used in
Chapter 4.

9.2 a stack language

Our target language is an untyped, stack-based language called StackLang,
which is derived from Kle↵ner (2017), which in turn derives some fea-
tures from Levy (2001). It is significantly more expressive than our source
language, as target languages often are. On the other hand, it is not espe-
cially low-level, as it permits aggregate values and suspended computations
(thunks) on the stack. We present the syntax in Figure 9.2, typeset in
black typewriter font. The small-step operational semantics, shown in Fig-
ure 9.3, is defined as a relation on program configurations hH # S # Pi, which
are triples of a heap, stack, and program.

Values are placed on the stack with push. The binary operators add, less?,
and equal? operate on the two integers at the top of the stack. if0 conditions
on the integer at the top of the stack and continues with its first branch if
it is zero, and with its second branch otherwise. Despite its syntax, lam x.P
is not a value, but a computation (as in Call-By-Push-Value (Levy, 2001))
that substitutes the top value on the stack for x inside P. On the other
hand, the value thunk P is a suspended computation, so thunk lam x.P is
the equivalent of a traditional lambda value. call takes the thunk P at the
top of the stack and forces its computation, placing P at the head of the
program. fix performs a fixpointing operation: it takes the thunk at the top
of the stack and re-suspends it for recursive calls, and then forces one copy
of its computation. idx and len operate on the array value at the top of the
stack. alloc, read, write, and free perform standard heap operations, where
any StackLang value can be stored in the heap. shift k P and reset provide
delimited control (Felleisen, 1988; Danvy and Filinski, 1990): shift captures
the continuation up to the next reset and substitutes it for k in P. getlocs
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Types ⌧ := ↵ | unit | bool | int | ⌧ ⇥ ⌧ | ⌧ + ⌧ | ⌧ ⇤ ⌧
| µ↵.⌧ | (⌧, . . . , ⌧) ! ⌧

Expressions e := () | true | false | if e {e} {e} | n | e = e
| e < e | e + e | x | (e, e) | fst e | snd e
| inl e | inr e | match e x{e} y{e} | fold e
| unfold e | fun f(x1 : ⌧1, . . . , xn : ⌧n){e}
| e(e, . . . , e) | {e}⌧

Imports I := f : ⌧ | f : ⌧, I
Programs P := e | import(I) e

` P : ⌧
·; · ` e : ⌧

` e : ⌧

I; · ` e : ⌧

` import(I) e : ⌧

I;� ` e : ⌧
I;� ` () : unit I;� ` true/false : bool I;� ` n : int

I;� ` e : bool I;� ` e1 : ⌧ I;� ` e2 : ⌧

I;� ` if e {e1} {e2} : ⌧

I;� ` e1 : int I;� ` e2 : int

I;� ` e1 = e2 : bool

I;� ` e1 : int I;� ` e2 : int

I;� ` e1 < e2 : bool

I;� ` e1 : int I;� ` e2 : int

I;� ` e1 + e2 : int

x : ⌧ 2 �

I;� ` x : ⌧

I;� ` e1 : ⌧1 I;� ` e2 : ⌧2

I;� ` (e1, e2) : ⌧1 ⇥ ⌧2

I;� ` e : ⌧1 ⇥ ⌧2

I;� ` fst/snd e : ⌧1/⌧2

I;� ` e : ⌧1/⌧2 ` ⌧2/⌧2

I;� ` inl/inr e : ⌧1 + ⌧2

I;� ` e : ⌧1 + ⌧1 �, x : ⌧1 ` e1 : ⌧ �, y : ⌧2 ` e2 : ⌧

I;� ` match e x{e1} y{e2} : ⌧

I;� ` e : ⌧ [µ↵.⌧/↵]

I;� ` fold e : µ↵.⌧

I;� ` e : µ↵.⌧

I;� ` unfold e : ⌧ [µ↵.⌧/↵]

�, f : (⌧1, . . . , ⌧n) ! ⌧ 0, xi : ⌧i ` e : ⌧ 0

I;� ` fun f(x1 : ⌧1, . . . , xn : ⌧n){e} : (⌧1, . . . , ⌧n) ! ⌧ 0

I;� ` e : (⌧1, . . . , ⌧n) ! ⌧ 0 I;� ` ei : ⌧i

I;� ` e(e1, . . . , en) : ⌧
0

Figure 9.1: Syntax & static semantics for FunLang.
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Stack S := v, . . . , v | Fail c
Error Code c := Type | Idx | Mem | Ctrl
Program P := · | i;P

Value v := n | thunk P | ` | [v, . . .]
Instruction i := push v | add | less? | equal? | if0 P P | lam x.P | call

| fix | idx | len | alloc | read | write | free | shift k P
| reset | getlocs | noop | fail c

Figure 9.2: Syntax for StackLang

provides reflective access to the heap: it takes the thunk lam and the value v
at the top of the stack and maps the computation over all locations used in
v.1 Unsurprisingly, noop does nothing. Finally, fail c terminates execution
of the entire program with the given error code. Every instruction with a
type invariant on the stack uses fail Type when that invariant is not met,
producing a dynamic type error; other errors are for unrecoverable problems
which may be acceptable results according to a soundness theorem.

9.3 a compiler for FunLang

In Figure 9.4, we present a compiler from FunLang to StackLang, which
induces the operational semantics of FunLang. Many cases are straightfor-
ward, but because the target has important consequences for how we link,
we will consider them in some detail. We see that a base value is compiled
to push v, where v is a target-level encoding of the value. Note that we use 0
both for unit and true (to match if0). In a typical functional language, like
FunLang, the values constitute a subset of the expressions, and evaluation
stops at values. However, in StackLang, evaluation only stops once the
empty program has been reached, and we consider the value on the top of
the stack to be the result. So, whereas v is the simplest FunLang program,
push v is, by analogy, the simplest StackLang program, even though it takes
a step.

if is mildly more complicated. We first compile the discriminant e

(denoted e+), which, according to e’s type, should be a program fragment
that terminates with a (semantic) boolean at the top of the stack. Thus,
the type invariant for if0 should be satisfied, and it can proceed with (the
compilation of) the appropriate branch. The compilation of the binary
operators follows this pattern.

inl and inr are slightly di↵erent because the result value needs to be
tagged. We use arrays to store the tag, 0 or 1, along with the payload.
To move the payload value o↵ of the stack and into an array, we use lam,

1 This is a minimal version of the heap reflection that shows up in target languages and is
used to, e.g., implement a GC.
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hH # S # push v;Pi ! hH # S, v # Pi (S 6= Fail c)
hH # Fail c # push v;Pi ! hH # Fail c # fail Typei
hH # S, n2, n1 # add;Pi ! hH # S, (n1 + n2) # Pi

hH # S # add;Pi ! hH # S # fail Typei (S 6= S0, n2, n1)
hH # S, n2, n1 # less?;Pi ! hH # S, 0 # Pi (n1 < n2)
hH # S, n2, n1 # less?;Pi ! hH # S, 1 # Pi (n1 � n2)

hH # S # less?;Pi ! hH # S # fail Typei (S 6= S0, n2, n1)
hH # S, v, v # equal?;Pi ! hH # S, 0 # Pi

hH # S, v2, v1 # equal?;Pi ! hH # S, 1 # Pi v1 6= v2
hH # S # equal?;Pi ! hH # S # fail Typei (S 6= S0, v2, v1)

hH # S, 0 # if0 P1 P2;Pi ! hH # S # P1;Pi
hH # S, n # if0 P1 P2;Pi ! hH # S # P2;Pi (n 6= 0)
hH # S # if0 P1 P2;Pi ! hH # S # fail Typei (S 6= S0, n)

hH # S, v # lam x.P1;P2i ! hH # S # [x 7! v]P1;P2i

hH # S # lam x.P1;P2i ! hH # S # fail Typei (S 6= S0, v)
hH # S, thunk P1 # call;P2i ! hH # S # P1;P2i

hH # S # call;P2i ! hH # S # fail Typei (S 6= S0, thunk P1)
hH # S, thunk P1 # fix;P2i ! hH # S, thunk (push (thunk P1), fix)#

P1;P2i

hH # S # fix;P2i ! hH # S # fail Typei (S 6= S0, thunk P1)
hH # S, [v0, . . . , vn2 ], n1 # idx;Pi ! hH # S, vn1 # Pi (n1 2 [0, n2])
hH # S, [v0, . . . , vn2 ], n1 # idx;Pi ! hH # S # fail Idxi (n1 /2 [0, n2])

hH # S # idx;Pi ! hH # S # fail Typei (S 6= S0, [v0, . . . , vn2 ], n1)
hH # S, [v0, . . . , vn] # len;Pi ! hH # S, (n+ 1) # Pi

hH # S # len;Pi ! hH # S # fail Typei (S 6= S0, [v0, . . . , vn])
hH # S, v # alloc;Pi ! hH ] {` 7! v} # S, ` # Pi

hH # · # alloc;Pi ! hH # · # fail Typei
hH ] {` 7! v} # S, ` # read;Pi ! hH ] {` 7! v} # S, v # Pi

hH # S, ` # read;Pi ! hH # S # fail Memi ` 62 dom(H)
hH # S # read;Pi ! hH # S # fail Typei (S 6= S0, `)

hH ] {` 7! } # S, `, v # write;Pi ! hH ] {` 7! v} # S # Pi
hH # S, `, v # write;Pi ! hH # S # fail Memi ` 62 dom(H)

hH # S # write;Pi ! hH # S # fail Typei (S 6= S0, `, v)
hH ] {` 7! } # S, ` # free;Pi ! hH} # S # Pi

hH # S, ` # free;Pi ! hH # S # fail Memi ` 62 dom(H)
hH # S # free;Pi ! hH # S # fail Typei (S 6= S0, `)

hH # S # shift k P1;P2;
. . . ; reset;P3i ! hH # S # [k 7! thunk P2; . . .]P1;P3i reset 62 P2; . . .

hH # S # shift k P1;P2i ! hH # S # fail Ctrli reset 62 P2

hH # S # reset;Pi ! hH # S # Pi
hH # S, thunk lam l.P1, v# ! hH # S, `1, . . . , `n#

getlocs;P2i lam l.P1; . . . ; lam l.P1;P2i `1, . . . , `n = flocs(v)
hH # S # getlocs;P2i ! hH # S # fail Typei S 6= S0, thunk lam l.P1, `

hH # S # noop;Pi ! hH # S # Pi
hH # S # fail c;Pi ! hH # Fail c # ·i

Figure 9.3: Operational semantics for StackLang
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which, as described earlier, is an instruction (not a value) that performs
substitution with the value at the top of the stack. Pairs and projections
are compiled similarly.

Compiling match is conceptually like compiling if, but its definition is
more involved because one must destruct tagged values. e+ should produce
a tagged value at the top of the stack, so we copy it with the macro DUP
(defined at the bottom of the figure), project out the payload (at index 1),
SWAP the top two elements of the stack, and finally project out the tag.
Now, we are ready to condition on the tag and, in the branches, substitute
the payload.

In theory, one could entirely erase any remnant of the recursive operators
fold and unfold. Indeed, we do just that for fold. However, for reasons
that will become clear when we consider the model for soundness, we
introduce a noop in the compilation of unfold. At a high level, unfold
produces an expression at a larger type, which threatens the well-foundedness
of our semantic model, as it is defined inductively over types. To reconcile
this, we employ a standard trick and stratify the model, which requires that
unfold+ take an extra step.

All that remains are funs and application. For functions, fix does most
of the heavy lifting. A compiled fun is a thunk that first pushes a thunk
corresponding to the computation of the body (taking itself as the first
argument, f), and then invokes fix. The result of fix will be to perform the
fixpoint, passing itself as that first argument. The arguments are in reverse
order so that e↵ects (which, for now, include only divergence) are observed
left-to-right. Application is conceptually straightforward; the only subtelty
is that the compiled function (e+) needs to be at the top of the stack in
order to be called, but it needs to run first for a left-to-right evaluation
order. Since StackLang does not have a built-in for indexing into the stack,
we shu✏e the function to the front as we evaluate the arguments.

9.4 linking with state

With a source, target, and compiler in hand, we are now ready to tackle the
central problem of this part of the dissertation: how to safely encapsulate
inexpressible behavior.

The fib program from §9.1 is a classic example of unnecessary exponential
computation. A standard trick taught in most undergraduate programming
courses is to use memoization, which traditionally requires mutable state.
As a quick reminder, the strategy is to store intermediate results in a table
so that later computations can reuse them without recomputing them. In
our example, the table maps inputs n to their outputs fastfib(n), so that
each fastfib(n) is only computed once. What we want is to link with
a mutable reference library providing alloc, read, and write functions,
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e e+

()  push 0
true/false  push 0/1
if e {e1} {e2}  e+; if0 (e1+) (e2+)
n  push n
e1 < / = /+ e2  e1

+; e2+; less?/equal?/add
x  push x
inl e  e+, lam x.(push [0, x])
inr e  e+; lam x.(push [1, x])
match e x{e1} y{e2}  e+;DUP; push 1; idx; SWAP;

push 0; idx; if0 (lam x.e1+) (lam y.e2+)
fold e  e+

unfold e  e+; noop
(e1, e2)  e1

+; e2+; lam x2.lam x1.(push [x1, x2])
fst/snd e  e+; push 0/1; idx
fun f(x1 : ⌧1, . . . , xn : ⌧2){e}  push (thunk push (thunk lam f.lam xn. . . . lam x1.e+), fix)
e(e1, . . . , en)  e+; e1+; SWAP; e2+; SWAP . . . ; en+; SWAP; call

SWAP , lam x.lam y.(push x; push y)
DROP , lam x.()
DUP , lam x.(push x; push x)

Figure 9.4: Compiler from FunLang to StackLang

but because FunLang was deliberately designed without their behavior in
mind, any FunLang types we assign to them would necessarily be imprecise!
Thus, our type system—and, crucially, our soundness proof—has no way to
accurately account for them.

a principled approach One might be tempted to simply approxi-
mate foreign behavior with existing types; e.g., ref ⌧ ⇠ int, alloc : (⌧) ! int,
read : (int) ! ⌧ , write : (int, ⌧) ! unit. Indeed, this is what FFIs typ-
ically do. The problem with this approach is that it changes the type
based reasoning of the language: for example, a FunLang programmer may
(rightly) think that duplicate calls with the same input to a function of type
(int) ! ⌧ could be eliminated, since FunLang functions always return the
same output, but clearly if that function is read (or any code that invokes
it, or other stateful code internally), this is not necessarily true.

Instead, our framework starts by giving these foreign functions precise
types, with which we can then work backwards through the implementation
and the soundness proof. Of course, our approach is systematic, and applies
to a wide variety of features, not just state.

The first step, and core idea, is to define an extended type system with new
linking types that can describe foreign behavior. In Figure 9.5, we present
the extension for state, where new features are typeset in pink bold font
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Core Type ⌧ := ↵ | unit | bool | int | ⌧ ⇥ ⌧ | ⌧ + ⌧
| µ↵.⌧ | (⌧, . . . , ⌧) ! ⌧

Extended Type ⌧ := unit | bool | int | ⌧ ⇥ ⌧ | ⌧ + ⌧ | µ↵.⌧

| (⌧ , . . . , ⌧)
G#
! ⌧ | ref ⌧

x : ⌧ 2 �

� `S x : ⌧

�, f : (⌧1, . . . , ⌧n)
 
! ⌧ 0, xi : ⌧i `S e : ⌧ 0

� `S fun f(x1 : ⌧1, . . . , xn : ⌧n){e} : (⌧1, . . . , ⌧n)
 
! ⌧ 0

� `S e : (⌧1, . . . , ⌧n)
G#
! ⌧ 0 � `S ei : ⌧i

� `S e(e1, . . . , en) : ⌧
0

Figure 9.5: Linking types for state

and we use the identifier S on typing judgments and elsewhere. We add a
reference type, ref ⌧ , without any introduction or elimination forms, since
only foreign code can manipulate references. We also replace our functionAs noted in §8.0.1,

it would be
su�cient to only
have

#! exist in
our model, but the

syntax is
convenient for our

proofs.

type with a pair of modal arrows, where
#
! types pure functions and

 
! types

stateful functions. We use
G#
! when the particular mode is unimportant.

With this linking types extension, we can specify a more precise FFI for
a mutable reference library, which we can then import. Since FunLang does
not have polymorphism, we have to pick a concrete type ⌧ when we import
them:

import( alloc : ()
 
! ref ⌧ ,

read : (ref ⌧)
 
! ⌧ ,

write : (ref ⌧, ⌧)
 
! unit )

. . .

Notice that the linking types extension is purely static; it does not
introduce any new term-level syntax. So, intuitively, core programs should
be usable inside of extended programs, and pure extended programs should
be usable inside of core programs. To make this intuition precise, we useIf we did not have

#!, we would lift to
 !, which, while
possible, would

change the
soundness lemma
we would need to

prove: rather than
an isomorphism,

we would have an
implication

(J!K =) J  !K)
following the

syntax with the
reverse only stated

in terms of the
model, which still
needs a notion of

#!.

our type-level metafunctions, lift and lower. Lift, denoted "⌧ , maps a core
type to an extended type, while lower, denoted, #⌧ maps an extended type
to a core type. The definitions of lift and lower for the state extension are
given in Figure 9.7. Note that core arrows ! are lifted to pure arrows

#
! in

the extension, which is why we did not include an introduction form for
#
!

in Figure 9.5: it su�ces to build a core function and lift it! Since references
cannot be used directly inside core code, lowering simply erases them. The
only truly surprising case is that impure arrows are lowered to core arrows;
this surely seems unsound, which we will address shortly.

To facilitate the interaction between core and extended programs, we rely
on our boundary term, {e}S#⌧ , that encapsulates foreign behavior from the
rest of the core program (Figure 9.6). Here, e is a stateful program whose
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I+ ] "� `+ e : ⌧

I;� ` {e}+#⌧ : #⌧

Figure 9.6: The boundary term over an arbitrary extension, +

"⌧ , ⌧

"unit , unit

"bool , bool

"int , int

"⌧1 ⇥ ⌧2 , "⌧1 ⇥ "⌧2
"⌧1 + ⌧2 , "⌧1 + "⌧2
"µ↵.⌧ , µ↵."⌧

"(⌧1, . . . , ⌧n)!⌧ 0 , ("⌧1, . . . , "⌧n)
#
!"⌧ 0

#⌧ , ⌧

#unit , unit

#bool , bool

#int , int

#⌧1⇥⌧2 , #⌧1 ⇥ #⌧2
#⌧1+⌧2 , #⌧1 + #⌧2
#µ↵.⌧ , µ↵.#⌧

#(⌧1, . . . , ⌧n)
G#
! ⌧ 0 , (#⌧1, . . . , #⌧n)!#⌧ 0

#ref ⌧ , unit

Figure 9.7: Lift and lower functions for state extension

result is a ⌧ when typechecked with the extension S, which means it can be
used at type #⌧ in the rest of the program. The boundary acts as a syntactic
cue for the typechecker to switch to an extension before entering the body.
To do so, the typechecker extracts imports relevant to the extension and
lifts every binding from the typing context. This mechanism allows us to,
for example, define top-level core functions and use them as pure functions
under S boundaries. A well-formedness judgment would disallow di↵erent
extensions from being mixed in a single import binding.

Next, for every extended type ⌧ , we define a target-level encapsulation
wrapper, h#⌧i, which dynamically enforces that its argument behave like a #⌧ .
While we prove this formally in §9.5, here we give an intuitive explanation of
the wrappers for the state extension, which are defined in Figure 9.8. Recall
that only two types had non-obvious lower definitions: ref ⌧ and

 
!. The

former we decided to erase, and the latter we suspiciously mapped to the pure
arrow. The wrappers associated with these types reinforce these decisions

h#ref ⌧i , free; push 0

h#(⌧1, . . . , ⌧n)
 
! ⌧ 0i , push (thunk lam l.push l; free); getlocs

h#⌧i , · for any other ⌧

ALLOC , thunk push (thunk lam falloc.lam f.push f; alloc); fix
READ , thunk push (thunk lam fread.lam r.push r; read); fix
WRITE , thunk push (thunk lam fwrite.lam f.lam r.push r; push f;write; push 0); fix

Figure 9.8: State boundary enforcement & target library code
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because they give a strategy for encapsulating stateful behavior from the
rest of the program. If a boundary returns a ref ⌧ , we free its location
in memory and return a semantic unit. If a boundary returns an impure
function, we use getlocs to free any memory associated with that function.
In both cases, purity is enforced by indirection: if the memory associated
with these terms is used outside of the boundary (which corresponds to a
side-e↵ect), then a memory trap (fail Mem)2 halts the program. All other
linking types ⌧ are semantically pure, so no wrapper is needed for them.

In Figure 9.8, we also provide a StackLang implementation of a mutable
reference library. While we have not yet seen the tools required to prove
that this implementation is safe (we will shortly in §9.5), intuitively, the
functions behave as one would expect (N.B., they account for the calling
convention of FunLang, as described in §9.3).

the whole picture With all the pieces of the state extension in place,
we return our attention to the fastfib example, defined in Figure 9.9. To
start, we import our foreign functions, alloc, read, and write, specialized
to int

 
! int payloads so that we can store our memotable. In the body

of fastfib, we immediately enter an S boundary so that we may use the
foreign imports. We alloc an empty table, mtbl, initialized to return a
sentinal value, �1, on any input. Next, we define the helper function mutfib,
which does most of the heavy lifting. For any input x that is not a base
case, mutfib begins by checking if x is in mtbl. If it is, it returns the result.
Otherwise, it computes a fresh output and stores it in mtbl before returning
it. At the top-level, mutfib is invoked on the input to fastfib. Note that
whereas memoized functions can sometimes see speed-ups across top-level
calls, here, di↵erent top-level calls to fastfib are encapsulated from one
another; the memotable is dropped after each result. Naturally, one could
write a version of fastfib over batches of inputs.

In this example, we see how we can use mutable state via our libraries and
encapsulate the results. Even though we are confident that this particular
implementation of fastfib does not try to misuse state (e.g., by exfiltrat-
ing the memotable across the boundary), buggy programs are inevitable.
Therefore, it is essential that we wrap (the body of) fastfib in a boundary,
so that runtime wrappers enforce the safe usage of state.

9.5 soundness

As described in Chapter 8, we verify semantic type soundness using real-
izability models, which are sets of target terms indexed by source types.
Unlike in the realizability models in Part II, here we first build a core model

2 We consider memory traps an acceptable error in our definition of soundness.
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import( alloc : ((int)
#
! int)

 
! ref ((int)

#
! int),

read : (ref ((int)
#
! int))

 
! ((int)

#
! int),

write : (ref ((int)
#
! int), ((int)

#
! int))

 
! unit)

fun fastfib(y : int){
{let mtbl = alloc(fun f(n : int){�1}) in
fun mutfib(x : int){
if x = 0 {0}{if x = 1{1}{
let m = read(mtbl) in
if m(x) = �1{
let r = mutfib(x+�1) + mutfib(x+�2) in
let = write(mtbl, fun f(n){if n = x{r}{m(x)}}) in
r

}{m(x)}
}

}(y)}Sint
}

Figure 9.9: Example: fibonacci memoized with state

for FunLang, and then build a model for our linking types extension. Our
model for FunLang will be re-used in the next chapter, where we consider
an extension that involves exceptions, since it does not have anything to do
with state.

Since realizability models are inhabited by target terms, we can interpret
linking types (e.g., ref ⌧) whose behavior is inexpressible in core FunLang.
Also, the fact that the inhabitants of these models share a common opera-
tional semantics will be instrumental in proving that the boundary typing
rule is sound.

9.5.1 FunLang model

Building on the simplified model from Chapter 8 (and prior models presented
in this dissertation) we present the full model for core FunLang in Fig. 9.10.
To distinguish the core and extension models from one another, we annotate
each with an identifier; e.g., � for core FunLang. To account for recursive
types, the model is step-indexed, which means that every inhabitant is
actually a pair of a natural number (the step index) and a term. Oftentimes,
when the step index is unimportant, we refer only to the term.

We begin with the value relation, V�J⌧K. Base types are agnostic to step
indices, so their interpretation should simply be consistent with the compiler.
Notice that V

�JboolK is more liberal than the compiler, which only uses
0 and 1 for bools, but it is consistent with the StackLang eliminator if0.
V
�J⌧1 ⇥ ⌧2K contains all two-element arrays whose first element is in V

�J⌧1K
and whose second element is in V

�J⌧2K. V�J⌧1 + ⌧2K contains all two-element
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V
�JunitK = {(k, 0)}

V
�JboolK = {(k, n)}

V
�JintK = {(k, n)}

V
�J⌧1 ⇥ ⌧2K = {(k, [v1, v2]) | (k, v1) 2 V

�J⌧1K ^ (k, v2) 2 V
�J⌧2K}

V
�J⌧1 + ⌧2K = {(k, [0, v]) | (k, v) 2 V

�J⌧1K}
[ {(k, [1, v]) | (k, v) 2 V

�J⌧2K}
V
�Jµ↵.⌧K = {(k, v) | 8j < k. (j, v) 2 V

�J⌧ [µ↵.⌧/↵]K}
V
�J(⌧1, . . . , ⌧n) ! ⌧ 0K = {(k, thunk push (thunk lam f.lam xn. . . . lam x1.P; fix) |

8vi k0 < k. ^ (k0, vi) 2 V
�J⌧iK =)

(k0, [x1 7! v1, . . . , xn 7! vn,
f 7! (thunk push (thunk lam f.lam xn. . . .

lam x1.P); fix)]P) 2 E
�J⌧ 0K}

E
�J⌧K = {(k, P ) | 8H,H0, S, S0, j < k. hH # S # P i

j
! hH0 # S0 # ·i

=) (S0 = Fail c ^ c 2 OkErr) _ 9v.
⇣
S0 = S, v ^ (k � j, v) 2 V

�J⌧K
⌘
}

where OkErr , {Mem}

G
�J·K = {(k, ·)}

G
�J�, x : ⌧K = {(k, �[x 7! v]) | (k, v) 2 V

�J⌧K ^ (k, �) 2 G
�J�K}

Figure 9.10: FunLang logical relation

arrays whose first element is a tag n 2 {0, 1} and whose second element is in

V
�J⌧n+1K. V�Jµ↵.⌧K motivates the use of step indices: naturally, any of its

values should also be in the interpretation of the unfolding, V�J⌧ [µ↵.⌧/↵]K,
but because this is a potentially larger type, a model defined inductively
over types alone would not be well-founded. Thus, we decrement the step
index before unfolding the type. As in Chapter 8, V�J(⌧1, . . . , ⌧n) ! ⌧ 0K
contains all thunks that map well-typed inputs to well-typed outputs. Here,
we additionally consider multiple arguments and recursion when selecting
and substituting inputs, which we only draw from smaller step indices.

The expression relation, E�J⌧K, contains pairs (k,P) of step indices and
StackLang computations. Whereas in Chapter 8, we did not restrict the
running time of P, here, we run it for fewer than k steps. Otherwise, the
definition is exactly the same as in Chapter 8: P behaves like a ⌧ if, given an
arbitrary heap and stack, it either (i) runs too long; or (ii) halts with an error

that our notion of soundness accepts; or (iii) terminates at a value in V
�J⌧K

at the top of its stack. Since E
�J⌧K contains only closed computations, we

also interpret contexts in G
�J�K, which contain all closing substitutions �

that map the bindings x : ⌧ 2 � to well-typed values in V
�J⌧K.
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9.5.2 State extension model

We present preliminary definitions used by both our logical relation for
the state linking types extension and our exception extension relation in
Figure 9.11. The models share much with common models for mutable
state (Ahmed, 2004), and thus include a Kripke world W that is made up
of a step index k and heap typing  . Heap typings map locations to type
interpretations, drawn from the set of valid type interpretations Typ, or
the sentinal value † that indicates that the location has been freed. Our
type interpretations consist of tuples (W,', v) of worlds W , sets of relevant
locations ', and target values v. We track relevant locations of v (i.e.,
the free locations of v or flocs(v)), rather than just relying on the location
information that is in the heap typing, so that we can know if a value does
not close over any locations and is thus extensionally pure. This pattern
of tracking locations should look familiar from logical relations for linear
state (e.g., (Ahmed et al., 2007)); here the di↵erence will show up in how
we maintain these sets.

We define the normal restrictions on step indices on relations and heap
typings, and use these to define a later (B) operator. Next, we define how
worlds can evolve with the v operator: future worlds can have lower step
index, and the heap typings must be preserved (updated to lower step index)
or marked as dead. Lastly, we define when a heap H, which is a mapping
from locations ` to values v, satisfies a world W under a relevant location
set ': for any locations in the heap typing that are relevant, if they are not
dead, the value must be in the relation specified by the heap typing, but
at a future world (to avoid circularity and reflect that it takes a step to
retrieve a value from the heap).

With these definitions in mind, we can define the value and expression
relations for our state linking types extension in Figure 9.12. We identify
relations in this model with the superscript S. On base values, the relation
is similar to the relation for FunLang, though it has to include both the
relevant location sets (which are of course empty, as base values cannot
close over locations) and arbitrary worlds W rather than simply step indices
k. For pair types ⌧1 ⇥ ⌧2, we appeal to the value relation on the two
component types, but now have to deal with the location sets: the relevant
set of locations for a pair is the union of the relevant locations for the two
components. This is, of course, how this model di↵ers from a linear one:
in both, we track the locations that are specific to a term, but in a linear
model, we would have a disjoint union, whereas in this model, it is fine if
the same location is used in both elements of the pair. Sums and recursive
types are analogous to the relation to FunLang. For reference types ref ⌧ ,
we use the standard technique by choosing the relation that is stored in the
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' ::= {`, . . .}

 \ ' , {` 7! R | ` 2 (dom( ) \ ') ^R =  (`)}

AtomV aln , {(W,', v) | W 2 Worldn}

HeapTyn , { | 8` 2 dom( ).  (`) = † _  (`) 2 Typn}

Worldn , {(k, ) | k < n ^  2 HeapTyk}

Typn , {R 2 2AtomV aln | 8(W,', v) 2 R. 8W 0. W v W 0 =) (W 0,', v) 2 R}

World ,
[

n
Worldn

Typ ,
[

n
Typn

bRcj , {(W,', v) | (W,', v) 2 R ^W.k < j}

b cj , {` 7! bRcj | ` 7! R 2  }

(k, ) v (j, 0) , j  k ^ 8` 2 dom( ).(b (`)cj = b 0(`)cj _  0(`) = †)

W1 @W2 ,W1.k > W2.k ^W1 v W2

B(k, ) , (k � 1, b ck�1)

H :' W , (8` 7! R 2 (W. \ '). (BW,H(`)) 2 R)

Figure 9.11: State & exception extension logical relation: preliminary definitions
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heap typing at the given location, but additionally require that it is the only
relevant location, as clearly a location value has only one relevant location.
We split functions into two cases: ones that can own locations and ones

that are (extensionally) pure. The latter are written
#
!, and mean that

there are no relevant locations. Locations can, of course, come from the
arguments passed to the function in the sets 'i, as a function that does not
own locations can be passed a value that does, provided its type allows it.
The resulting expression thus owns the locations of the arguments unioned
together in

S
i
'i, and this needs to be in the expression relation: this means

that if the return type is a value that does not own locations, the ones from
the arguments must not be used in that return value. The function type
that can close over locations,

 
!, is very similar: the only di↵erence is that

its relevant location set ' is included in the set that the body runs with.
The expression relation is similar to that of FunLang, though refined for

the fact that we now have constraints on what the target heap can look
like. In particular, our initial heap H must satisfy the world W under the
relevant location set ', and there must be a final world W 0

w W that the
final heap satisfies. We require that locations relevant to the term, ', and
relevant to the final value '0, both be accounted for: what this means is
that these locations must have their types preserved or be freed, but cannot
be changed to a di↵erent type. Essentially, this means that everything we
started with must be accounted for, and anything that is relevant to the
value must be in the heap at the right type.

As before, we have an environment relation G
SJ�K that we use to describe

closing substitutions that satisfy an environment �. The substitutions now
have a relevant set of locations that are a union of all the locations relevant
to all the values in the substitution.

Finally, we define a shorthand for describing open terms, which includes
choose closing substitutions to match the imports. Since imports could
come from either the extension presented in this chapter or that in the next,
we close with two substitutions. Note that IS means I filtered to those
imports that use types from the state linking types extension.

9.5.3 Proving " sound

We need to prove:

Lemma 9.5.1 (lift S). 8W v. (W, ;, v) 2 V
SJ"⌧K () (W.k, v) 2 V

�J⌧K

Proof. We note, first, that by inspection of the logical relation, all cases
of VSJ⌧K for ⌧ = "⌧ , ' = ;. That is obviously critically important, as we
wouldn’t otherwise be able to account for such locations when moving to
the relation for FunLang, but it is also part of the design of the type system
and the functions ". This justifies the use of ; in the lemma statements.
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V
SJunitK = {(W, ;, 0)}

V
SJboolK = {(W, ;, n)}

V
SJintK = {(W, ;, n)}

V
SJ⌧1 ⇥ ⌧2K = {(W,', [v1, v2]) | ' ⇢ dom(W. ) ^ '1 [ '2 = '^

(W,'1, v1) 2 V
SJ⌧1K ^ (W,'2, v2) 2 V

SJ⌧2K}
V
SJ⌧1 + ⌧2K = {(W,', [0, v]) | ' ⇢ dom(W. ) ^ (W,', v) 2 V

SJ⌧1K}
[ {(W,', [1, v]) | ' ⇢ dom(W. ) ^ (W,', v) 2 V

SJ⌧2K}
V
SJµ↵.⌧K = {(W,', v) | (W,', v) 2 BVSJ⌧ [µ↵.⌧/↵]K}

V
SJref ⌧K = {(W, {`}, `) | W. (`) = bV

SJ⌧KcW.k | †}

V
SJ(⌧1, . . . , ⌧n)

#
! ⌧ 0K = {(W, ;, thunk push (thunk lam f.lam xn. . . . lam x1.P); fix) |

8vi 'i W 0 AW. 'i ⇢ dom(W 0. ) ^ (W 0,'i, vi) 2 V
SJ⌧iK

=) (W 0,
S

i 'i, [x1 7! v1, . . . , xn 7! vn,
f 7! (thunk push (thunk lam f.lam xn.

. . . lam x1.P); fix)]P) 2 E
SJ⌧ 0K}

V
SJ(⌧1, . . . , ⌧n)

 
! ⌧ 0K = {(W,', thunk push (thunk lam f.lam xn. . . . lam x1.P); fix) |

' ⇢ dom(W. ) ^ 8vi 'i W 0 AW.'i ⇢ dom(W 0. )
^(W 0,'i, vi) 2 V

SJ⌧iK
=) (W 0,' [

S
i 'i, [x1 7! v1, . . . , xn 7! vn,

f 7! (thunk push (thunk lam f.lam xn.
. . . lam x1.P); fix)]P) 2 E

SJ⌧ 0K}

E
SJ⌧K = {(W,', P ) | 8H:'W, S,H0, S0, j < W.k. hH # S # P i

⇤
! jhH0 # S0 # ·i

=) (S0 = Fail c ^ c 2 OkErr) _ 9v,W 0
w W.�

S0 = S, v ^ H0 :'0[' W 0
^ (W 0,'0, v) 2 V

SJ⌧K
�
}

where OkErr , {Mem}

G
SJ·K = {(W, ;, ·) | W 2 World}

G
SJ�,x : ⌧K = {(W,'1 [ '2, �[x 7! v]) | 'i ⇢ dom(W. )

^(W,'1, v) 2 V
SJ⌧K ^ (W,'2, �) 2 G

SJ�K}

JI;� ` P : ⌧K ⌘
8k �. 8((k, ;), ;, �I

S

) 2 G
SJISK. 8((k, ;), ;, �I

X

) 2 G
XJIXK. (k, �) 2 G

�J�K =)

(k, �I
X

(�I
S

(�(P)))) 2 E
�J⌧K

Figure 9.12: State extension logical relation: main definition
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The proof itself then follows via induction over the step index and structure
of the type, since the subset of the state relation that we are considering
maps directly to the FunLang relation, by design:

Case unit/bool/int. In this case, the values are trivially in the relation,
by definition.

Case ⌧1 ⇥ ⌧2/⌧1 + ⌧2. These follow straightforwardly by appealing to the
inductive hypothesis.

Case µ↵.⌧ . In this case, we can appeal to our inductive hypothesis at a
smaller k (as our type may have gotten larger).

Case (⌧1, . . . , ⌧n) ! ⌧ 0. This follows by application of the induction hy-
pothesis.

9.5.4 Proving h#⌧i satisfies #

First, we prove two lemmas:

Lemma 9.5.2 (wrap closed S). 8⌧ . fvars(h#⌧i) = ;

Proof. This follows by simple inspection of the definition.

Lemma 9.5.3 (encapsulation S). 8W ' v ⌧ . (W,', v) 2 V
SJ⌧K

=) (W,', push v; h#⌧i) 2 E
SJ"#⌧K

Proof. We proceed by case analysis on ⌧ , handling the majority of the cases
for which h#⌧i is empty first. In those cases, which by inspection, "#⌧ = ⌧ ,
the proof reduces to:

8W ' v ⌧ . (W,', v) 2 V
SJ⌧K =) (W,', push v) 2 E

SJ⌧K

This follows easily: we choose an arbitrary stack and a heap that satisfies
W and ', we take a single step (if no budget, in relation trivially), and result
in terminated program with stack with v on top. As needed, (W,', v) 2
V
SJ⌧K, so we are done. Now we handle the other two cases:

Case ref ⌧ . Our obligation is to show:

8W ' v ⌧ . (W,', v) 2 V
SJref ⌧K =) (W,', push v; free; push 0) 2 E

SJunitK

By inspection of VSJref ⌧K, we know for some `, ' = {`}, v = `, and
W. (`) = bV

SJ⌧KcW.k. This means when we choose a heap H to run
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with in E
SJunitK, we know it will have ` bound to some value in

BbVSJ⌧KcW.k, though as we will see, the actual value does not matter.
We will then take three steps:

hH # S # push `; free; push 0i !
hH # S, ` # free; push 0i !
hH \ ` # S # push 0i ! hH \ ` # S, 0 # ·i

Now we choose W 0 to be W , but with ` updated to be marked as dead,
and choose '0 = ;. This means (H \ `) :' W 0 (since the dead binding
in the world is ignored), and by definition, (W 0, ;, 0) 2 V

SJunitK, so
we are done with this case.

Case (⌧1, . . . , ⌧n)
 
! ⌧ 0. Our obligation is to show:

8W ' v ⌧i ⌧ 0. (W,', v) 2 V
SJ(⌧1, . . . , ⌧n)

 
! ⌧ 0K =)

(W,', push v; lam x.(push x; push x);

push (thunk lam l.push l; free); getlocs) 2 E
SJ(⌧1, . . . , ⌧n)

#
! ⌧ 0K

Once we pick an arbitrary stack S and a heap H :' W , we take the
following steps:

hH # S # push v; lam x.(push x; push x); push (thunk lam l.push l; free); getlocsi !

hH # S, v # lam x.(push x; push x); push (thunk lam l.push l; free); getlocsi
3
!

hH # S, v, v # push (thunk lam l.push l; free); getlocsi !
hH # S, v, v, (thunk lam l.push l; free) # getlocsi

Now, we know that getlocs will run the thunk on top of the stack
once for every free location one position down the stack, which means
everything reachable from our function value. Assume those locations
are `1, . . . , `k. Then we step as follows:

hH # S, v, v, (thunk lam l.push l; free) # getlocsi 3k+1
!

hH \ {`1, . . . , `k} # S, v # ·i

Now that we have terminated, we have to fulfill the obligations
of ESJ(⌧1, . . . , ⌧n)

#
! ⌧ 0K. By inspection of VSJ(⌧1, . . . , ⌧n)

 
! ⌧ 0K, we

know that v has form (thunk push (thunk lam f.lam xn. . . . lam x1.P); fix).
We choose '0 = ;, and W 0 such that every location in ' has been
marked dead. By invariant of the relation, ' = {`1, . . . , `k}. Our heap
satisfies the world, by construction, and everything that should be
dead is, so the only thing that remains is to show that
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(W 0, ;, (thunk push (thunk lam f.lam xn. . . . lam x1.P); fix)) 2 V
SJ(⌧1, . . . , ⌧n)

#
! ⌧ 0K

This follows from our hypothesis on v, once we substitute our empty
relevant location set in.

Now we proceed to the main lemma:

Lemma 9.5.4 (boundary S). JIS ] "� `S P : ⌧K =) JI;� ` P; h#⌧i : #⌧K

Unlike soundness for lift, this is non-trivial. To start with, the intuitive
statement that, for (W,',P) 2 E

SJ⌧K, show (W.k,P; h#⌧i) 2 E
�J#⌧K, isn’t

provable (or true): the problem is that P is a term which may involve

locations in ', and the relation E
�J#⌧K for FunLang cannot reason about

such state. Indeed, that relation specifically says you choose an arbitrary
heap to run under, which clearly would get stuck if P tried to access a
particular location. But, of course, #⌧ is a type from FunLang, so how do
we prove this? At a high-level, this relies on both soundness of lift and the
lemma proved above. The detailed proof follows.

Proof. Expanding the goal, we see we need to show:

8k �. 8((k, ;), ;, �I
S

) 2 G
SJISK. 8((k, ;), ;, �I

X

) 2 G
XJIXK. (k, �) 2 G

�J�K =)

(k, �I
X

(�I
S

(�(P; h#⌧i)))) 2 E
�J#⌧K

From Lemma 9.5.2, we know h#⌧i is closed, so we can push the substitu-
tions in to just over P. Further, from the hypothesis, we know that P has
no free variables from IX, so we can eliminated that substitution.
The hypothesis that we are working with says:

8W '�0 (W,', �0) 2 G
SJIS]"�K ^ ' = flocs(�(P )) =) (k,', �0(P)) 2 E

SJ⌧K

To instantiate the hypothesis, we need an environment �0 that satisfies

G
SJIS ] "�K. We argue that it is exactly � composed with �I

S

: we know
they are disjoint, and we know the former can be lifted into the latter via
Lemma 9.5.1. This means, in particular, that ' is ;.

Since we have no relevant locations, any heap will satisfy the expression
relation: in particular, the arbitrary H that we have to consider for our
obligation, and we can similarly use the arbitrary stack S. This means that
we our hypothesis tells us that:
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hH # S # (�I
S

(�(P))i
⇤
! hH0 # S0 # ·i

Unless we run beyond our step budget, in which case we are trivially
in the relation. Similarly, if we run to Fail c, we are also in our relation.
Otherwise, we know that S0 = S, v and, for a future world W 0

v W that H0

satisfies with the relevant locations '0, (W 0,'0, v) 2 V
SJ⌧K.

Now, what we want to show is that this value is “contained” by the code
in h#⌧i to behave like #⌧ . But, clearly we can’t show that using the E

�J⌧K
logical relation, as the value still can have locations it is closing over, etc.
So, we proceed by two steps. First, we appeal to Lemma 9.5.3

This will tell us that we can evaluate the whole program at question
further, to get to a point with a world W 00

v W 0, '00, H00 :'00['0 W 00 and
(W 00,'00, v0) 2 V

SJ"#⌧K:

hH # S # (�I
S

(�(P)); h#⌧ii
⇤
!

hH0 # S, v # h#⌧ii ⇤
!

hH00 # S, v0 # ·i

Now, we appeal to Lemma 9.5.1

This means that the value that we ran down to is in (W 00.k, v0) 2 V
�J#⌧K,

which is exactly what we need to show.

9.5.5 Proving compatibility lemmas

We state the lemmas here, though defer the proofs to Appendix D, as they
are quite mechanical; the only interesting one is the last one (the boundary
rule), and that is exactly Lemma 9.5.4, that we just proved. We first prove
compatibility lemmas for our core language, FunLang, and then for our
linking types extension. In the next chapter, we will have a new extension,
but reuse the core language, and thus reuse the core language compatibility
proofs. Since our logical relations are built out of closed terms, we need to
pick substitutions for our imports. Our imports are terms written using
the linking types extensions, and thus our proofs for FunLang involve first
closing with substitutions for both extensions: both the state extension
covered in this chapter and the exception one (identified by X) covered in
Chapter 10). The only place where this becomes material is in the boundary
rule: but the typing rule that makes that relevant is only introduced by
the extension (and thus we will show the lemma for the boundary for the
state extension here, and leave the exception extension boundary rule for
Chapter 10).

Lemma 9.5.5 (unit). Show that JI;� ` push 0 : unitK.
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Proof. See D.0.4.

Lemma 9.5.6 (bool). Show for any n, JI;� ` push n : boolK.

Proof. See D.0.5.

Lemma 9.5.7 (if). If JI;� ` P : boolK, JI;� ` P1 : ⌧K, and JI;� ` P2 : ⌧K
then

JI;� ` P; if0 P1 P2 : ⌧K.

Proof. See D.0.6.

Lemma 9.5.8 (int). For any n, show JI;� ` push n : intK.

Proof. See D.0.7.

Lemma 9.5.9 (op-=). If JI;� ` P1 : intK and JI;� ` P2 : intK, show that
JI;� ` P1;P2; equal? : boolK.

Proof. See D.0.8.

Lemma 9.5.10 (op-¡). If JI;� ` P1 : intK and JI;� ` P2 : intK, show that
JI;� ` P1;P2; less? : boolK.

Proof. See D.0.9.

Lemma 9.5.11 (op-+). If JI;� ` P1 : intK and JI;� ` P2 : intK, show
that JI;� ` P1;P2; add : intK.

Proof. See D.0.10.

Lemma 9.5.12 (var). For any x : ⌧ 2 �, show that JI;� ` push x : ⌧K.

Proof. See D.0.11.

Lemma 9.5.13 (pair). If JI;� ` P1 : ⌧1K and JI;� ` P2 : ⌧2K, show that
JI;� ` P1;P2; lam x2. lam x1.push [x1, x2] : ⌧1 ⇥ ⌧2K.

Proof. See D.0.12.

Lemma 9.5.14 (fst). If JI;� ` P : ⌧1 ⇥ ⌧2K, show that JI;� ` P1; push 0; idx :
⌧1K.

Proof. See D.0.13.

Lemma 9.5.15 (snd). If JI;� ` P : ⌧1 ⇥ ⌧2K, show that JI;� ` P1; push 1; idx :
⌧2K.

Proof. See D.0.14.

Lemma 9.5.16 (inl). If JI;� ` P : ⌧1K, show that JI;� ` P; lam x.push [0, x] :
⌧1 + ⌧2K.
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Proof. See D.0.15.

Lemma 9.5.17 (inr). If JI;� ` P : ⌧2K, show that JI;� ` P; lam x.push [1, x] :
⌧1 + ⌧2K.

Proof. See D.0.16.

Lemma 9.5.18 (match). If JI;� ` P : ⌧1 + ⌧2K, JI;�, x : ⌧1 ` P1 : ⌧K, and
JI;�, y : ⌧2 ` P2 : ⌧K, show that
JI;� ` P;DUP; push 1; idx; SWAP; push 0; idx; if0 (lam x.P1) (lam y.P2) : ⌧K.

Proof. See D.0.17.

Lemma 9.5.19 (fold). If JI;� ` P : ⌧ [µ↵.⌧/↵]K, show that JI;� ` P :
µ↵.⌧K.

Proof. See D.0.18.

Lemma 9.5.20 (unfold). If JI;� ` P : µ↵.⌧K, show that JI;� ` P; noop : ⌧ [µ↵.⌧/↵]K.

Proof. See D.0.19.

Lemma 9.5.21 (fun). If JI;�,f : (⌧1, . . . , ⌧n) ! ⌧ 0, xi : ⌧i ` P : ⌧ 0K, show
that
JI;� ` push (thunk push (thunk lam f.lam xn. . . . lam x1.P); fix) : (⌧1, . . . , ⌧n) ! ⌧ 0K

Proof. See D.0.20.

Lemma 9.5.22 (app). If JI;� ` P : (⌧1, . . . , ⌧n) ! ⌧ 0K and for i 2 {1, . . . , n}
JI;� ` Pi : ⌧iK then

JI;� ` P;P1; SWAP . . .Pn; SWAP; call : ⌧ 0K

Proof. See D.0.21.

Lemma 9.5.23 (boundary S). JIS ]"� `S P : ⌧K =) JI;� ` P; h#⌧i : #⌧K

Proof. See D.0.22.

For the next set of lemmas, which cover the state extension type system,
we use the following notation:

J� `S P : ⌧K ⌘ 8W '�. (W,', �) 2 G
SJ�K =) (W, flocs(�(P)), �(P)) 2 E

SJ⌧K

Lemma 9.5.24 (unit). Show that J� `S push 0 : unitK.

Proof. See D.0.23.

Lemma 9.5.25 (bool). Show for any n, J� `S n : boolK.

Proof. See D.0.24.
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Lemma 9.5.26 (if). If J� `S P : boolK, J� `S P1 : ⌧K, and J� `S P2 : ⌧K
then

J� `S P; if0 P1 P2 : ⌧K.

Proof. See D.0.25.

Lemma 9.5.27 (int). For any n, show J� `S push n : intK.

Proof. See D.0.26.

Lemma 9.5.28 (op-=). If J� `S P1 : intK and J� `S P2 : intK, show that
J� `S P1;P2; equal? : boolK.

Proof. See D.0.27.

Lemma 9.5.29 (op-¡). If J� `S P1 : intK and J� `S P2 : intK, show that
J� `S P1;P2; less? : boolK.

Proof. See D.0.28.

Lemma 9.5.30 (op-+). If J� `S P1 : intK and J� `S P2 : intK, show that
J� `S P1;P2; add : intK.

Proof. See D.0.29.

Lemma 9.5.31 (var). For any x : ⌧ 2 �, show that J� `S push x : ⌧K.

Proof. See D.0.30.

Lemma 9.5.32 (pair). If J� `S P1 : ⌧1K and J� `S P2 : ⌧2K then J� `S

P1;P2; lam x2.lam x1.push [x1, x2] : ⌧1 ⇥ ⌧2K

Proof. See D.0.31.

Lemma 9.5.33 (fst). If J� `S P : ⌧1 ⇥ ⌧2K, show that J� `S P1; push 0; idx :
⌧1K.

Proof. See D.0.32.

Lemma 9.5.34 (snd). If J� `S P : ⌧1 ⇥ ⌧2K, show that J� `S P1; push 1; idx :
⌧2K.

Proof. See D.0.33.

Lemma 9.5.35 (inl). If J� `S P : ⌧1K, show that J� `S P; lam x.push [0, x] :
⌧1 + ⌧2K.

Proof. See D.0.34.

Lemma 9.5.36 (inr). If J� `S P : ⌧2K, show that J� `S P; lam x.push [1, x] :
⌧1 + ⌧2K.
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Proof. See D.0.35.

Lemma 9.5.37 (match). If J� `S P : ⌧1 + ⌧2K, J�, x : ⌧1 `S P1 : ⌧K, and
J�, y : ⌧2 `S P2 : ⌧K, show that

J� `S P;DUP; push 1; idx; SWAP; push 0; idx; if0 (lam x.P1) (lam y.P2) : ⌧K

Proof. See D.0.36.

Lemma 9.5.38 (fold). If J� `S P : ⌧ [µ↵.⌧/↵]K, show that J� `S P : µ↵.⌧K.

Proof. See D.0.37.

Lemma 9.5.39 (unfold). If J� `S P : µ↵.⌧K, show that J� `S P; noop : ⌧ [µ↵.⌧ ]K.

Proof. See D.0.38.

Lemma 9.5.40 (fun). If J�,f : (⌧1, . . . , ⌧n)
 
! ⌧ 0, xi : ⌧i `S P : ⌧ 0K, show

that J� `S push (thunk push (thunk lam f.lam xn. . . . lam x1.�(P)); fix) :
(⌧1, . . . , ⌧n)

 
! ⌧ 0K

Proof. See D.0.39.

Lemma 9.5.41 (app pure). If J� `S P : (⌧1, . . . , ⌧n)
#
! ⌧ 0K and for i 2

{1, . . . , n} J� `S Pi : ⌧iK then
J� `S P;P1; SWAP . . .Pn; SWAP; call : ⌧ 0K

Proof. See D.0.40.

Lemma 9.5.42 (app state). If J� `S P : (⌧1, . . . , ⌧n)
 
! ⌧ 0K and for i 2

{1, . . . , n} J� `S Pi : ⌧iK then
J� `S P;P1; SWAP . . .Pn; SWAP; call : ⌧ 0K

Proof. See D.0.41.

9.5.6 Proving libraries satisfy types

The next step we need to do is prove that the library code that we are
linking with satisfies the types that we are importing it as. We note
that a single library may have multiple types that it can be given—and
may be usable from di↵erent extensions, which have di↵erent reasoning
principles. This is most noticeable in our case because our source language
and extensions lack polymorphism, while many of our library functions
are naturally polymorphic: e.g., ref ⌧ , not ref int or ref bool. However,
when we prove the libraries sound, we can prove that they satisfy the more
general pattern, and thus include them at whatever more concrete type is
appropriate.
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All the library code we used is repeated below. We show the types that
we want to prove that the code has.

ALLOC : (⌧)
 
! ref ⌧ , t�p (t�l falloc.lam x.push x; alloc); fix

READ : (ref ⌧)
 
! ⌧ , t�p (t�l fread.lam l.push l; read); fix

WRITE : (ref ⌧ , ⌧)
 
! unit , t�p (t�l fwrite.lam x.lam l.push l; push x;write; push 0); fix

where t�p = thunk push and t�l = thunk lam

Lemma 9.5.43 (alloc sound S).

8W ⌧. (W, ;, thunk push (thunk lam falloc.lam x.push x; alloc); fix) 2 V
SJ(⌧+)  

!

ref ⌧+K

Proof. It su�ces to show:

8v ' W 0 AW.' ⇢ dom(W 0. ) ^ (W 0,', v) 2 V
SJ⌧+K

=) (W 0,', push v; alloc) 2 E
SJref ⌧+K

Thus, we choose a H :': W 0, S, and take two steps hH # S # push v; alloci
2
!

hH, ` 7! v # S, ` # ·i, for fresh `. To complete the proof, we choose W 00 to
be W 0 extended with ` mapping to V

SJ⌧+K, appropriately restricted, and
'0 = {`}, which means (W 00,'0, `) 2 V

SJref ⌧+K as needed.

Lemma 9.5.44 (read sound S).

8W ⌧. (W, ;, thunk push (thunk lam fread.lam l.push l; read); fix) 2 V
SJ(ref ⌧+)

 
!

⌧+K

Proof. It su�ces to show:

8` W 0 AW.` 2 dom(W 0. ) ^ (W 0, {`}, `) 2 V
SJref ⌧+K

=) (W 0, {`}, push `; read) 2 E
SJ⌧+K

Thus, we choose a H :{`}: W
0, S, and if W 0. (`) 6= †, take two steps

hH # S # push `; readi
2
! hH # S, v # ·i, which from the invariant on the heap,

(BW 0, ;, v) 2 V
SJ⌧+K as needed. If W 0. (`) = †, then the location has been

freed and we will reduce to fail Mem, which is also in the relation.

Lemma 9.5.45 (write sound S).

8W ⌧. (W, ;, thunk push (thunk lam fwrite.lam x.lam l.push l; push x;write; push 0); fix)
2 V

SJ(ref ⌧+, ⌧+)
 
! unitK

Proof. It su�ces to show:

8` v W 0 AW. {`} [ ' ⇢ dom(W 0. ) ^ (W 0, {`}, `) 2 V
SJref ⌧+K ^ (W 0,', v) 2 V

SJ⌧+K
=) (W 0, {`} [ ', push `; push v;write; push 0) 2 E

SJunitK
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Thus, we choose a H :{`}[': W
0, S, and, if W 0. (`) 6= †, take four steps:

hH # S # push `; push v;write; push 0i !
hH # S, ` # push v;write; push 0i !
hH # S, `, v # write; push 0i !
hH[` 7! v] # S, `, v # push 0i !
hH[` 7! v] # S, 0 # ·i

Note that the third step succeeds because the invariant on the heap means
that ` is bound in it. To complete the proof, it su�ces to choose '0 as ;,
W 00 as an extension that simply decreases the step index, since (W 00, ;, 0) 2
V
SJunitK. We know H[` 7! v] :{`}[' W 00 and that W 00 is an extension, since

the value we updated the location with had the same type as what was at
`. If W 0. (`) = †, then the location has been freed and we will reduce to
fail Mem, which is also in the relation.

9.5.7 Finally, proving soundness

With all of the compatibility lemmas proved, we can prove the fundamental
property of the logical relation:

Theorem 9.5.46 (fundamental property).
If I;� ` e : ⌧ then JI;� ` e+ : ⌧K.

Proof. We prove this by induction over the typing derivation, using a
corresponding compatibility lemma for each typing rule. Note that when
we cross the boundary, we will switch to using compatibility lemmas for the
corresponding extension.

With that, we can prove type soundness. Note that this references the
exception extension covered in Chapter 10, as we close with libraries that
could reference it.

Corollary 9.5.47 (type soundness). If I; · ` e : ⌧ then given libraries �I
S

(where ((k, ;), ;, �I
S

) 2 G
SJISK) and �I

X

(where ((k, ;), ;, �I
X

) 2 G
XJIXK),

for any heap H, stack S, if hH #S #�I
S

(�I
X

(e+))i
⇤
! hH0 #S0 #P0

i then one of:

• P0 = · and S0 = Fail c and c 2 OkErr

• P0 = · and S0 = S, v and 9j. (j, v) 2 V
�J⌧K

• 9H⇤ S⇤ P⇤. hH0 # S0 # P0
i ! hH⇤ # S⇤ # P⇤

i

Proof. This is simply a combination of the fundamental property with the
definition of E�J⌧K.



10
CASE STUDY : EXCEPT IONS

This extension reuses the same core language, FunLang, as in Chapter 9,
and thus the same target, StackLang. We do not reproduce the FunLang

static semantics, the operational semantics of StackLang, or the compiler
between them (see Figures 9.1, 9.3, and 9.4).

The key guarantee of a linking types extension is sound encapsulation,
not only from core code, but from other extensions as well. Indeed, one
can use multiple extensions in di↵erent parts of the same program. In this
section, we develop a second extension: one for exceptional control flow.
However, since encapsulated code needs to be isolated from other parts of
the program, we cannot have a single boundary with multiple extensions
active simultaneously. So that we may freely interleave control flow and
mutable state, we expand the extension from the previous section with
support for exceptions, rather than developing a new extension from scratch.
While it may feel unsatisfying that these features cannot be teased apart,
we imagine that many practical linking types extensions really would bundle
multiple features together, since complex foreign functions are likely to have
many di↵erent side-e↵ects. Figuring out how to tease apart the semantics
and reduce the resulting proof e↵ort is interesting future work.

As before, the first step is to extend the type system. For simplicity,
our modal arrows only signal whether a function is pure or impure; they
do not to distinguish between di↵erent (state and control) e↵ects, though
our framework is certainly compatible with a fine-grained type system.
Therefore, this part of the extension is exactly the same as in the previous
section, though we include it again in Figure 10.1 for clarity. For contrast,
we typeset this extension in orange bold font, use square modal arrows,
â
!, and identify the extension with X.

Extended Type ⌧ := ⌧ | unit | bool | int | ⌧ ⇥ ⌧ | ⌧ + ⌧
| µ↵.⌧ | (⌧ , . . . , ⌧)

â
! ⌧ | ref ⌧

x : ⌧ 2 �

� `X x : ⌧

�, f : (⌧1, . . . , ⌧n)
⌅
! ⌧ 0, xi : ⌧i `X e : ⌧ 0

� `X fun f(x1 : ⌧1, . . . , xn : ⌧n){e} : (⌧1, . . . , ⌧n)
⌅
! ⌧ 0

� `X e : (⌧1, . . . , ⌧n)
â
! ⌧ 0 � `X ei : ⌧i

� `X e(e1, . . . , en) : ⌧
0

Figure 10.1: Linking types for exceptions and state

133
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"⌧ , ⌧

"unit , unit

"bool , bool

"int , int

"⌧1 ⇥ ⌧2 , "⌧1 ⇥ "⌧2
"⌧1 + ⌧2 , "⌧1 + "⌧2
"µ↵.⌧ , µ↵."⌧

"(⌧1, . . . , ⌧n)!⌧ 0 , ("⌧1, . . . , "⌧n)
⇤
!"⌧ 0

#⌧ , ⌧

⇣

unit , unit⇣

bool , bool⇣

int , int⇣

⌧1⇥⌧2 , ⇣

⌧1 ⇥

⇣

⌧2⇣

⌧1+⌧2 , ⇣

⌧1 +

⇣

⌧2⇣

µ↵.⌧ , µ↵.

⇣

⌧⇣

(⌧1, . . . , ⌧n)
⇤
! ⌧ 0 , (

⇣

⌧1, . . . ,

⇣

⌧n)!

⇣

⌧ 0⇣

(⌧1, . . . , ⌧n)
⌅
! ⌧ 0 , (

⇣

⌧1, . . . ,

⇣

⌧n)!U + (

⇣

⌧ 0)⇣
ref ⌧ , unit

#⌧ , U +

⇣

⌧

where U = µ↵.unit+ int+ (↵⇥ ↵) + (↵+ ↵) + ((↵) ! ↵) + ↵

Figure 10.2: Lift and lower functions for exceptions extension

The next step is to define lift and lower, which we present in Figure 10.2.
While lift is exactly the same as in the previous case study, lower is quite
di↵erent. Since code under an X boundary might throw an uncaught excep-
tion, lower must account for the type of an exceptional result. Therefore, we
define lower in two steps: the helper metafunction

⇣

accounts for the success
case, and the top level # merges it with the exception case under a sum.
Since exceptions might produce a variety of values, we use the universal
type U in the exception case. While the identity of exceptions is, indeed, an
important aspect of them, in this study we wanted to focus on their control
aspect. To handle identity would likely require an open sum type, whether
just in the linking code or in the core as well.

Next, we provide a StackLang implementation of an exceptions library in
Figure 10.3. Although defining encapsulation wrappers is really the next
step of the framework, the library implementation o↵ers some intuition
for the way that we model exceptions using delimited continuations in
StackLang. A shift with an empty body discards the program until the next
reset, which intuitively corresponds to throwing and catching an exception,
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CATCH , thunk push (thunk lam fcatch.lam f.push f; call; lam res.push [1, res]; reset); fix
THROW , thunk push (thunk lam fthrow.lam exn.push [0, exn]; shift ()); fix

h#ref ⌧i , free; push [1, 0]; reset

h#(⌧1, . . . ,⌧n)
⌅
! ⌧ 0i , DUP; push (thunk lam l.push l; free); getlocs; lam res. push [1, res]; reset

h#⌧i , lam res.push [1, res]; reset where ⌧ not in above

Figure 10.3: Exception target library & boundary enforcement

respectively. In the implementation, THROW is responsible for tagging an
exception value, while CATCH is responsible for tagging a success value.
Note that CATCH takes a function corresponding to the computation to
run.

With an intuitive understanding of StackLang exceptions, we are ready
to define the target-level encapsulation wrappers. Unlike the previous
extension, wrappers are required for every ⌧ , because the boundary must
always be prepared for an uncaught exception. In all cases, the wrapper
is responsible for capturing any escaping exceptions, which it does with
reset (N.B., if there is no shift under the boundary, this reset is e↵ectively a
no-op). For types with pure values, the encapsulation wrapper can simply
tag the success value before it resets. Meanwhile, references and impure
functions are handled as before, modulo tagging and a reset.

With this new extension, we make a new version of our fib function
(Figure 10.4): this time, we take a list of inputs (1), computing the result of
all using a single memo-table (2), and throwing an exception on bad input
(3). Notice that there is not a corresponding catch, since, in this example,
a bad input is an unrecoverable error. Still, our program—and indeed,
any program with uncaught exceptions—is safe because the boundary will
automatically catch and tag any escaping exceptions.

10.1 soundness

Since in Chapter 9 we constructed the FunLang model and proved its
compatibility lemmas, our task for this section is slightly reduced. First, we
need to build a model for the exception extension, then prove the lemmas
relating to it.

10.1.1 Exception extension model

Our exception extension logical relation shares the same common definitions
relating to worlds, heap typings, etc, as our state extension relation, de-
scribed above and shown previously in Figure 9.11. We use the superscript
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import( alloc : ((int)
⇤
! int)

⌅
! ref ((int)

⇤
! int),

read : (ref ((int)
⇤
! int))

⌅
! ((int)

⇤
! int),

write : (ref ((int)
⇤
! int), ((int)

⇤
! int))

⌅
! unit,

catch : (()
⌅
! U)

⇤
! U + U,

throw : (U)
⌅
! int)

fun fiblist(lst : µ↵.(int⇥ ↵) + unit){ 1
{let mtbl = alloc(fun f(n : int){�1}) in 2
let mf = fun mutfib(y : int){
if x = 0 {0}{if x = 1{1}{
let m = read(mtbl) in
if m(x) = �1{
let r = mutfib(x� 1) + mutfib(x� 2) in
let = write(mtbl, fun f(n){if n = x{r}{m(x)}}) in
r

}{m(x)}
} in

fun mutfiblist(l : µ↵.(int⇥ ↵) + unit){
match unfold l

x {if fst x < 0 {throw(fold inl ())} { 3
fold inl(mf(fst x), mutfiblist(snd x))}

y {fold inr()}
}

}(lst)}X
U+ µ↵.(int⇥ ↵) + unit

}

Figure 10.4: Example: fibonacci with input checks and memoization
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X to identify elements of this relation. The di↵erences show up in the
value and expression relations, which we present in Figure 10.5. The value
relation cases aside from functions are the same as in the state extension,
as function values are the only place where the possibility of exceptions can
arise. Structurally, the value relations for

⇤
! and

⌅
! are identical to the state

extension: what is di↵erent is that
⇤
! appeals to the E

XJ⌧K relation, and
⌅
! appeals to E

XJ⌧K✓. These expression relations capture the exceptional
control flow.

In particular, EXJ⌧K is the exact same expression relation as in the state
logical relation, which means that if a term is in that relation, it will either
run forever, evaluate to a well-defined error, or terminate in a value of type
⌧ . Clearly, this rules out an exception being thrown, which would be a
value of type U. Since

⇤
! says the body is in this relation, the body cannot

throw (uncaught) exceptions, which is exactly what we want: extensional
exception-free-ness. On the other hand, the E

XJ⌧K✓ relation is defined to
allow exceptional return, in the following way. It says, if given a continuation
K drawn from the continuation relation KJ⌧ ) ⌧ 0K, the result of wrapping
the program in the continuation should then be in the exception-free relation
E
XJ⌧ 0K—i.e., K should have caught any possible exception and handled it,

or the normal return value of type ⌧ , and in any case produce a ⌧ 0. We
syntactically restrict the programs in E

XJ⌧K✓ from having resets in them,
as this would allow exceptions flowing out to be caught, when they should
be caught in code in the continuations or in the E

XJ⌧K relation. KJ⌧ ) ⌧ 0K
itself is defined to take an arbitrary result program P , drawn from RJ⌧K,
and prove that the result of substituting that is in E

XJ⌧ 0K. Those results
are exactly the two possibilities for programs in E

XJ⌧K✓: either returning
a normal value of type ⌧ , or throwing a tagged exception using shift. This
pattern of relations is not novel: it shows up in other >>-closed relations
for exceptions (e.g., (Dreyer et al., 2012; New et al., 2016)), but typically,
the relation that we have as EXJ⌧K is called O and it makes no restrictions
on the shape of value you end up with at the end: just that if you terminate,
there will be a value on top of the stack, for example. This is su�cient to
reason about exceptions in whole programs, but our need to encapsulate
the control e↵ects and allow the resulting value to cross boundaries means
we need more structure, hence our dual expression relation structure.

10.1.2 Proving " sound

Lemma 10.1.1 (lift X). 8W v. (W, ;, v) 2 V
XJ"⌧K () (W.k, v) 2 V

�J⌧K

Proof. We prove this by simultaneous induction over the size k and the
structure of ⌧ .
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V
XJunitK = {(W, ;, 0)}

V
XJboolK = {(W, ;, n)}

V
XJintK = {(W, ;, n)}

V
XJ⌧1 ⇥ ⌧2K = {(W,', [v1, v2]) | ' ⇢ dom(W. ) ^ '1 [ '2 = '^

(W,'1, v1) 2 V
XJ⌧1K ^ (W,'2, v2) 2 V

XJ⌧2K‘}
V
XJ⌧1 + ⌧2K = {(W,', [0, v]) | ' ⇢ dom(W. ) ^ (W,', v) 2 V

XJ⌧1K}
[ {(W,', [1, v]) | ' ⇢ dom(W. ) ^ (W,', v) 2 V

XJ⌧2K}
V
XJµ↵.⌧K = {(W,', v) | (W,', v) 2 BVXJ⌧ [µ↵.⌧/↵]K}

V
XJref ⌧K = {(W, {`}, `) | W. (`) = bV

XJ⌧KcW.k | †}

V
XJ(⌧1, . . . , ⌧n)

⇤
! ⌧ 0K = {(W, ;, thunk push (thunk lam f.lam xn. . . . lam x1.P); fix) |

8vi 'i W 0 AW. 'i ⇢ dom(W 0. ) ^ (W 0,'i, vi) 2 V
XJ⌧iK

=) (W 0,
S

i 'i, [x1 7! v1, . . . , xn 7! vn,
f 7! (thunk push (thunk lam f.lam xn. . . . lam x1.P); fix)]P)
2 E

XJ⌧ 0K}
V
XJ(⌧1, . . . , ⌧n)

⌅
! ⌧ 0K = {(W,', thunk push (thunk lam f.lam xn. . . . lam x1.P); fix) |

' ⇢ dom(W. ) ^ 8vi 'i W 0 AW.
'i ⇢ dom(W 0. ) ^ (W 0,'i, vi) 2 V

XJ⌧iK
=) (W 0,' [

S
i 'i, [x1 7! v1, . . . , xn 7! vn,

f 7! (thunk push (thunk lam f.lam xn. . . . lam x1.P); fix)]P)
2 E

XJ⌧ 0K✓}

K ::= push v1; push v2; . . . push vn; [·];P

E
XJ⌧K✓ = {(W,'p,P) | reset 62 P ^ 8(W,'k,K) 2 KJ⌧ ) ⌧ 0K. (W,'p [ 'k,K[P]) 2 E

XJ⌧ 0K}
RJ⌧K = {(W,', push v) | (W,', v) 2 V

XJ⌧K}
[ {(W,'p [ 'v, push [0, v]; shift (); P) | (W,'v, v) 2 V

XJUK ^ reset /2 P}
KJ⌧ ) ⌧ 0K = {(W,',K) | ' = flocs(K) ^ 8W 0

w W, (W 0,'0, P ) 2 RJ⌧K.
(W 0,' [ '0,K[P ]) 2 E

XJ⌧ 0K}
E
XJ⌧K = {(W,',P) | 8H:'W, S. runningW.k(hH # S # P i) _ 9j < W.k,H0, S0.

hH # S # P i
⇤
! jhH0 # S0 # ·i ^ ((S0 = Fail c ^ c 2 OkErr)

_ 9v'0 W 0
w W.

�
S0 = S, v ^ H0 :'0[' W 0

^ (W 0,'0, v) 2 V
XJ⌧K

�
)}

where OkErr , {Mem}

Figure 10.5: Exception extension logical relation: main definition
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Case unit/bool/int. In this case, the values are trivially in the relation,
by definition.

Case ⌧1 ⇥ ⌧2/⌧1 + ⌧2. These follow straightforwardly by appealing to the
inductive hypothesis.

Case µ↵.⌧ . In this case, we can appeal to our inductive hypothesis at a
smaller k (as our type may have gotten larger).

Case (⌧1, . . . , ⌧n) ! ⌧ 0. This follows by application of the induction hy-
pothesis.

10.1.3 Proving h#⌧i satisfies #

Lemma 10.1.2 (wrap closed X). 8⌧ . fvars(h#⌧i) = ;

Proof. This follows by simple inspection of the definition.

Lemma 10.1.3 (encapsulation continuation). 8W ⌧ . (W, ;, h#⌧i) 2 KJ⌧!"#⌧K

Proof. We proceed by case analysis on ⌧ , handling the majority of the cases
for which h#⌧i is the default, exception catching case first.
In those cases, which by inspection, "#⌧ = U+ ⌧ , the proof obligation is

to show that

(W, ;, lam res.push [1, res]; reset) 2 KJ⌧!U+ ⌧K

That means:

8v'. (W,', v) 2 V
XJUK =)

(W,', push [0, v]; shift (); lam res.push [1, res]; reset) 2 E
XJU+ ⌧K#

^ 8v'. (W,', v) 2 V
XJ⌧K =)

(W,', push v; lam res.push [1, res]; reset) 2 E
XJU+ ⌧K#

We consider each case in turn. First, we consider the case when an
exception value is raised. We choose an heap H :' W , and a stack S, and
see that the term runs as follows:

hH # S # push [0, v]; shift (); lam res.push [1, res]; reseti !
hH # S, [0, v] # shift (); lam res.push [1, res]; reseti !
hH # S, [0, v] # ·i

At this point, we clearly satisfy the requirements of the expression relation.
In the other case, when no exception is raised, we again choose a heap H :' W
(note this is a di↵erest set of relevant locations!), and run as follows:
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hH # S # push v; lam res.push [1, res]; reseti !
hH # S, v # lam res.push [1, res]; reseti !
hH # S # push [1, v]; reseti !
hH # S, [1, v] # reseti !
hH # S, [1, v] # ·i

Again, we satisfy the relation, this time in the other disjunct.

Now, we consider the other two types, which use unique wrapping code:

Case ref ⌧ . Our obligation is to show:

8v'. (W,', v) 2 V
XJUK

=) (W,', push [0, v]; shift (); free; push [1, 0]; reset) 2 E
XJU+ unitK#

^ 8v'. (W,', v) 2 V
XJref ⌧K

=) (W,', push v; free; push [1, 0]; reset) 2 E
XJU+ unitK#

The first case is identical to our first one, so we only consider the
second case. By inspection of VXJref ⌧K, we know for some `, ' = {`},
v = `, and W. (`) = bV

XJ⌧KcW.k. This means when we choose a heap
H :' W , we know it will have ` bound to some value in BbVXJ⌧KcW.k,
though as we will see, the actual value does not matter. We will then
take four steps:

hH # S # push `; free; push [1, 0]; reseti !
hH # S, ` # free; push [1, 0]; reseti !
hH \ ` # S # push [1, 0]; reseti !
hH \ ` # S, [1, 0] # reseti !
hH \ ` # S, [1, 0] # ·i

Now we choose W 0 to be W , but with ` updated to be marked as
dead, and choose '0 = ;. Still, (H \ `) :' W 0 (as dead elements in the
world are ignored), and by definition, (W 0, ;, 0) 2 V

XJunitK, which,
along with the appropriate tag, is su�cient to satisfy V

XJU+ unitK,
so we are done with this case.

Case (⌧1, . . . , ⌧n)
 
! ⌧ 0. Our obligation is to show:
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8v'. (W,', v) 2 V
XJUK

=) (W,', push [0, v]; shift (); lam x.(push x; push x);
push (thunk lam l.push l; free); getlocs; lam res. push [1, res]; reset)

2 E
XJU+ (⌧1, . . . , ⌧n)

 
! ⌧ 0K#

^ 8v'. (W,', v) 2 V
XJ(⌧1, . . . , ⌧n)

 
! ⌧ 0K

=) (W,', push v; lam x.(push x; push x);
push (thunk lam l.push l; free); getlocs; lam res. push [1, res]; reset)

2 E
XJU+ (⌧1, . . . , ⌧n)

 
! ⌧ 0K#

As before, the first case is identical to previous, so we only consider
the second case. Once we pick an arbitrary stack S and a heap H :' W ,
we take the following steps:

hH # S # push v; lam x.(push x; push x); push (thunk lam l.push l; free);
getlocs; lam res. push [1, res]; reset

i
4
!

hH # S, v, v # push (thunk lam l.push l; free); getlocs; lam res. push [1, res]; reseti !
hH # S, v, v, (thunk lam l.push l; free) # getlocs; lam res. push [1, res]; reseti

Now, we know that getlocs will run the thunk on top of the stack
once for every free location one position down the stack, which means
everything reachable from our function value. Assume those locations
are `1, . . . , `k. Then we step as follows:

hH # S, v, v, (thunk lam l.push l; free) # getlocs; lam res. push [1, res]; reseti
3k+1
!

hH \ {`1, . . . , `k} # S, v # lam res. push [1, res]; reseti !
hH \ {`1, . . . , `k} # S # push [1, v]; reseti !
hH \ {`1, . . . , `k} # S, [1, v] # reseti !
hH \ {`1, . . . , `k} # S, [1, v] # ·i

Now that we have terminated, we have to fulfill the obligations of
E
XJU+ (⌧1, . . . , ⌧n)

#
! ⌧ 0K. We choose '0 = ;, and W 0 such that every

location in ' has been marked dead. By invariant of the relation,
' = {`1, . . . , `k}. Our heap satisfies the world, by construction, and
everything that should be dead is, so the only thing that remains is
to show that (W 0, ;, [1, v]) 2 V

XJU+ (⌧1, . . . , ⌧n)
#
! ⌧ 0K. This follows

from the definition of VXJ⌧ + ⌧K and our hypothesis on v, once we
substitute our empty relevant location set in.
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10.1.4 Proving libraries satisfy types

We now need to show that our exception library satisfies the proper semantic
types. We present the definitions and their intended types first, after which
we show the proofs.

CATCH : (()
⌅
! ⌧)

⇤
! U+ ⌧

, t�p (t�l fcatch.lam f.push f; call; lam res.push [1, res]; reset); fix

THROW : (U)
⌅
! ⌧

, t�p (t�l fthrow.lam exn.push [0, exn]; shift ()); fix

where t�p = thunk push and t�l = thunk lam

Lemma 10.1.4 (catch sound X).

8W ⌧ . (W, ;, thunk push (thunk lam fcatch.lam f.push f; call;
lam res.push [1, res]; reset); fix)

2 V
XJ(() ⌅

! ⌧)
⇤
! U+ ⌧K

Proof. It su�ces to show:

' ⇢ dom(W. ) ^ 8v ' W 0 AW. ' ⇢ dom(W 0. ) ^ (W 0,', v) 2 V
XJ() ⌅

! ⌧K
=) (W 0,', push v; call; lam res.push [1, res]; reset) 2 E

XJU+ ⌧K

Thus, we need to consider heap H :'['k W 0, stack S, and after two steps,

are running the body of v. From the definition of VXJ() ⌅
! ⌧K, we know

that the body, which has to arguments, is in E
XJ⌧K✓. We instantiate that

with K = [·]; lam res.push [1, res]; reset, and thus it su�ces to show that
(W 00, ;,K) 2 KJ⌧ ) U+⌧K. In the case that a normal value is returned, this
tags it in with 1 and returns it, satisfying the relation. In the case that an
exceptional value is produced, it is already tagged with 0, and immediately
reduces to the value, so we are done.

Lemma 10.1.5 (throw sound X).

8W ⌧ . (W, ;, thunk push (thunk lam fthrow.lam exn.push [0, exn]; shift ()); fix) 2
V
XJ(U) ⌅

! ⌧K

Proof. It su�ces to show:

' ⇢ dom(W. ) ^ 8v ' W 0 AW. ' ⇢ dom(W 0. ) ^ (W 0,', v) 2 V
XJUK

=) (W 0,', push [0, v]; shift ()) 2 E
XJ⌧K✓
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We choose an arbitrary ⌧ 0,K, and the result is now immediate from
the definition of KJ⌧ ) ⌧ 0K, since our term is already in the form of the
exception result.

10.1.5 Compatibility lemmas & type soundness

Since we already proved compatibility lemmas for FunLang, we just need
to prove compatibility lemmas for the exception extension, and one for
the boundary rule for the exception extension. We show the proof for the
boundary term, which is interesting; the rest of the compatibily lemmas we
defer to Appendix E.

We use the following shorthand for typing rules for the exception notation,
which supplements the notation defined in §9.5.5.

J� `X P : ⌧K ⌘ 8W '�. (W,', �) 2 G
XJ�K =) (W, flocs(�(P)), �(P)) 2 E

XJ⌧K✓

Lemma 10.1.6 (boundaryX). JIX]"� `X P : ⌧K =) JI;� ` P; h#⌧i : #⌧K
Proof. The general approach of this proof is similar to the one for S
(Lemma 9.5.4); the di↵erence, of course, is that the X logical relation
has a di↵erent shape, and so some details are di↵erent.
Expanding the goal, we see we need to show:

8k �. 8((k, ;), ;, �I
S

) 2 G
SJISK. 8((k, ;), ;, �I

X

) 2 G
XJIXK. (k, �) 2 G

�J�K =)

(k, �I
X

(�I
S

(�(P; h#⌧i)))) 2 E
�J#⌧K

We note due to Lemma 10.1.2 that h#⌧i is closed, so can push the
substitution in to only around P.
The hypothesis that we are working with says:

8W '� (W,', �) 2 G
XJIX ] "�K =) (W,', �(P)) 2 E

XJ⌧K 

To instantiate the hypothesis, we need an environment �0 that satisfies

G
SJIX ] "�K. We argue that it is exactly � composed with �I

X

: we know
they are disjoint, and we know the former can be lifted into the latter via
Lemma 10.1.1. This means, in particular, that ' is ;. Now, we need to
choose a continuation and return type ⌧A from KJ⌧ ! ⌧AK. We choose h#⌧i,
with ⌧A set to "#⌧ , which we know, with any world and empty ', is in the
relation from Lemma 10.1.3. This then tells us that (W, ;, �(P); h#⌧i) is in
E
XJ"#⌧K#.
This means we can use the arbitrary heap H we are given initially to

instantiate this relation, as our world and set of relevant locations makes
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no restriction on the heap. We also use the arbitrary stack S we are given.
This means that we know that either we run past our step index budget
(in which case we are trivially in E

�J#⌧K⇢, our overall goal), or after some
number of steps we have either run to an acceptable failure state (also okay),
or we have terminated in a value v, at a future world W 0, with relevant
locations '0 such that (W 0,'0, v) 2 V

XJ"#⌧K. By inspection of the value
relation, we can see for all types "#⌧ , '0 will be ;. At this point, the result
follows from Lemma 10.1.1.

Lemma 10.1.7 (unit). Show that J� `X push 0 : unitK.

Proof. See E.0.8.

Lemma 10.1.8 (bool). Show for any n, J� `X n : boolK.

Proof. See E.0.9.

Lemma 10.1.9 (if). If J� `X P1 : boolK, J� `X P2 : ⌧K, and J� `X P3 : ⌧K
then

J� `X P1; if0 P2 P3 : ⌧K.

Proof. See E.0.10.

Lemma 10.1.10 (int). For any n, show J� `X push n : intK.

Proof. See E.0.11.

Lemma 10.1.11 (op-=). If J� `X P1 : intK and J� `X P2 : intK, then
J� `X P1;P2; equal? : boolK.

Proof. See E.0.12.

Lemma 10.1.12 (op-¡). If J� `X P1 : intK and J� `X P2 : intK, then
J� `X P1;P2; less? : boolK.

Proof. See E.0.13.

Lemma 10.1.13 (op-+). If J� `X P1 : intK and J� `X P2 : intK, then
J� `X P1;P2; add : intK.

Proof. See E.0.14.

Lemma 10.1.14 (var). J� `X push x : ⌧K

Proof. See E.0.15.

Lemma 10.1.15 (pair). If J� `X P1 : ⌧1K and J� `X P2 : ⌧2K then
J� `X P1;P2; lam x2.lam x1.push [x1, x2] : ⌧1 ⇥ ⌧2K

Proof. See E.0.16.
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Lemma 10.1.16 (fst). If J� `X P : ⌧1 ⇥ ⌧2K, then J� `X P; push 0; idx : ⌧1K.

Proof. See E.0.17.

Lemma 10.1.17 (snd). If J� `X P : ⌧1 ⇥ ⌧2K, then J� `X P1; push 1; idx :
⌧2K.

Proof. See E.0.18.

Lemma 10.1.18 (inl). If J� `X P : ⌧1K, then J� `X P; lam x.push [0, x] :
⌧1 + ⌧2K.

Proof. See E.0.19.

Lemma 10.1.19 (inr). If J� `X P : ⌧2K, then J� `X P; lam x.push [1, x] :
⌧1 + ⌧2K.

Proof. See E.0.20.

Lemma 10.1.20 (match). If J� `X P0 : ⌧1 + ⌧2K, J�, x : ⌧1 `X P1 : ⌧K, and
J�, y : ⌧2 `X P2 : ⌧K, then J� `X P0;DUP; push 1; idx; SWAP; push 0; idx; if0 (lam x.P1) (lam y.P2) :
⌧K.

Proof. See E.0.21.

Lemma 10.1.21 (fold). If J� `X P : ⌧ [µ↵.⌧/↵]K, then J� `X P : µ↵.⌧K.

Proof. See E.0.22.

Lemma 10.1.22 (unfold). If J� `X P : µ↵.⌧K, then J� `X P; noop :
⌧ [µ↵.⌧ ]K.

Proof. See E.0.23.

Lemma 10.1.23 (fun). If J�,f : (⌧1, . . . , ⌧n)
⌅
! ⌧ 0, xi : ⌧i `X P : ⌧ 0K,

then J� `X push (thunk push (thunk lam f.lam xn. . . . lam x1.P); fix) :
(⌧1, . . . , ⌧n)

⌅
! ⌧ 0K

Proof. See E.0.24.

Lemma 10.1.24 (app). If J� `X P0 : (⌧1, . . . , ⌧n)
⌅
! ⌧ 0K and for i 2

{1, . . . , n} J� `X Pi : ⌧iK then

J� `X P0;P1; SWAP . . .Pn; SWAP; call : ⌧ 0K

Proof. See E.0.25.
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10.1.6 Finally, soundness

To account for our new extension, we need to update our existing proof of
the fundamantal property for FunLang to include the boundary term for
X. The proof itself, of course, still simply dispatches to the appropriate
compatibility lemma.

Theorem 10.1.25 (fundamental property). If I;� ` e : ⌧ then JI;� ` e+ :
⌧K.

Proof. As before, by induction over the typing derivation, using a corre-
sponding compatibility lemma for each typing rule.

Type soundness again is a corollary, and thus follows from our re-proven
fundamental property:

Corollary 10.1.26 (type soundness). If I; · ` e : ⌧ then given libraries �I
S

(where ((k, ;), ;, �I
S

) 2 G
SJISK) and �I

X

(where ((k, ;), ;, �I
X

) 2 G
XJIXK),

for any heap H, stack S, if hH #S #�I
S

(�I
X

(e+))i
⇤
! hH0 #S0 #P0

i then one of:

• P0 = · and S0 = Fail c and c 2 OkErr

• P0 = · and S0 = S, v and 9j. (j, v) 2 V
�J⌧K

• 9H⇤ S⇤ P⇤. hH0 # S0 # P0
i ! hH⇤ # S⇤ # P⇤

i

Proof. This is simply a combination of the fundamental property with the
definition of E�J⌧K.
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RELATED WORK

multi-language semantics Matthews and Findler (2007) propose
the idea of a syntactic multi-language as a way of formally studying the
semantics of language interoperability. They are motivated by the question
“how can we reason formally about multi-language programs?” Their work,
extended in Jacob Matthews’ dissertation (Mathews, 2007), gives formal
semantics to programs that involved multiple languages by combining the
syntax of the languages into a single combined language and using syntactic
boundaries to mediate between. As described in Chapter 1, the operational
semantics inherits from the original source languages, evaluating terms of A
under boundaries to values of A using (nearly) the A operational semantics
and translating according to type-directed boundary translations.

While this work is undoubtedly valuable, and indeed, the technique has
been used widely (Gray et al., 2005; Gray, 2008; Tov and Pucella, 2010;
Osera et al., 2012; Patterson et al., 2017; Scherer et al., 2018; Perconti and
Ahmed, 2014; Ahmed and Blume, 2011; New et al., 2016), one critical but
often unnoticed issue with this approach is that type soundness is proved of
the novel multi-language, where the behaviors prescribed by some type ⌧ in
the multi-language need not be the same as the behaviors allowed by ⌧ in
the corresponding core language. For simple languages (e.g., where the only
e↵ect is divergence as in (Matthews and Findler, 2007)), this may be an
immaterial distinction, but even with the addition of state, the operational
semantics of the multi-language now must consider the heap, and thus a
pure language embedded in such a multi-language may no longer behave
the same, as there is now a heap threaded through. Scherer et al. (2018)
consider this issue and argue that a better approach is to use fully abstract
embedding from the single languages into the multi-language. While this
certainly resolves the issue, it comes at a pretty serious restriction in terms
of interaction. Therefore, while it may work for carefully crafted scenarios of
interoperability, it doesn’t allow for many realistic uses, where the intent is
to bring new expressiveness into the language and thus violate equivalences
in the original core language.

While the models shown in Part II similarly are defined jointly with shared
logical state, and thus have a potential disconnect to the original sources,
the approach we used in Part III is di↵erent: we first define a model for
just one language, and then prove that interoperability respects that model.
Defining single language models first and then connecting the converted
terms could equally be used when dealing with scenarios accounted for

148
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by the approach in Part II. If our models were binary, this would amount
to fully abstract embedding, but unary models allow for a weaker notion
of soundness that nonetheless is much more powerful than the syntactic
multi-language semantics from (Matthews and Findler, 2007).

In a slightly di↵erent vein, there has also been some work mixing bindings
(Barrett et al., 2016) and building multi-language runtimes (Würthinger
et al., 2013), but this work does not consider formal semantic properties.

gradual typing There has been an immense amount of research
on gradual typing (or migratory typing) since the initial pair of papers by
Tobin-Hochstadt and Felleisen (2006) and Siek and Taha (2006); we do
not aim to address much of it here, since while it does address a particular
form of interoperability, the motivation and hence applicability of the work
is di↵erent from ours. The framing of migratory typing, as outlined by
Tobin-Hochstadt and Felleisen (2006), is to take an untyped program and
migrate it to a typed one: the operational semantics of both languages are
taken to be shared, only the static semantics should di↵er. The purpose
of such a migration is in the title of that first paper: “from scripts to
programs”. The motivation of the work by Siek and Taha (2006) is slightly
less clear: a typed language is relaxed into an untyped version, creating,
similarly, a pair of languages that share the same operational semantics.
While this untyped language may not be one that programmers already use
(as in the hypothesis of Tobin-Hochstadt and Felleisen), the intent is that
such a gradually typed system provides some benefits to programmers who
wish to move between the two paradigms.

Our aim is quite di↵erent: we take as a starting point that programs are
multi-lingual, which can be readily confirmed by examination of most large
codebases. This multi-linguality is not, however, of the form advocated
by the gradual paradigm: in particular, while some languages may have
stronger or weaker type systems, the syntax and operational semantics are
inevitably di↵erent between them, and some of the static reasoning may
simply be incomparable. Indeed, some of the key results, (such as the
gradual guarantee of Siek et al. (2015), extolled as “graduality” by New
and Ahmed (2018)) rely upon the shared operational semantics, such that
programs can be migrated merely by adding or removing types. While it is
possible that some of those properties could be recovered by extending the
notion of convertibility into a cross-language logical relation, we have not
attempted this and thus leave these questions for future work.

This means that we have only a shallow accommodation of gradual typing
in our work. Specifically, if one language is typed and the other is an untyped
version of the first, our interoperability results still hold, but without any of
the important details about migration.
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rust The Rust language has a built-in mechanism for embedding “unsafe”
code that could not satisfy the typechecker of “safe” Rust. There have
been e↵orts to characterize the semantic behavior of safe Rust (“unsafe
code guidelines”) and prove that some unsafe code, while syntactically not
well typed, does not violate those properties. Most notably, the RustBelt
project (Jung et al., 2018) gives a semantic model of �Rust types and uses
it to prove the soundness of �Rust typing rules, but also to prove that the
�Rust implementations of standard library features (essentially unsafe code)
are semantically sound inhabitants of their ascribed type specification.

We argue that Rust’s goals for unsafe and how RustBelt approaches them
fit into the linking types framework: the unsafe code unquestionably has
behavior inexpressible in the rest of Rust, and Rust already has a syntactic
boundary construct: unsafe blocks. Moreover, for RustBelt, Jung et al.
(2018) created a lifetime logic that could be used to semantically model (some
of) that behavior. While in this paper we expect syntactic type checkers
for the extended language, there is no particular reason why their lifetime
logic approach isn’t equally valid, and probably necessary for su�ciently
complex behavior. Since RustBelt uses the same lifetime logic to define the
semantics of safe Rust types, our lift and lower (" and #) are perhaps not
as apparent, but the properties they convey are: in particular, since Rust
does not insert encapsulation code around unsafe blocks, RustBelt needs
to prove that the code inside satisfies a safe Rust type. Put another way,
any encapsulation has to be inlined into the library implementation, rather
than inserted by the compiler. We could have taken the same approach
with our stateful libraries, manually proving that the resulting values were
encapsulated, and as a result not needing the operational wrappers. We
chose generality and e�ciency of proof, whereas the approach of RustBelt
chooses specificity and e�ciency at runtime. The type obligation that lift
and lower imply about the boundary is being satisfied in both cases.

interoperability via typed targets. Shao and Trifonov (1998);
Trifonov and Shao (1999) studied interoperability much earlier, and closer
to our context: they consider interoperability mediated by translation to a
common target. They tackle the problem that one language has access to
control e↵ects and the other does not. Their approach, however, is di↵erent:
it relies upon a target language with an e↵ect-based type system that is
su�cient to capture the safety invariants, whereas while our realizability
approach can certainly benefit from typed target languages, it doesn’t rely
upon them. While typed intermediate languages obviously o↵er real benefits,
there are also unaddressed problems, foremost of which is designing a usable
type system that is su�ciently general to allow (e�cient) compilation from
all the languages you want to support. While there are ongoing attempts
(probably foremost is the Tru✏eVM project (Grimmer et al., 2015)) to
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design such general intermediates, most have focused their attention on
untyped or unsound languages, and in the particular case of Tru✏eVM,
there is as-yet no meta-theory.

proving particular ffis sound. There has been significant work
on how to augment existing unsafe FFIs in order to make them safe, primarily
by adding type systems, inference, static analysis, etc. For example, Furr
and Foster (2005a,b, 2008) study interactions between OCaml and C via
the C FFI, and specifically, how to ensure safety by doing type inference
on the C code as it operates over a structural representation of OCaml
types. There is some faint similarity to our work, if you assume the type
systems could be made sound and take the two interacting languages to
not be OCaml and C but rather those languages augmented with the richer
types and inference systems.

Along the same lines, Tan et al. (2006a,b); Tan and Morrisett (2007) study
safe interoperability between Java and C via the JNI. They do this by first
ensuring safety for C via CCured (Necula et al., 2002), and then extending
that with static and dynamic checks to ensure that the invariants of Java
pointers and APIs can not be violated in C. This is a bit more explicitly
a case of two now more-or-less typesafe languages interacting. Hirzel and
Grimm (2007) also build a system for safe interoperability between Java and
C, though their system, Jeanie, relies on a novel syntax that embeds both
languages and is responsible for analyzing both together before compiling
to Java and C with appropriate JNI usage. There has been plenty of other
research studying how to make the JNI safer by analyzing C for various
properties (e.g., looking for exception behavior in (Li and Tan, 2014)).

rich ffis. There has been lots of work exploring how to make existing
FFIs safer, usually by extending the annotations that are written down
so that there is less hand-written (and thus error-prone) code to write.
Some of this was done in the context of the Haskell FFI, including work by
Chakravarty (1999); Jones et al. (1997); Finne et al. (1998). While they
were certainly intending to preserve type invariants from Haskell, or wanted
to express type invariants via di↵erent mechanisms, and obviously were
concerned about soundness, it’s not clear from these papers whether any
formal soundness properties were proved. Similar work has also been done
in other languages, for example, for Standard ML Blume (2001) embedded
C types into ML such that ML programs could safely operate over low-level
C representations. This approach fits well with our semantic framework
(though, given weak types in C would be unsound), as they have ML types
that have the same interpretation as corresponding C types (to minimize
copying/conversions), realized by minimal wrapper code.
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Another approach to having rich FFIs is to co-design both languages,
as has been done in the much more recent verification project Everest
(Bhargavan et al., 2017), where a low-level C-like language Low* has been
designed (Protzenko et al., 2017) to interoperate with an embedding of a
subset of assembly suitable for cryptography (Fromherz et al., 2019). By
embedding both languages into the verification framework F*, they are able
to prove rich properties about the interactions between the two languages.

an abstract framework for unsafe ffis. Turcotte et al.
(2019) advocate a framework using an abstract version of the foreign lan-
guage, so soundness can be proved without building a full multi-language.
They demonstrate this by proving a modified type safety proof of Lua and
C interacting via the C FFI, modeling the C as code that can do arbitrary
unsound behavior and thus blamed for all unsoundness. While this approach
seems promising in the context of unsound languages, it is less clear how it
applies to sound languages.

modeling ffis via state machines. Lee et al. (2010) specify
the type (and other) constraints that exist in both the JNI and Python/C
FFI via state machines and use that to generate runtime checks to enforce
these at runtime. While this is practical work and so they do not prove
properties about their system, Jinn, there are many similarities between
their approach and ours. In particular, the idea that invariants that cannot
be expressed via the languages themselves and should instead be checked
via inserted code. We would expect that if their approach were applied to
safe languages, we would be able to prove that the code that they inserted
satisfied semantic interpretations of the respective types.

semantic models and realizability models The use of se-
mantic models to prove type soundness has a long history (Milner, 1978).
We make use of step-indexed models (Appel and McAllester, 2001; Ahmed,
2004), developed as part of the Foundational Proof-Carrying Code (Ahmed
et al., 2010) project, which showed how to scale the semantic approach to
complex features found in real languages such as recursive types and higher-
order mutable state. While much of the recent work that uses step-indexed
models is concerned with program equivalence, one recent project that fo-
cuses on type soundness is RustBelt (Jung et al., 2018): as described earlier,
they give a semantic model of �Rust types and use it to prove the soundness
of �Rust typing rules, but also to prove that the �Rust implementation of
standard library features (essentially unsafe code) are semantically sound
inhabitants of their ascribed type specification.

Unlike the above, our realizability model interprets source types as sets
of target terms. As described in Chapter 2, our work takes inspiration from



related work 153

Nick Benton’s “low-level semantics for high-level types” (dubbed “realistic
realizability”) (Benton, 2006). Following that work, he and collaborators
proved type soundness of a pair of source languages by building models over
an idealized assembly (Benton and Zarfaty, 2007; Benton and Tabareau,
2009). Krishnaswami et al. (2015) make use of a realizability model to prove
consistency of LNLD a core type theory that integrates linearity and full
type dependency. The linear parts of their model, like our interpretation of
L3 types, are directly inspired by the semantic model for L3 by Ahmed et al.
(2007). While they consider interoperability and use realizability models,
their approach is quite di↵erent from ours, as they introduce both term
constructors and types (G and F ) that allow direct embedding into the
other language, thereby changing it, rather than defining conversions into
existing types (which, indeed, is probably impossible in their case). More
generally, such realizability models have also been used by Jensen et al.
(2013) to verify low-level code using a high-level separation logic, and by
Benton and Hur (2009) to verify compiler correctness.

Finally, New et al. (New and Ahmed, 2018; New et al., 2019, 2020) make
use of realizability models in their work on semantic foundations of gradual
typing, work that we have drawn inspiration from, given gradual typing
is, among other things, a particular instance of language interoperability.
They compile type casts in a surface gradual language to a target Call-By-
Push-Value (Levy, 2001) language without casts, build a realizability model
of gradual types and type precision as relations on target terms, and prove
properties about the gradual surface language using the model.

verification-based approaches Much work has been done using
high-level program logics to reason about target terms, which can be seen
as analogous to the realizability approach. Perhaps most relevant, in the
context of the interoperability studied in Part II of this dissertation, is
the Cito system of Wang et al. (2014), where code to-be-linked is given a
specification over the behavior of target code, and compilation can then
proceed relying upon that specification. This clearly renders benefits in
terms of language independence, since any compiled code that satisfied that
specification could be used. However, there is a significant di↵erence from
our work: by incorporating the semantics of types of both languages we
can prove that the conversions preserve those semantics, and thus allow an
end user to gain the benefits of type soundness without having to do any
verification. Indeed, proving the conversions sound (or, in the case that they
can be no-ops, proving that is okay) is the central result of our approach,
and such conversions are not a part of the setup of Wang et al. (2014).
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FUTURE CONS IDERATIONS

the interoperability challenge Large software systems are in-
variably multi-language programs, and yet the reasoning that a programmer
can do within a single language component degrades severely when they
move to working across languages. Addressing this deficiency is what we
call the interoperability challenge and it was the central target of this disser-
tation, if one which we necessarily attacked limited aspects. Fundamentally,
the dissertation is based upon the observation that we can understand inter-
operability by understanding translations into common substrates. While
distinct languages themselves are usually unrelated artifacts: built out of
rules (static and dynamic) that have no connection to one another, to
operate together they must, at some point, be translated into some common
representation. That translation, or compilation, may throw away important
aspects of the languages that we program in, but it is our starting point, as
it is how we will begin to recover the same reasoning principles across the
entire multi-language system as we had in our single-language program.

why type soundness The goal of this dissertation was to make
progress on the interoperability challenge forward, if by a small amount.
We focused on type soundness as a goal, as it is a well-defined but useful
property that we want for programs. While practical languages are rarely
proved formally type-sound, most aspire to such a state, and thus it is a
good benchmark to use in bringing our reasoning from the single-language
fantasy into the multi-language reality.

target languages While realizability models seem fundamental, as
having a common substrate is what allows us to move between languages in
our reasoning, the actual target languages were not a subject of study in
this dissertation, even though we believe they are of critical importance in
solving the interoperability problem in reality. We can see, in the examples
covered in Chapters 5 and 6, how our target language need not have rich
static reasoning principles to be able to support rich static reasoning about
interoperability. But we also see, in the case considered in Chapter 9,
that ensuring soundness may require certain operations in the target that
would not otherwise be necessary. In that case study, we had an ad-hoc
heap reflection primitive, but more principled study of how features and
expressiveness in the target can be isolated is critical. One other dimension
we didn’t consider are typed target languages. In the cases we considered,

154
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where we understand both interoperating languages, we can build our models
on top of untyped targets. However, in a more “open-world” scenario, where
the code to be linked with may be less specified, static types could prove
useful to restrict its behavior. In that case, the approximations that static
types capture, or really, the imposition of a model into the actual term
language they imply, may be useful.

runtime systems More fundamentally, runtime systems challenge
interoperability. One reason, and perhaps the primary reason, why the
main target for interoperability is currently C, and slowly moving towards
Rust, is that both languages have runtime systems that mostly inherit
from the operating system. When there are multiple garbage collectors and The notion that C

is “runtimeless” is
somewhat
misleading: the
standard C library,
malloc, and indeed,
parts of the
operating system
form its runtime.

di↵erent user-level threading systems, things become much more complicated.
Realizability models clarify this, as they allow us to see that when we compile
to a shared target, a small bit of code doesn’t compile to a small bit of code,
but rather to that code paired with a large chunk of runtime code. Wrapping
that entire thing up to behave like something in the other language may be
di�cult or impossible. Research into the design of target or intermediate
languages may help alleviate this, since if the compiler could instead reuse
features of the target instead of providing its own runtime, the reasoning
that has to be done would be vastly reduced. But doing this requires our
target languages be quite flexible, allowing tunable runtimes that can adapt
to di↵erent modalities to fit the requirements of di↵erent source languages.

the n2 problem In this dissertation, we only considered pairs of
languages. While, fundamentally, the interactions at the boundaries are
always between a pair of languages, there are questions related to duplication
of e↵ort when considering realistic systems with many languages: given
n languages, we likely do not want O(n2) sets of conversions. Perhaps
common abstract types have a role to play, or common models. This is not
a new problem—indeed, Conway (1958) proposed a “universal computer-
oriented language” (UNCOL) for exactly this purpose. More recently, this
has also obviously been accomplished in the serialization-based approach
described in Chapter 1 by defining a common set of types that are allowed for
interoperability, and this approach is again being used by the WebAssembly
Interface Types project1. While this lowest common denominator necessarily
limits expressivity, perhaps it is a reasonable compromise in reality.

a concrete study From the practical side, there is also, clearly,
much work to do. While, to first approximation, the approach to soundness
described in Part II captures how many interoperability systems work cur-
rently, there are certainly many details that vary, possibly with consequences.

1 https://github.com/WebAssembly/interface-types/
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One starting point for this research would be a systematic review of the
multi-language systems that exist, not as a series of references but using
actual code examples to compare apples to apples. Such a benchmark,
perhaps with intended feedback when mistakes are made, would be a useful
contribution on its own, but could also serve to assess how closely the
framework described in the first part of this dissertation hews to reality.

making linking types practical There is also significant prac-
tical work in realizing the linking types framework showcased in Part III.
While we believe that the core of such functionality is fundamentally impor-
tant in addressing the interoperability problem, many details were simplified
for the sake of a first presentation. For example, the relationship between
the original type system and the extended type system: having an entirely
new type system, with a corresponding new typechecker, even if it can be
a simpler implementation, by, e.g., being slower or doing worse inference,
is not really a practical consideration. It would require maintaining a set
of type checkers, fixing bugs and adding features to all. Likely, there is a
more e�cient implementation strategy: either by having the extended code
typechecked using some additional plugin to the original typechecker, or
perhaps with some translation pass.

verified code with efficient implementations One par-
ticularly interesting case of interoperability is improving the e�ciency of
verified code extracted from proof assistants like Coq (The Coq Develop-
ment Team, 1999-2020). The core languages of such proof assistants are
intentionally small, and thus implementing complex software entirely within
the core language, while highly trustworthy, would likely lead to terrible
performance. This is true even after extraction to a language with an opti-
mizing compiler like OCaml. Instead, interesting research by Boulmé (2021)
shows that you can link against OCaml code implementing, for example,
a SAT solver, that is given precise types in Coq and as a result, improve
performance significantly. One could imagine going further with this, and
combine verification (or partial verification) of the linked code written in
a language like Clight (using, perhaps, the Verified Software Toolchain
(Appel, 2011)) to bring the imported code in at more useful types than
what would be inherent to C: while arbitrary C can only be used in quite
limited ways by Coq if any soundness is to be retained, C that has been
verified to obey particular semantic types might indeed be able to form the
basis of e�cient data structures for verified software. If the Coq code is
compiled with the verified CertiCoq (Anand et al., 2017) compiler, which
targets Clight, then our realizability approach comes into full clarity: to
safely link with hand-written Clight, such code must satisfy a semantic type
that is compatibly with the Clight code generated by the CertiCoq compiler.
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While in some ways this whole line of work is parallel to our own, we can
also see it as particularly compelling application, as to do it correctly relies
on realizability models, encapsulation, and semantic types that we have
described in this dissertation.

on to the future There is, clearly, much work to do. But, the
interoperability challenge is complex and has, with a few notable exceptions,
as-yet been largely ignored. Language research has focused on techniques
for single languages or for the specific case where operational semantics
are common (gradual typing), sidestepping the messy reality and rendering
theory even more theoretical. We hope that this dissertation has shown that
the challenge, while large, is by no means intractable, and laid a few more
paving stones along the way towards a future where the reasoning that we
have about multi-language systems is not di↵erent from the reasoning we
have within single languages.
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S. Boulmé. Formally Verified Defensive Programming (e�cient Coq-
verified computations from untrusted ML oracles). Habilitation à
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J. Protzenko, J. K. Zinzindohoué, A. Rastogi, T. Ramananandro, P. Wang,
S. Z. Béguelin, A. Delignat-Lavaud, C. Hritcu, K. Bhargavan, C. Fournet,
and N. Swamy. Verified low-level programming embedded in F. PACMPL,
1(ICFP):17:1–17:29, 2017. doi:10.1145/3110261. URL https://doi.org/10.
1145/3110261.

https://doi.org/10.1145/3062341.3062347
https://doi.org/10.1145/3062341.3062347
https://doi.org/10.1145/3062341.3062347
https://doi.org/10.1007/978-3-642-54833-8_8
https://doi.org/10.1007/978-3-642-54833-8_8
https://doi.org/10.1007/978-3-642-54833-8_8
https://web.archive.org/web/20160615044750/https://www.gao.gov/assets/680/677454.pdf
https://web.archive.org/web/20160615044750/https://www.gao.gov/assets/680/677454.pdf
https://doi.org/10.1145/3110261
https://doi.org/10.1145/3110261
https://doi.org/10.1145/3110261


168 bibliography

G. Scherer, M. S. New, N. Rioux, and A. Ahmed. Fabulous interoperability
for ML and a linear language. In C. Baier and U. D. Lago, editors, Founda-
tions of Software Science and Computation Structures - 21st International
Conference, FOSSACS 2018, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,
Greece, April 14-20, 2018, Proceedings, volume 10803 of Lecture Notes in
Computer Science, pages 146–162. Springer, 2018. doi:10.1007/978-3-319-
89366-2 8. URL https://doi.org/10.1007/978-3-319-89366-2 8.

H. Sexton. Foreign functions and common lisp. ACM SIGPLAN Lisp
Pointers, 1(5):11–23, 1987.

Z. Shao and V. Trifonov. Type-directed continuation allocation. In Inter-
national Workshop on Types in Compilation, pages 116–135. Springer,
1998.

J. G. Siek and W. Taha. Gradual typing for functional languages. In Scheme
and Functional Programming Workshop, page 81–92, 2006.

J. G. Siek, M. M. Vitousek, M. Cimini, and J. T. Boyland. Refined criteria
for gradual typing. In 1st Summit on Advances in Programming Languages
(SNAPL 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

I. Stark. Names and Higher-Order Functions. PhD thesis, University of
Cambridge, Dec. 1994. URL http://www.inf.ed.ac.uk/⇠stark/namhof.
html. Also available as Technical Report 363, University of Cambridge
Computer Laboratory.

T. S. Strickland, S. Tobin-Hochstadt, R. B. Findler, and M. Flatt.
Chaperones and impersonators: Run-time support for reasonable in-
terposition. In ACM International Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA), page
943–962, New York, NY, USA, 2012. Association for Computing Ma-
chinery. ISBN 9781450315616. doi:10.1145/2384616.2384685. URL
https://doi.org/10.1145/2384616.2384685.

W. Tait. Intensional interpretations of functionals of finite type i. The
Journal of Symbolic Logic, 1967.

G. Tan and G. Morrisett. Ilea: Inter-language analysis across java and
c. In Proceedings of the 22Nd Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems and Applications, OOPSLA ’07,
pages 39–56, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-786-5.
doi:10.1145/1297027.1297031. URL http://doi.acm.org/10.1145/1297027.
1297031.

https://doi.org/10.1007/978-3-319-89366-2_8
https://doi.org/10.1007/978-3-319-89366-2_8
https://doi.org/10.1007/978-3-319-89366-2_8
http://www.inf.ed.ac.uk/~stark/namhof.html
http://www.inf.ed.ac.uk/~stark/namhof.html
https://doi.org/10.1145/2384616.2384685
https://doi.org/10.1145/2384616.2384685
https://doi.org/10.1145/1297027.1297031
http://doi.acm.org/10.1145/1297027.1297031
http://doi.acm.org/10.1145/1297027.1297031


bibliography 169

G. Tan, A. W. Appel, S. Chakradhar, A. Raghunathan, S. Ravi, and
D. Wang. Safe java native interface. In Proceedings of IEEE International
Symposium on Secure Software Engineering, volume 97, page 106. Citeseer,
2006a.

G. Tan, A. W. Appel, S. Chakradhar, R. Srivaths, A. Raghunathan, and
D. Wang. Safe java native interface. In Proceedings of the 2006 IEEE
International Symposium on Secure Software Engineering, pages 97–106,
2006b.

P. Teplitzky. Closing the cobol programming skills gap, 2019.
URL https://web.archive.org/web/20210120000847/https://techchannel.
com/Enterprise/10/2019/closing-cobol-programming-skills-gap.

The Coq Development Team. The Coq Proof Assistant, 1999-2020. URL
https://coq.inria.fr/.

A. Timany, L. Stefanesco, M. Krogh-Jespersen, and L. Birkedal. A logical
relation for monadic encapsulation of state: Proving contextual equiva-
lences in the presence of runst. Proc. ACM Program. Lang., 2(POPL),
dec 2017. doi:10.1145/3158152. URL https://doi.org/10.1145/3158152.

S. Tobin-Hochstadt and M. Felleisen. Interlanguage migration: From scripts
to programs. In Companion to the 21st ACM SIGPLAN Symposium
on Object-Oriented Programming Systems, Languages, and Applications,
OOPSLA ’06, page 964–974, New York, NY, USA, 2006. Association for
Computing Machinery. ISBN 159593491X. doi:10.1145/1176617.1176755.
URL https://doi.org/10.1145/1176617.1176755.

J. Tov and R. Pucella. Stateful contracts for a�ne types. In Programming
Languages and Systems, 19th European Symposium on Programming,
ESOP 2010, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28,
2010. Proceedings, Mar. 2010.

V. Trifonov and Z. Shao. Safe and principled language interoperation. In
European Symposium on Programming, pages 128–146. Springer, 1999.

A. Turcotte, E. Arteca, and G. Richards. Reasoning About Foreign Func-
tion Interfaces Without Modelling the Foreign Language. In A. F. Don-
aldson, editor, 33rd European Conference on Object-Oriented Program-
ming (ECOOP 2019), volume 134 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 16:1–16:32, Dagstuhl, Germany, 2019.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-
111-5. doi:10.4230/LIPIcs.ECOOP.2019.16. URL http://drops.dagstuhl.
de/opus/volltexte/2019/10808.

https://web.archive.org/web/20210120000847/https://techchannel.com/Enterprise/10/2019/closing-cobol-programming-skills-gap
https://web.archive.org/web/20210120000847/https://techchannel.com/Enterprise/10/2019/closing-cobol-programming-skills-gap
https://coq.inria.fr/
https://doi.org/10.1145/3158152
https://doi.org/10.1145/3158152
https://doi.org/10.1145/1176617.1176755
https://doi.org/10.1145/1176617.1176755
https://doi.org/10.4230/LIPIcs.ECOOP.2019.16
http://drops.dagstuhl.de/opus/volltexte/2019/10808
http://drops.dagstuhl.de/opus/volltexte/2019/10808


170 bibliography

P. Wang, S. Cuellar, and A. Chlipala. Compiler verification meets cross-
language linking via data abstraction. In Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems Lan-
guages & Applications, OOPSLA ’14, page 675–690, New York, NY,
USA, 2014. Association for Computing Machinery. ISBN 9781450325851.
doi:10.1145/2660193.2660201. URL https://doi.org/10.1145/2660193.
2660201.

A. Wright and M. Felleisen. A syntactic approach to type sound-
ness. Inf. Comput., 115(1):38–94, nov 1994. ISSN 0890-5401.
doi:10.1006/inco.1994.1093. URL https://doi.org/10.1006/inco.1994.
1093.
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APPENDICES



A
VALUE INTEROPERABIL ITY : MUTABLE
REFERENCES

Lemma A.0.1 (Irreducible Configurations Have Empty Programs). If
hH # S # Pi 9, then P = ·.

Proof. We will prove the contrapositive: if there exist i,P0 such that P = i,P0,
then hH # S # Pi ! hH⇤ # S⇤ # P⇤

i. This can be demonstrated by a trivial
case analysis on H, S, and i, because the dynamics of StackLang are defined
so that there is a reduction rule for every possible configuration with a
non-empty program.

Lemma A.0.2 (Prefix Termination). If hH # S # Pi j
! hH # S0 # P0

i 9 and

hH # S # Pi ⇤
! hH• # S• # P•,P�i, then hH• # S• # P•i

j•
! hH0

• # S0• # ·i 9 for some
H0
•, S

0
•, j•  j.

Proof. There is a constructive proof using induction, but here, we will sketch
an intuitive proof by contradiction.
If hH• # S• # P•i does not step to a stuck configuration in some j•  j

steps, then hH• # S• # P•i runs for at least j + 1 steps. Because StackLang is
deterministic, we can then construct the reduction sequence

hH # S # Pi ⇤
! hH• # S• # P•,P�i

j+1
! hH0

• # S0• # P0
•,P�i

⇤
! hH # S0 # P0

i

9

which is longer than j, contradicting the premise.

Finally, if hH• # S• # P•i
j•
! hH0

• # S0• # P0
•i 9, then by Lemma A.0.1, P0

• = ·,
which su�ces to finish the proof.

Note that when applying Lemma A.0.2, we sometimes leave P� implicit.

Lemma A.0.3 (World Extension).

1. If (W1, v) 2 VJ⌧K and W1 v W2 then (W2, v) 2 VJ⌧K

2. If (W1, �) 2 GJ�K and W1 v W2 then (W2, �) 2 GJ�K

Proof.

172
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1. By induction on ⌧ . The only interesting cases are:

• If (W1, thunk lam x.P) 2 VJ⌧1 ! ⌧2K and (W1 v W2) then
(W2, thunk lam x.P) 2 VJ⌧2 ! ⌧2K.
Expanding the definition of VJ⌧1 ! ⌧2K in the goal, we are to
show that

(W 0, [x 7! v]P) 2 EJ⌧2K

given arbitrary W 0 AW2 and v such that (W 0, v) 2 VJ⌧1K. We
have that W1 v W2 and W2 @W 0 so W1 @W 0 by Lemma A.0.4.
Then we finish by expanding the definition of VJ⌧1 ! ⌧2K in the
premise and specializing as appropriate.

• If (W1, `) 2 VJref ⌧K and (W1 v W2) then (W2, `) 2 VJref ⌧K.
Expanding the definition of VJref ⌧K in the goal, we are to show
that

W2. (`) = bVJ⌧KcW 2.k

Expanding the definition of VJref ⌧K in the premise, we have

W1. (`) = bVJ⌧KcW 1.k

Expanding the definition of v and specializing where appropriate,
we have that

W2.k  W1.k ^ bW1. (`)cW 2.k = bW2. (`)cW 2.k

Then we finish by substituting bVJ⌧KcW 1.k for W1. (`) and
expanding the definition of b·c·, noting in particular that for any
world W , bW . (l)cW .k = W . (l).

2. By induction, appealing to the previous case where appropriate.

Lemma A.0.4 (World Extension Transitive).

If W1 v W2 and W2 v W3 then W1 v W3.

Proof. Suppose (k1, 1) v (k2, 2) and (k2, 2) v (k3, 3). Unfolding the
definition of v in the goal, we are to show that

k3  k1 ^ b 1(`)ck3 = b 3(`)ck3

given arbitrary ` 2 dom( 1). Unfolding in the premises, we have that

k2  k1 ^ b 1(`)ck2 = b 2(`)ck2 ^

k3  k2 ^ b 2(`)ck3 = b 3(`)ck3



174 value interoperability: mutable references

where on the second line we appeal to the fact that
dom( 1) ✓ dom( 2) ✓ dom( 3) by definition of v. For the left dis-
junct, we have

k3  k2  k1

by transitivity of . For the right disjunct, it is su�cient to show that

b 1(`)ck3 = b 2(`)ck3

because = is transitive. Expanding the definition of b·c·, we are to show
that

{(W , v) | (W , v) 2  1(`)^W .k < k3} = {(W , v) | (W , v) 2  2(`)^W .k < k3}

and we have that

{(W , v) | (W , v) 2  1(`)^W .k < k2} = {(W , v) | (W , v) 2  2(`)^W .k < k2}

Since k3  k2, k < k2 if k < k3, so we are done.

Lemma A.0.5 (Later Heaps). If H : W then H : BW.

Proof. Suppose H : (k, ). Expanding the definition of B, we are to show
that

H : (k � 1, b ck�1)

Expanding the definition of :, B, and b·c·, we are to show that

((k � 2, b ck�2) , v) 2 R ^ k � 2 < k � 1

for some `, v, R such that  (`) = R and H(`) = v. The right disjunct is
trivial, so we are to show the left disjunct. Expanding the definition of :, B,
and b·c· in the premise and specializing where appropriate, we have that

((k � 1, b ck�1) , v) 2 R

Then since R 2 Typ and (k � 1, b ck�1) v (k � 2, b ck�2),
((k � 2, b ck�2) , v) 2 R by definition of Typn.

Lemma A.0.6 (Value Lifting). If (W , v) 2 VJ⌧K, then (W , push v) 2 EJ⌧K.

Proof. Expanding the definition of EJ⌧K, we are to show that

S0 = Fail c^c 2 OkErr_9v,W 0
w W .

�
S0 = S, v^H0 : W 0

^(W 0, v) 2 VJ⌧K)
�

(3)
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given arbitrary W , v,H:W , S,H0, S0, j < W .k such that (W , v) 2 VJ⌧K and

hH # S # push vi
j
! hH0 # S0 # ·i 9

By the operational semantics of StackLang, we have that j = 1, H0 = H, and
S0 = S, v. Then we have the right disjunct of (3) by taking v = v, W 0 = BW
and appealing to Lemmas A.0.3, A.0.5.

Lemma A.0.7 (Compat ()).

J�;� ` () : unitK

Proof. Expanding the definition of J·K and ·
+, we are to show that

(W , close(��, close(��, push 0))) 2 EJunitK

given arbitary W , ��, �� such that (W , ��) 2 GJ�K and (W , ��) 2 GJ�K.
Since push 0 is already closed, the close operators have no e↵ect. Then we
are to show that

(W , push 0) 2 EJunitK

Then applying Lemma A.0.6, we are to show that

(W , 0) 2 VJunitK

which we have by definition of VJunitK.

Lemma A.0.8 (Compat B).

b 2 B =) J�;� ` b : boolK

Proof. As in Lemma A.0.7, except that in the case where b = false,
b+ = push 1 and so 1 is used as the witness for v.

Lemma A.0.9 (Compat x).

J�;�, x : ⌧ ` x : ⌧K

Proof. Expanding the definition of J·K and ·
+, we are to show that

(W , close(��, close(��, push x))) 2 EJ⌧K

given arbitary W , ��, �� such that (W , ��) 2 GJ�K and (W , ��) 2 GJ�, x :
⌧K. Expanding the definition of GJ·K, we have that

�� = �[x 7! v] ^ (W , v) 2 VJ⌧K ^ (W , �) 2 GJ�K
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for some �, v. Since ��(x) = v and v is closed, we are to show that

(W , push v) 2 EJ⌧K

Then applying Lemma A.0.6, we are to show that

(W , v) 2 VJ⌧K

which we have by assumption.

Lemma A.0.10 (Compat inl e).

J�;� ` e : ⌧1K =) J�;� ` inl e : ⌧1 + ⌧2K

Proof. Expanding the definition of J·K and ·
+ and pushing substitutions

in the goal, we are to show that

�
W ,

�
close

�
��, close

�
��, e

+
��

, lam x. (push [0, x])
��

2 EJ⌧1 + ⌧2K

given arbitary W , ��, �� such that (W , ��) 2 GJ�K and (W , ��) 2 GJ�K.
Expanding the definition of EJ·K, we are to show that

S0 = Fail c^c 2 OkErr_9v,W 0
w W .

�
S0 = S, v^H0 : W 0

^(W 0, v) 2 VJ⌧1 + ⌧2K)
�

(4)
given arbitrary H:W , S,H0, S0, j < W .k such that

hH # S #
�
close

�
��, close

�
��, e

+
��

, lam x. (push [0, x])
�
i

j
! hH0 # S0 # ·i 9

The claim is vacuous when W .k = 0, so consider W .k > 0. Applying
Lemma A.0.2, there is je  j,He, Se such that

hH # S #
�
close

�
��, close

�
��, e

+
���

i
je
! hHe # Se # ·i 9

Then by expanding EJ·K in the premise and specializing as appropriate,
either:

1. Se = S0 = Fail c ^ c 2 OkErr and He = H0.
In this case, we have the left disjunct of (4).

2.
9ve,We w W .

�
Se = S, ve ^ He : We ^ (We, ve) 2 VJ⌧1K)

and
hHe # Se # lam x. (push [0, x])i

j�je
! hH0 # S0 # ·i 9
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By the operational semantics of StackLang,

hHe # S, ve # lam x. (push [0, x])i
1
! hHe # S # push [0, ve]i
1
! hHe # S, [0, ve] # ·i 9

so H0 = He and S0 = S, [0, ve]. Then we show the right dis-
junct of (4) by taking v = [0, ve] and W 0 = B2We, noting that
W v We v W 0 by Lemma A.0.4. All that remains is to show that
(W 0, [0, ve]) 2 VJ⌧1 + ⌧2K, which, by definition, requires (W 0, ve) 2

VJ⌧1K. Recall that (We, ve) 2 VJ⌧1K. Then simply apply Lemmas
A.0.3, A.0.5.

Lemma A.0.11 (Compat inr e).

J�;� ` e : ⌧2K =) J�;� ` inr e : ⌧1 + ⌧2K

Proof. As in Lemma A.0.10, exchanging ⌧1, ⌧2 and 0, 1 where appropriate.

Lemma A.0.12 (Compat if).

J�;� ` e : boolK^J�;� ` e1 : ⌧K^J�;� ` e2 : ⌧K =) J�;� ` if e e1 e2 : ⌧K

Proof. Expanding the definition of J·K and ·
+ in the goal and pushing

substitutions, we are to show that

�
W ,

�
close

�
��, close

�
��, e

+
��

, if0 close
�
��, close

�
��, e1

+
��

close
�
��, close

�
��, e2

+
����

2 EJ⌧K

given arbitary W , ��, �� such that (W , ��) 2 GJ�K and (W , ��) 2 GJ�K.
Expanding the definition of EJ·K, we are to show that

S0 = Fail c^c 2 OkErr_9v,W 0
w W .

�
S0 = S, v^H0 : W 0

^(W 0, v) 2 VJ⌧K)
�

(5)
given arbitrary H:W , S,H0, S0, j < W .k such that

hH # S # close
�
��, close

�
��, e

+
��

, if0 (. . .) (. . .)i
j
! hH0 # S0 # ·i 9

The claim is vacuous when W .k = 0, so consider W .k > 0. Applying
Lemma A.0.2, there is je  j,He, Se such that

hH # S # close(��, close(��, e+))i
je
! hHe # Se # ·i 9
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Then by expanding EJ·K in the premise and specializing as appropriate,
either:

1. Se = S0 = Fail c ^ c 2 OkErr and He = H0.
In this case, we have the left disjunct of (5).

2.
9ve,We w W .

�
Se = S, ve ^ He : We ^ (We, ve) 2 VJboolK)

and

hHe#Se#if0 close
�
��, close

�
��, e1

+
��

close
�
��, close

�
��, e2

+
��
i
j�je
! hH0#S0#·i 9

Expanding the definition of VJboolK, we have that

ve = n

Without loss of generality, suppose ve = n = 0. Then by the opera-
tional semantics of StackLang,

hHe # Se, 0 # if0 close
�
��, close

�
��, e1

+
��

close
�
��, close

�
��, e2

+
��
i

1
! hHe # S # close

�
��, close

�
��, e1

+
��

i

Now, by expanding the definition of J·K and EJ·K in the second premise
and specializing where appropriate, we have that

S0 = Fail c^c 2 OkErr_9v,W 0
w We.

�
S0 = S, v^H0 : W 0

^(W 0, v) 2 VJ⌧K)
�

If we have the left disjunct, then we have the left disjunct of (5). If
we have the right disjunct, then we have the right disjunct of (5) since
W v We v W 0 by Lemma A.0.4.

The case in which vn = n 6= 0 proceeds analogously over the third
premise, exchanging 0, n where appropriate.

Lemma A.0.13 (Compat match).

J�;� ` e : ⌧1 + ⌧2K ^ J�;�, x : ⌧1 ` e1 : ⌧K ^ J�;�, y : ⌧2 ` e2 : ⌧K
=) J�;� ` match e x{e1} y{e2} : ⌧1 + ⌧2K
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Proof. Expanding the definition of J·K and ·
+ in the goal and pushing

substitutions, we are to show that

(W ,
�
close(��, close(��, e

+)),P,

if0 (lam x.close(��, close(��, e1
+))) (lam y.close(��, close(��, e2

+)))
�
) 2 EJ⌧K

where P = DUP, push 1, idx, SWAP, push 0, idx

given arbitary W , ��, �� such that (W , ��) 2 GJ�K and (W , ��) 2 GJ�K.
Expanding the definition of EJ·K, we are to show that

S0 = Fail c^c 2 OkErr_9v,W 0
w W .

�
S0 = S, v^H0 : W 0

^(W 0, v) 2 VJ⌧K)
�

(6)
given arbitrary H:W , S,H0, S0, j < W .k such that

hH # S # close(��, close(��, e+)), P, if0 (lam x. . . .) (lam y. . . .)i
j
! hH0 # S0 # ·i

The claim is vacuous when W .k = 0, so consider W .k > 0. Applying
Lemma A.0.2, there is je  j,He, Se such that

hH # S # close(��, close(��, e+)),i
je
! hHe # Se # ·i 9

Then by expanding EJ·K in the premise and specializing as appropriate,
either:

1. Se = S0 = Fail c ^ c 2 OkErr and He = H0.
In this case, we have the left disjunct of (6).

2.

9ve,We w W .
�
Se = S, ve ^ He : We ^ (We, ve) 2 VJ⌧1 + ⌧2K)

and

hHe # Se # P, if0 (lam x. . . .) (lam y. . . .)i
j�je
! hH0 # S0 # ·i 9

Expanding the definition of VJ⌧1 + ⌧2K, we have that

(9v1.ve = [0, v1] ^ v1 2 VJ⌧1K) _ (9v2.ve = [1, v2] ^ v2 2 VJ⌧2K)
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Without loss of generality, suppose we have the left disjunct. Then by
the operational semantics of StackLang,

hHe # Se, [0, v1] # P, if0 (lam x. . . .) (lam y. . . .)i
11
! hHe # S, v1, 0 # if0 (lam x. . . .) (lam y. . . .)i

1
! hHe # S, v1 # (lam x.close(��, close(��, e1

+))) i
1
! hHe # S # close(��, close(��,x:⌧1 [x 7! v1], e1

+))i

where in the last step we push the substitution inside ��. Now, by
expanding the definition of J·K and EJ·K in the second premise and
specializing where appropriate, we have that

S0 = Fail c^c 2 OkErr_9v,W 0
w We.

�
S0 = S, v^H0 : W 0

^(W 0, v) 2 VJ⌧K)
�

If we have the left disjunct, then we have the left disjunct of (6). If
we have the right disjunct, then we have the right disjunct of (6) since
W v We v W 0 by Lemma A.0.4.

The case in which ve = [1, v2] proceeds analogously over the third
premise, exchanging ⌧1, ⌧2 and 0, 1 and x, y where appropriate.

Lemma A.0.14 (Compat (e1, e2)).

J�;� ` e1 : ⌧1K ^ J�;� ` e2 : ⌧2K =) J�;� ` (e1, e2) : ⌧1 ⇥ ⌧2K

Proof. Expanding the definition of J·K and ·
+ in the goal and pushing

substitutions, we are to show that

(W , (close(��, close(��, e1+)),
close (��, close (��, e2+)) , lam x2.lam x1. (push [x1, x2]))) 2 EJ⌧1 ⇥ ⌧2K

given arbitary W , ��, �� such that (W , ��) 2 GJ�K and (W , ��) 2 GJ�K.
Expanding the definition of EJ·K, we are to show that

S0 = Fail c^c 2 OkErr_9v,W 0
w W .

�
S0 = S, v^H0 : W 0

^(W 0, v) 2 VJ⌧1 ⇥ ⌧2K)
�

(7)
given arbitrary H:W , S,H0, S0, j < W .k such that

hH#S#close(��, close(��, e1+)), close
�
��, close

�
��, e2

+
��

, . . .i
j
! hH0#S0#·i 9
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The claim is vacuous when W .k = 0, so consider W .k > 0. Applying
Lemma A.0.2, there is j1  j,H1, S1 such that

hH # S # close(��, close(��, e1+))i
j1
! hH1 # S1 # ·i 9

Then by expanding EJ·K in the premise and specializing as appropriate,
either:

1. S1 = S0 = Fail c ^ c 2 OkErr and H1 = H0.
In this case, we have the left disjunct of (7).

2.
9v1,W1 w W .

�
S1 = S, v1 ^ H1 : W1 ^ (W1, v1) 2 VJ⌧1K)

and

hH1#S1#close
�
��, close

�
��, e2

+
��

, lam x2.lam x1. (push [x1, x2])i
j�j1
! hH0#S0#·i 9

Applying Lemma A.0.2 again, there is j2  j � j1,H2, S2 such that

hH # S # close(��, close(��, e2+))i
j2
! hH2 # S2 # ·i 9

Then by expanding EJ·K in the premise and specializing as appropriate,
either:

a) S2 = S0 = Fail c ^ c 2 OkErr and H2 = H0.
In this case, we have the left disjunct of (7).

b)

9v2,W2 w W1.
�
S2 = S1, v2 ^ H2 : W2 ^ (W2, v2) 2 VJ⌧2K)

and

hH2 # S2 # lam x2.lam x1. (push [x1, x2])i
j�j1�j2
! hH0 # S0 # ·i 9

Recall that S1 = S, v1, so S2 = S1, v2 = S, v1, v2. Then by the
operational semantics of StackLang,

hH2 # S, v1, v2 # lam x2.lam x1. (push [x1, x2])i
3
! hH2 # S, [v1, v2] # ·i 9

so H0 = H2 and S0 = S, [v1, v2]. Then we show the right
disjunct of (7) by taking v = [v1, v2] and W 0 = B3W2, not-
ing that W v W1 v W2 v W 0 by Lemma A.0.4. All that
remains is to show that (W 0, [v1, v2]) 2 VJ⌧1 ⇥ ⌧2K, which re-
quires (W 0, v1) 2 VJ⌧1K and (W 0, v2) 2 VJ⌧2K. Recall that
(W1, v1) 2 VJ⌧1K and (W2, v2) 2 VJ⌧2K. Then simply apply Lem-
mas A.0.3, A.0.5.
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Lemma A.0.15 (Compat fst e).

J�;� ` e : ⌧1 ⇥ ⌧2K =) J�;� ` fst e : ⌧1K

Proof. Expanding the definition of J·K and ·
+ and pushing substitutions in

the goal, we are to show that

�
W ,

�
close

�
��, close

�
��, e

+
��

, push 0, idx
��

2 EJ⌧1K

given arbitary W , ��, �� such that (W , ��) 2 GJ�K and (W , ��) 2 GJ�K.
Expanding the definition of EJ·K, we are to show that

S0 = Fail c^c 2 OkErr_9v,W 0
w W .

�
S0 = S, v^H0 : W 0

^(W 0, v) 2 VJ⌧1K)
�

(8)
given arbitrary H:W , S,H0, S0, j < W .k such that

hH # S # close
�
��, close

�
��, e

+
��

, push 0, idxi
j
! hH0 # S0 # ·i 9

The claim is vacuous when W .k = 0, so consider W .k > 0. Applying
Lemma A.0.2, there is je  j,He, Se such that

hH # S # close
�
��, close

�
��, e

+
��
i

je
! hHe # Se # ·i 9

Then by expanding EJ·K in the premise and specializing as appropriate,
either:

1. Se = S0 = Fail c ^ c 2 OkErr and He = H0.
In this case, we have the left disjunct of (8).

2.

9ve,We w W .
�
Se = S, ve ^ He : We ^ (We, ve) 2 VJ⌧1 ⇥ ⌧2K)

and
hHe # Se # push 0, idxi

j�je
! hH0 # S0 # ·i 9

Expanding the definition of VJ⌧1 ⇥ ⌧2K we have that

ve = [v1, v2] ^ (We, v1) 2 VJ⌧1K ^ (We, v2) 2 VJ⌧2K

Then by the operational semantics of StackLang,

hHe # S, [v1, v2] # push 0, idxi
2
! hH # S, v1 # ·i 9

so H0 = He and S0 = S, v1. Then we show the right disjunct of (8)
by taking v = v1 and W 0 = B2We, noting that W v We v W 0
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by Lemma A.0.4. All that remains is to show that (W 0, v1) 2 VJ⌧1K.
Recall that (We, v1) 2 VJ⌧1K, so simply apply Lemmas A.0.3, A.0.5.

Lemma A.0.16 (Compat snd e).

J�;� ` e : ⌧1 ⇥ ⌧2K =) J�;� ` snd e : ⌧2K

Proof. As in Lemma A.0.15, exchanging ⌧1, ⌧2 and 0, 1 where appropriate.

Lemma A.0.17 (Compat �x : ⌧.e).

J�;�, x : ⌧1 ` e : ⌧2K =) J�;� ` �x : ⌧1.e : ⌧1 ! ⌧2K

Proof. Expanding the definition of J·K and ·
+ in the goal and pushing

substitutions, we are to show that

(W , push
�
thunk lam x.close

�
��, close

�
��, e

+
���

) 2 EJ⌧1 ! ⌧2K

given arbitary W , ��, �� such that (W , ��) 2 GJ�K and (W , ��) 2 GJ�K.
Applying Lemma A.0.6, we are to show that

(W ,
�
thunk lam x.close

�
��, close

�
��, e

+
���

) 2 VJ⌧1 ! ⌧2K

Expanding the definition of VJ⌧1 ! ⌧2K and pushing the substitution into
��, we are to show that

(W 0, close
�
��, close

�
��,x:⌧1 [x 7! v], e+

��
) 2 EJ⌧2K

given arbitrary W 0 A W and v such that (W 0, v) 2 VJ⌧1K. We have this
by expanding the definition of J·K in the premise and specializing where
appropriate.

Lemma A.0.18 (Compat e1 e2).

J�;� ` e1 : ⌧1 ! ⌧2K ^ J�;� ` e2 : ⌧1K =) J�;� ` e1 e2 : ⌧2K

Proof. Expanding the definition of J·K and ·
+ in the goal and pushing

substitutions, we are to show that

(W , close(��, close(��, e1
+)), close(��, close(��, e2

+)), SWAP, call) 2 EJ⌧2K
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given arbitary W , ��, �� such that (W , ��) 2 GJ�K and (W , ��) 2 GJ�K.
Expanding the definition of EJ·K, we are to show that

S0 = Fail c^c 2 OkErr_9v,W 0
w W .

�
S0 = S, v^H0 : W 0

^(W 0, v) 2 VJ⌧2K)
�

(9)
given arbitrary H:W , S,H0, S0, j < W .k such that

hH#S#close(��, close(��, e1+)), close(��, close(��, e2+)), SWAP, calli
j
! hH0#S0#·i 9

The claim is vacuous when W .k = 0, so consider W .k > 0. Applying
Lemma A.0.2, there is j1  j,H1, S1 such that

hH # S # close(��, close(��, e1+)),i
j1
! hH1 # S1 # ·i 9

Then by expanding EJ·K in the premise and specializing as appropriate,
either:

1. S1 = S0 = Fail c ^ c 2 OkErr and H1 = H0.
In this case, we have the left disjunct of (9).

2.

9v1,W1 w W .
�
S1 = S, v1 ^ H1 : W1 ^ (W1, v1) 2 VJ⌧1 ! ⌧2K)

and

hH1 # S1 # close(��, close(��, e2+)), SWAP, calli
j�j1
! hH0 # S0 # ·i 9

Applying Lemma A.0.2 again, there is j2  j � j1,H2, S2 such that

hH # S # close(��, close(��, e2+)),i
j2
! hH2 # S2 # ·i 9

Then by expanding EJ·K in the premise and specializing as appropriate,
either:

a) S2 = S0 = Fail c ^ c 2 OkErr and H2 = H0.
In this case, we have the left disjunct of (9).

b)

9v2,W2 w W1.
�
S2 = S1, v2 ^ H2 : W2 ^ (W2, v2) 2 VJ⌧1K)

and
hH2 # S2 # SWAP, calli

j�j1�j2
! hH0 # S0 # ·i 9
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Recall that (W1, v1) 2 VJ⌧1 ! ⌧2K, so by expanding the definition
of VJ⌧1 ! ⌧2K and specializing as appropriate, we have that

v1 = thunk lam x.P ^ (W2, [x 7! v2]P) 2 EJ⌧2K

Recall that S1 = S, v1, so S2 = S1, v2 = S, thunk lam x.P, v2.
Then by the operational semantics of StackLang,

hH2 # S, thunk lam x.P, v2 # SWAP, calli
4
! hH2 # S, v2, thunk lam x.P # calli
1
! hH2 # S, v2 # lam x.Pi
1
! hH2 # S # [x 7! v2]Pi

j�j1�j2�6
! hH0 # S0 # ·i

9

Now, recall that (W2, [x 7! v2]P) 2 EJ⌧2K, so by expanding the
definition of EJ·K and specializing where appropriate, we have
that

S0 = Fail c^c 2 OkErr_9v,W 0
w W2.

�
S0 = S, v^H0 : W 0

^(W 0, v) 2 VJ⌧2K)
�

If we have the left disjunct, then we have the left disjunct of (9).
If we have the right disjunct, then we have the right disjunct of
(9) since W v W1 v W2 v W 0 by Lemma A.0.4.

Lemma A.0.19 (Compat ref e).

J�;� ` e : ⌧K =) J�;� ` ref e : ref ⌧K

Proof. Expanding the definition of J·K and ·
+ in the goal and pushing

substitutions, we are to show that

(W , close(��, close(��, e
+)), alloc) 2 EJref ⌧K

given arbitary W , ��, �� such that (W , ��) 2 GJ�K and (W , ��) 2 GJ�K.
Expanding the definition of EJ·K, we are to show that

S0 = Fail c^c 2 OkErr_9v,W 0
w W .

�
S0 = S, v^H0 : W 0

^(W 0, v) 2 VJref ⌧K)
�

(10)
given arbitrary H:W , S,H0, S0, j < W .k such that

hH # S # close(��, close(��, e+)), alloci
j
! hH0 # S0 # ·i 9
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The claim is vacuous when W .k = 0, so consider W .k > 0. Applying
Lemma A.0.2, there is je  j,He, Se such that

hH # S # close(��, close(��, e+)),i
je
! hHe # Se # ·i 9

Then by expanding EJ·K in the premise and specializing as appropriate,
either:

1. Se = S0 = Fail c ^ c 2 OkErr and He = H0.
In this case, we have the left disjunct of (10).

2.
9ve,We w W .

�
Se = S, ve ^ He : We ^ (We, ve) 2 VJ⌧K)

and
hHe # Se # alloci j�je

! hH0 # S0 # ·i 9

By the operational semantics of StackLang,

hHe # S, ve # alloci 1
! hHe ] {` 7! ve} # S, ` # ·i 9

for some `, so H0 = He ] {` 7! ve} and S0 = S, `.
Then we have the right disjunct of (10) by taking v = `
and W 0 = (We.k � 1, bWe. cWe.k�1 ] {` 7! bVJ⌧KcWe.k�1}), observ-
ing that (W 0, `) 2 VJref ⌧K by definition and W v We v W 0 by
Lemma A.0.4.

Lemma A.0.20 (Compat !e).

J�;� ` e : ref ⌧K =) J�;� ` !e : ⌧K

Proof. Expanding the definition of J·K and ·
+ in the goal and pushing

substitutions, we are to show that

(W , close(��, close(��, e
+)), read) 2 EJ⌧K

given arbitary W , ��, �� such that (W , ��) 2 GJ�K and (W , ��) 2 GJ�K.
Expanding the definition of EJ·K, we are to show that

S0 = Fail c^c 2 OkErr_9v,W 0
w W .

�
S0 = S, v^H0 : W 0

^(W 0, v) 2 VJ⌧K)
�

(11)
given arbitrary H:W , S,H0, S0, j < W .k such that

hH # S # close(��, close(��, e+)), readi
j
! hH0 # S0 # ·i 9
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The claim is vacuous when W .k = 0, so consider W .k > 0. Applying
Lemma A.0.2, there is je  j,He, Se such that

hH # S # close(��, close(��, e+)),i
je
! hHe # Se # ·i 9

Then by expanding EJ·K in the premise and specializing as appropriate,
either:

1. Se = S0 = Fail c ^ c 2 OkErr and He = H0.
In this case, we have the left disjunct of (11).

2.
9ve,We w W .

�
Se = S, ve ^ He : We ^ (We, ve) 2 VJref ⌧K)

and
hHe # Se # readi j�je

! hH0 # S0 # ·i 9

Expanding the definition of VJ·K, we have that

ve = ` ^We. (`) = bVJ⌧KcW e.k

so He = H0
e ] {` 7! v`} for some v` such that v` 2 bVJ⌧KcWe.k. Then

by the operational semantics of StackLang,

hH0
e ] {` 7! v`} # S, ` # readi 1

! hH0
e ] {` 7! v`} # S, v` # ·i 9

so H0 = H0
e ] {` 7! v`} and S0 = S, v`. Then we have the right disjunct

of (11) by taking v = v` and W 0 = BWe, noting that W v We v

W 0 = BWe by Lemma A.0.4.

Lemma A.0.21 (Compat e1 := e2).

J�;� ` e1 : ref ⌧K ^ J�;� ` e2 : ⌧K =) J�;� ` e1 := e2 : unitK

Proof. Expanding the definition of J·K and ·
+ in the goal and pushing

substitutions, we are to show that

(W ,
�
close(��, close(��, e1

+)), close
�
��, close

�
��, e2

+
��

,write, push 0
�
) 2 EJunitK

given arbitary W , ��, �� such that (W , ��) 2 GJ�K and (W , ��) 2 GJ�K.
Expanding the definition of EJ·K, we are to show that

S0 = Fail c^c 2 OkErr_9v,W 0
w W .

�
S0 = S, v^H0 : W 0

^(W 0, v) 2 VJunitK)
�

(12)
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given arbitrary H:W , S,H0, S0, j < W .k such that

hH#S#close(��, close(��, e1+)), close
�
��, close

�
��, e2

+
��

,write, push 0i
j
! hH0#S0#·i 9

The claim is vacuous when W .k = 0, so consider W .k > 0. Applying
Lemma A.0.2, there is j1  j,H1, S1 such that

hH # S # close(��, close(��, e1+)),i
j1
! hH1 # S1 # ·i 9

Then by expanding EJ·K in the premise and specializing as appropriate,
either:

1. S1 = S0 = Fail c ^ c 2 OkErr and H1 = H0.
In this case, we have the left disjunct of (12).

2.
9v1,W1 w W .

�
S1 = S, v1 ^ H1 : W1 ^ (W1, v1) 2 VJref ⌧K)

and

hH1 # S1 # close
�
��, close

�
��, e2

+
��

,write, push 0i
j�j1
! hH0 # S0 # ·i 9

Expanding the definition of VJref K, we have that

v1 = ` ^W1. (`) = bVJ⌧KcW 1.k

for some `.

Applying Lemma A.0.2 again, there is j2  j � j1,H2, S2 such that

hH1 # S1 # close(��, close(��, e2+)),i
j2
! hH2 # S2 # ·i 9

Then by expanding EJ·K in the premise and specializing as appropriate,
either:

a) S2 = S0 = Fail c ^ c 2 OkErr and H2 = H0.
In this case, we have the left disjunct of (12).

b)

9v2,W2 w W1.
�
S2 = S1, v2 ^ H2 : W2 ^ (W2, v2) 2 VJ⌧K)

and
hH2 # S2 # write, push 0i

j�j1�j2
! hH0 # S0 # ·i 9

Recall that W1. (`) = bVJ⌧KcW 1.k . Then since W1 v W2, we
also have that
W2. (`) = bVJ⌧KcW 2.k . Then since H2 : W2, we may write
H2 = H0

2 ] {` 7! v`} for some v` such that v` 2 bVJ⌧KcW2.k.
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Recall that S1 = S, `, so S2 = S1, v2 = S, `, v2. Then by the
operational semantics of StackLang,

hH0
2 ] {` 7! v`} # S, `, v2 # write, push 0i

2
! hH0

2 ] {` 7! v2} # S, 0 # ·i

so H0 = H0
2 ] {` 7! v2} and S0 = S, 0. Then we show the right

disjunct of (10) by taking v = 0 and W 0 = B2W2, noting that
W v W1 v W2 v W 0 by Lemma A.0.4. All that remains is to
show that (W 0, 0) 2 VJunitK, which we have by definition.

Lemma A.0.22 (Compat LeM⌧ ).

J�;� ` e : ⌧ K ^ ⌧ ⇠ ⌧ =) J�;� ` LeM⌧ : ⌧K

Proof. Expanding the definition of J·K and ·
+ and pushing substitutions in

the goal, we are to show that

�
W ,

�
close

�
��, close

�
��, e

+
��

,C⌧ 7!⌧

��
2 EJ⌧K

given arbitary W , ��, �� such that (W , ��) 2 GJ�K and (W , ��) 2 GJ�K.
We proceed by appealing to Lemma 4.0.1, which says that it su�ces to

show that:

�
W ,

�
close

�
��, close

�
��, e

+
����

2 EJ⌧ K

But this is exactly what our hypothesis tells us, appropriately applied.

Lemma A.0.23 (Compat n).

J�;� ` n : intK

Proof. As in Lemma A.0.7, exchanging unit, int and 0, n where appropriate.

Lemma A.0.24 (Compat x).

J�;�,x : ⌧ ` x : ⌧ K

Proof. As in Lemma A.0.9, exchanging ⌧ , ⌧ where appropriate.

Lemma A.0.25 (Compat [e1, . . . , en]).

J�;� ` e1 : ⌧ K ^ . . . ^ J�;� ` en : ⌧ K =) J�;� ` [e1, . . . , en] : [⌧ ]K

Proof. As in Lemma A.0.14, exchanging ⌧1, ⌧2 with [⌧ ] and generalizing
n 6= 2 where appropriate.
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Lemma A.0.26 (Compat e1[e2]).

J�;� ` e1 : [⌧ ]K ^ J�;� ` e2 : intK =) J�;� ` e1[e2] : ⌧ K

Proof. Expanding the definition of J·K and ·+ and pushing substitutions in
the goal, we are to show that

�
W ,

�
close

�
��, close

�
��, e1

+
��

, close
�
��, close

�
��, e2

+
��

, idx
��

2 EJ⌧ K

given arbitary W , ��, �� such that (W , ��) 2 GJ�K and (W , ��) 2 GJ�K.
Expanding the definition of EJ·K, we are to show that

S0 = Fail c^c 2 OkErr_9v,W 0
w W .

�
S0 = S, v^H0 : W 0

^(W 0, v) 2 VJ⌧ K)
�

(13)
given arbitrary H:W , S,H0, S0, j < W .k such that

hH#S#close
�
��, close

�
��, e1

+
��

, close
�
��, close

�
��, e2

+
��

, idxi
j
! hH0#S0#·i 9

The claim is vacuous when W .k = 0, so consider W .k > 0. Applying
Lemma A.0.2, there is j1  j,H1, S1 such that

hH#S#close
�
��, close

�
��, e1

+
��

, close
�
��, close

�
��, e2

+
��

, idxi
j1
! hH1#S1#·i 9

Then by expanding EJ·K in the premise and specializing as appropriate,
either:

1. S1 = S0 = Fail c ^ c 2 OkErr and H1 = H0.
In this case, we have the left disjunct of (13).

2.
9v1,W1 w W .

�
S1 = S, v1 ^ H1 : W1 ^ (W1, v1) 2 VJ[⌧ ]K)

and

hH1 # S1 # close
�
��, close

�
��, e2

+
��

, idxi
j�j1
! hH0 # S0 # ·i 9

Expanding the definition of VJ[⌧ ]K we have that

v1 = [v01, . . . , v
0
n] ^ (W1, v

0
1) 2 VJ⌧ K ^ . . . ^ (W1, v

0
n) 2 VJ⌧ K

Applying Lemma A.0.2 again, there is j2  j � j1,H2, S2 such that

hH1 # S1 # close
�
��, close

�
��, e2

+
��

, idxi
j2
! hH2 # S2 # ·i 9

Then by expanding EJ·K in the premise and specializing as appropriate,
either:
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a) S2 = S0 = Fail c ^ c 2 OkErr and H2 = H0.
In this case, we have the left disjunct of (13).

b)

9v2,W2 w W1.
�
S2 = S, v2 ^ H2 : W2 ^ (W2, v2) 2 VJintK)

and
hH2 # S2 # idxi j�j1�j2

! hH0 # S0 # ·i 9

Expanding the definition of VJintK we have that

v2 = ni

for some ni.

Recall that S1 = S, [v0
1
, . . . , v0n], so S2 = S1, ni = S, [v0

1
, . . . , v0n], ni.

Then there are two cases:

i. ni 2 [1, . . . , n]. Then by the operational semantics of
StackLang,

hH2 # S, [v01, . . . , v0n], ni # idxi
1
! hH2 # S, vni # ·i

so H0 = H2 and S0 = S, v0
ni
. Then we have the right disjunct

of (13) by taking v = vni and W 0 = BW2, noting that
W v W1 v W2 v W 0 by Lemma A.0.4 All that remains is
to show that (W 0, v0

ni
) 2 VJ⌧ K. Recall that (W1, v0ni) 2 VJ⌧ K,

so simply apply Lemmas A.0.3, A.0.5.

ii. ni /2 [1, . . . , n]. Then by the operational semantics of
StackLang,

hH2 # S, [v01, . . . , v0n], ni # idxi
1
! hH2 # S # errori
1
! hH2 # Fail c # ·i

so S0 = Fail c ^ c 2 OkErr. Then we have the left disjunct
of (13).

Lemma A.0.27 (Compat if0).

J�;� ` e : intK^J�;� ` e1 : ⌧ K^J�;� ` e2 : ⌧ K =) J�;� ` if0 e e1 e2 : ⌧ K

Proof. As in Lemma A.0.18, exchanging bool, ⌧ with int, ⌧ where appro-
priate.
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Lemma A.0.28 (Compat �x : ⌧.e).

J�;�, x : ⌧1 ` e : ⌧2K =) J�;� ` �x : ⌧1.e : ⌧1 ! ⌧2K

Proof. As in Lemma A.0.17, exchanging ⌧1, ⌧2 with ⌧1, ⌧2 where appropriate.

Lemma A.0.29 (Compat e1 e2).

J�;� ` e1 : ⌧1 ! ⌧2K ^ J�;� ` e2 : ⌧1K =) J�;� ` e1 e2 : ⌧2K

Proof. As in Lemma A.0.18, exchanging ⌧1, ⌧2 with ⌧1, ⌧2 where appropriate.

Lemma A.0.30 (Compat e1 + e2).

J�;� ` e1 : intK ^ J�;� ` e2 : intK =) J�;� ` e1 + e2 : intK

Proof. Expanding the definition of J·K and ·+ and pushing substitutions in
the goal, we are to show that

�
W ,

�
close

�
��, close

�
��, e1

+
��

, close
�
��, close

�
��, e2

+
��

, add
��

2 EJintK

given arbitary W , ��, �� such that (W , ��) 2 GJ�K and (W , ��) 2 GJ�K.
Expanding the definition of EJ·K, we are to show that

S0 = Fail c^c 2 OkErr_9v,W 0
w W .

�
S0 = S, v^H0 : W 0

^(W 0, v) 2 VJintK)
�

(14)
given arbitrary H:W , S,H0, S0, j < W .k such that

hH#S#close
�
��, close

�
��, e1

+
��

, close
�
��, close

�
��, e2

+
��

, addi
j
! hH0#S0#·i

The claim is vacuous when W .k = 0, so consider W .k > 0. Applying
Lemma A.0.2, there is j1  j,H1, S1 such that

hH#S#close
�
��, close

�
��, e1

+
��

, close
�
��, close

�
��, e2

+
��

, addi
j1
! hH1#S1#·i 9

Then by expanding EJ·K in the premise and specializing as appropriate,
either:

1. S1 = S0 = Fail c ^ c 2 OkErr and H1 = H0.
In this case, we have the left disjunct of (14).

2.
9v1,W1 w W .

�
S1 = S, v1 ^ H1 : W1 ^ (W1, v1) 2 VJintK)
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and

hH1 # S1 # close
�
��, close

�
��, e2

+
��

, addi
j�j1
! hH0 # S0 # ·i 9

Expanding the definition of VJintK we have that

v1 = n1

for some n1. Applying Lemma A.0.2 again, there is j2  j � j1,H2, S2
such that

hH1 # S1 # close
�
��, close

�
��, e2

+
��

, addi
j2
! hH2 # S2 # ·i 9

Then by expanding EJ·K in the premise and specializing as appropriate,
either:

a) S2 = S0 = Fail c ^ c 2 OkErr and H2 = H0.
In this case, we have the left disjunct of (14).

b)

9v2,W2 w W1.
�
S2 = S, v2 ^ H2 : W2 ^ (W2, v2) 2 VJintK)

and
hH2 # S2 # addi j�j1�j2

! hH0 # S0 # ·i 9

Expanding the definition of VJintK we have that

v2 = n2

for some n2.

Recall that S1 = S, n1, so S2 = S1, n2 = S, n1, n2. Then by the
operational semantics of StackLang,

hH2 # S, n1, n2 # addi 1
! hH2 # S, (n1 + n2) # ·i 9

so H0 = H2 and S0 = S, (n1 + n2). Then we have the right
disjunct of (14) by taking v = n1 + n2 and W 0 = BW2,
noting that W v W1 v W2 v W 0 by Lemma A.0.4 and that
(W 0, n1 + n2) 2 VJ⌧ K by definition.

Lemma A.0.31 (Compat ref e).

J�;� ` e : ⌧ K =) J�;� ` ref e : ref ⌧ K

Proof. As in Lemma A.0.19, exchanging ⌧ , ⌧ where appropriate.
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Lemma A.0.32 (Compat !e).

J�;� ` e : ref ⌧ K =) J�;� ` !e : ⌧ K

Proof. As in Lemma A.0.20, exchanging ⌧ , ⌧ where appropriate.

Lemma A.0.33 (Compat e1 := e2).

J�;� ` e1 : ref ⌧ K ^ J�;� ` e2 : ⌧ K =) J�;� ` e1 := e2 : intK

Proof. As in Lemma A.0.21, exchanging ⌧ , ⌧ where appropriate.

Lemma A.0.34 (Compat LeM⌧ ).

J�;� ` e : ⌧K ^ ⌧ ⇠ ⌧ =) J�;� ` LeM⌧ : ⌧ K

Proof. As in A.0.22, exchanging ⌧ , ⌧ where appropriate.



B
VALUE INTEROPERABIL ITY : AFF INE
FUNCTIONS

b.1 dynamic logical relation

We first present various supporting lemmas, and then all of the compatibility
lemmas.

Lemma B.1.1 (Expression Relation Contains Value Relation).

VJ⌧K⇢ ✓ EJ⌧K⇢

Proof. All terms in the value relation are irreducible, and thus are trivially
in the expression relation.

Lemma B.1.2 (Split Substitutions). For any world W and substitution
� such that

(W , �) 2 GJ⌦1 ]⌦2K⇢
there exist substitutions �1, �2 such that � = �1 ] �2 and

(W , �1) 2 GJ⌦1K⇢

and
(W , �2) 2 GJ⌦2K⇢

Moreover, for any i, j 2 {1, 2}, for any �;⌦j;�;� ` e : ⌧ ,

�i(e+) = �ij(e
+)

and for any �;�;�;⌦j ` e : ⌧ ,

�i(e+) = �ij(e
+)

Proof. First, we need to show that there exist substitutions �1 and �2. This
follows from the inductive structure of GJ⌦K⇢, where we can separate the
parts that came from GJ⌦1K⇢ and GJ⌦2K⇢. The second follows from the fact
that the statics means that the rest of the substitution must not occur in
the term, and thus �i(e+) = �i1(�

i

2(e
+)) = �i1(e

+) (for example).

Lemma B.1.3 (World Extension).

1. If (W1, v1, v2) 2 VJ⌧K⇢ and W1 v W2 then (W2, v1, v2) 2 VJ⌧K⇢

195
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2. If (W1, �1, �2) 2 GJ�K⇢ and W1 v W2 then (W2, �1, �2) 2 GJ�K⇢

Proof. We note that world extension allows three things: the step index
to decrease, the heap typing to add bindings (holding all existing bindings
at same relation, module decreasing step index), and add flag references
(ensuring existing flag references can go from unused to used, but not
the other way). In all cases, this is straightforward based on the definition
(relying on Lemma B.1.4 in some cases).

Lemma B.1.4 (World Extension Transitive). If W1 v W2 and W2 v W3

then W1 v W3.

Proof. Straightforward based on the definition.

Lemma B.1.5 (Heaps in Later World). For any W 2 World and
H1,H2 : W, it holds that H1,H2 : BW.

Proof. Since heap typings map to relations that are by definition closed
under world extension, and world extension cannot remove locations, only
restrict them to future step indices, this holds by definition.

Lemma B.1.6 (Logical Relations for MiniML in Typ). For any �, ⇢ 2

DJ�K, and ⌧ , if � ` ⌧ , then VJ⌧K⇢ 2 Typ.

Proof. By the definition of Typ, it su�ces to show, for all natural numbers
n, bVJ⌧K⇢cn 2 Typn. This requires us to show two things: first, that it is in
2AtomV aln , and second that it is closed under world extension. The latter
holds by Lemma B.1.3. For the former, we note that we are required to
show that the worlds are in Worldn, which holds by definition.

Lemma B.1.7 (Compositionality). (W , v1, v2) 2 VJ⌧K
⇢[↵ 7!VJ⌧ 0K⇢] ()

(W , v1, v2) 2 VJ⌧ [⌧ 0/↵]K⇢

Proof. It su�ces to show VJ⌧K
⇢[↵ 7!VJ⌧ 0K⇢] = VJ⌧ [⌧ 0/↵]K⇢, which we will do

by induction on ⌧ . We show the interesting cases:

case ⌧ = ↵.

VJ[↵ 7! ⌧ 0]↵K⇢ = VJ⌧ 0K⇢ (by sub)

= ⇢[↵ 7! VJ⌧ 0K⇢](↵) (by lookup)

= VJ↵K
⇢[↵ 7!VJ⌧ 0K⇢] (by def VJ·K·)
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case ⌧ = � 6= ↵.

VJ[↵ 7! ⌧ 0]�K⇢ = VJ�K⇢ (by sub)

= ⇢(�) (by def VJ·K·)
= ⇢[↵ 7! VJ⌧ 0K⇢](�) (by lookup)

= VJ�K
⇢[↵ 7!VJ⌧ 0K⇢] (by def VJ·K·)

The other cases are straightforward by expanding the definitions of
VJ·K·, EJ·K· and applying the induction hypotheses.

Lemma B.1.8 (Expression Relation for Closed Types). For any MiniML

type ⌧ where · ` ⌧ and any ⇢,

EJ⌧K⇢ = EJ⌧K·

Proof. Since EJ⌧K⇢ is defined in terms of VJ⌧K⇢, this proof is analogous
to Lemma B.1.7, though since what we are substituting is not used, the
interpretation can be arbitrary.

Lemma B.1.9 (Closing MiniML Terms). For any MiniML term e where
�;⌦;�;� ` e : ⌧ , for any W , ��, ��, �⌦, ⇢ where ⇢ 2 DJ�K, (W , ��) 2

GJ�K⇢, (W , ��) 2 GJ�K·, and (W , �⌦) 2 GJ⌦K·, it holds that

�1�(�
1
�(�

1
⌦(e

+)))

and
�2�(�

2
�(�

2
⌦(e

+)))

are closed terms.

Proof. Since free variables are compiled to free variables, and no other free
variables are introduced via compilation, this follows trivially from the
structure of GJ�K⇢.

Lemma B.1.10 (Closing A� Terms). For any A� term e where
�;�;�;⌦ ` e : ⌧ , for any W , ��, ��, �⌦, ⇢ where ⇢ 2 DJ�K, (W , ��) 2

GJ�K⇢, (W , ��) 2 GJ�K·, and (W , �⌦) 2 GJ⌦K·, it holds that

�1�(�
1
�(�

1
⌦(e

+)))

and
�2�(�

2
�(�

2
⌦(e

+)))

are closed terms.



198 value interoperability: affine functions

Proof. Since free variables are compiled to free variables, and no other free
variables are introduced via compilation, this follows trivially from the
structure of GJ�K⇢.

Lemma B.1.11 (Anti-reduction). If (W 0, e0
1
, e0

2
) 2 EJ⌧K⇢, then

8j e1 e2 W H1 H2 H0
1 H0

2.W v W 0
^ j < W .k ^ H1,H2 : W ^ hH1, e1i

j
!

hH0
1, e

0
1
i^hH2, e2i

⇤
! hH0

2, e
0
2
i^H0

1,H
0
2 : W 0

^W 0.k � W .k�j^freevars(e1) =
freevars(e2) = ; =) (W , e1, e2) 2 EJ⌧K⇢

Proof. Expanding the expression relation, given

8H1,H2:W , e⇤1, H⇤
1, j0 < W .k. hH1, e1i

j
0

! hH⇤
1, e

⇤
1i 9

we must show either e⇤
1
is fail Conv or there exist v2,H⇤

2,W
⇤ such that

hH2, e2i
⇤
! hH⇤

2, v2i ^W v W ⇤
^ H⇤

1,H
⇤
2 : W

⇤
^ (W ⇤, e⇤1, v2) 2 VJ⌧K⇢

By confluence, if hH1, e1i
j
! hH0

1, e
0
1
i and hH1, e1i

j
0

! hH⇤
1, e

⇤
1
i 9, then

hH0
1, e

0
1i

j
0�j
! hH⇤

1, e
⇤
1i 9

Thus, by applying (W 0, e0
1
, e0

2
) 2 EJ⌧K⇢, since j0 � j < W .k � j  W 0.k,

we find either e⇤
1
is fail Conv, in which case we are done, or there exist

v2,H⇤
2,W

⇤ such that

hH0
2, e

0
2i

⇤
! hH⇤

2, v2i ^W 0
v W ⇤

^ H⇤
1,H

⇤
2 : W

⇤
^ (W ⇤, e⇤1, v2) 2 VJ⌧K⇢

Now, since W v W 0 and W 0
v W ⇤, we have W v W ⇤ by Lemma

B.1.4. Moreover, since hH2, e2i
⇤
! hH0

2, e
0
2
i and hH0

2, e
0
2
i

⇤
! hH⇤

2, v2i, we have
hH2, e2i

⇤
! hH⇤

2, v2i. This su�ces to finish the proof.

Lemma B.1.12 (Conversions Evaluation Contexts). C⌧A 7!⌧B 2 K

Proof. By inspection of the conversions, which are either empty or have
shape if [·] . . . or let x = [·] . . ..

Theorem B.1.13 (Convertibility Soundness). If ⌧A ⇠ ⌧B then
8 (W , e1, e2) 2 EJ⌧AK· =) (W , C⌧A 7!⌧B(e1), C⌧A 7!⌧B(e2)) 2

EJ⌧BK· ^ 8 (W , e1, e2) 2 EJ⌧BK· =) (W , C⌧B 7!⌧A(e1), C⌧B 7!⌧A(e2)) 2

EJ⌧AK·.

Proof. We prove this by simultaneous induction on the structure of the
convertibility relation.

unit ⇠ unit There are two directions to this proof:
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8 (W , e1, e2) 2 EJunitK· =) (W , Cunit7!unit(e1), Cunit7!unit(e2)) 2 EJunitK·

and:

8 (W , e1, e2) 2 EJunitK· =) (W , Cunit7!unit(e1), Cunit7!unit(e2)) 2 EJunitK·

Both directions are trivially similar to each other, so we will only prove
the first direction. Expanding the definition of the convertibility boundaries,
we refine this to:

8 (W , e1, e2) 2 EJunitK· =) (W , e1, e2) 2 EJunitK·

Since the expression relation is shared between the two languages, this
holds because VJunitK· = VJunitK· = {(W , (), ())}.

int ⇠ bool There are two directions to this proof:

8 (W , e1, e2) 2 EJintK· =) (W , Cint 7!bool(e1), Cint 7!bool(e2)) 2 EJboolK·

and:

8 (W , e1, e2) 2 EJboolK· =) (W , Cbool 7!int(e1), Cbool 7!int(e2)) 2 EJintK·

Consider the first direction. Expanding the definition of the convertibility
boundaries, we refine this to:

8 (W , e1, e2) 2 EJintK· =) (W , e1, e2) 2 EJboolK·

Unlike the previous case, we cannot prove both directions by equality of
value relations, since our binary relation for VJboolK· renders all non-zero
numbers equal (a unary relation would admit the same proof). However,
the first implication does follow, since VJintK· ✓ VJboolK·.

Next, consider the second direction. Expanding the convertibility bound-
aries, we must show:

8 (W , e1, e2) 2 EJboolK· =) (W , if e1 0 1, if e2 0 1) 2 EJintK·

Expanding the expression relation, we must show that given

8H1,H2:W , e01, H0
1, j < W .k. hH1, if e1 0 1i

j
! hH0

1, e
0
1i 9
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it holds that:

e0
1
= fail Conv _ (9v2H0

2W
0.hH2, if e2 0 1i

⇤
! hH0

2, v2i
^W v W 0

^ H0
1,H

0
2 : W

0
^ (W 0, e0

1
, v2) 2 VJintK⇢)}

By (W , e1, e2) 2 EJboolK·, we find that either hH1, e1i either steps to
fail Conv, in which case hH1, if e1 0 1i takes another step to fail Conv and
we are done, or steps to an irreducible configuration hH⇤

1, e
⇤
1
i, in which case

hH2, e2i steps to an irreducible configuration hH⇤
2, e

⇤
2
i and there exists some

world W 0 such that W v W 0, H⇤
1,H

⇤
2 : W 0, and (W 0, e⇤

1
, e⇤

2
) 2 VJboolK·.

There are then two cases:

1. e⇤
1
= e⇤

2
= 0. In this scenario, we have

hH1, if e1 0 1i
⇤
! hH⇤

1, if 0 0 1i ! hH⇤
1, 0i

and
hH2, if e2 0 1i

⇤
! hH⇤

2, if 0 0 1i ! hH⇤
2, 0i

Then, we have from before that W v W 0 and H⇤
1,H

⇤
2 : W

0, and one
can easily see that (W 0, 0, 0) 2 VJintK·, which su�ces to finish the
proof.

2. e⇤
1
= n1 and e⇤

2
= n2 with n1, n2 6= 0. In this scenario, we have

hH1, if e1 0 1i
⇤
! hH⇤

1, if n1 0 1i ! hH⇤
1, 1i

and
hH2, if e2 0 1i

⇤
! hH⇤

2, if n2 0 1i ! hH⇤
2, 1i

Then, we have from before that W v W 0 and H⇤
1,H

⇤
2 : W

0, and one
can easily see that (W 0, 1, 1) 2 VJintK·, which su�ces to finish the
proof.

⌧1 ⌦ ⌧2 ⇠ ⌧1 ⇥ ⌧2 There are two directions to this proof:

8 (W , e1, e2) 2 EJ⌧1 ⌦ ⌧2K·
=) (W , C⌧1⌦⌧2 7!⌧1 ⇥ ⌧2(e1), C⌧1⌦⌧2 7!⌧1 ⇥ ⌧2(e2)) 2 EJ⌧1 ⇥ ⌧2K·

and:

8 (W , e1, e2) 2 EJ⌧1 ⇥ ⌧2K·
=) (W , C⌧1 ⇥ ⌧2 7!⌧1⌦⌧2(e1), C⌧1 ⇥ ⌧2 7!⌧1⌦⌧2(e2)) 2 EJ⌧1 ⌦ ⌧2K·
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Both directions are trivially similar to each other, so we will only prove
the first direction. Expanding the definition of the convertibility boundaries,
we refine this to:

8 (W , e1, e2) 2 EJ⌧1 ⌦ ⌧2K· =)
(W , let x = e1 in (C⌧1 7!⌧1(fst x),C⌧2 7!⌧2(snd x)),

let x = e2 in (C⌧1 7!⌧1(fst x),C⌧2 7!⌧2(snd x))) 2 EJ⌧1 ⇥ ⌧2K·

By Lemma B.1.11 and the hypothesis (W , e1, e2) 2 EJ⌧1 ⌦ ⌧2K·, we can
reduce this to proving

(W 0, (C⌧1 7!⌧1(fst v1),C⌧2 7!⌧2(snd v1)),
(C⌧1 7!⌧1(fst v2),C⌧2 7!⌧2(snd v2))) 2 EJ⌧1 ⇥ ⌧2K·

where W 0
v W and (W 0, v1, v2) 2 VJ⌧1 ⌦ ⌧2K·. Now we again appeal

to Lemma B.1.11, relying on Lemma B.1.12 to focus the conversions on
values in VJ⌧iK·, and Lemma B.1.1 combined with our induction hypothesis
to render the result.

⌧1 ( ⌧2 ⇠ (unit ! ⌧1) ! ⌧2

There are two directions, we first prove the former implication, that is,
that:

8 (W , e1, e2) 2 EJ⌧1 ( ⌧2K· =)
(W , C

⌧1(⌧2 7!(unit ! ⌧1) ! ⌧2
(e1), C⌧1(⌧2 7!(unit ! ⌧1) ! ⌧2

(e2))

2 EJ(unit ! ⌧1) ! ⌧2K·

Expanding the definition of the convertibility boundaries, we refine our
goal to:

(W , let x = e1 in �xthnk.let xconv = C⌧1 7!⌧1(xthnk ())
in let xaccess = once(xconv) in C⌧2 7!⌧2(x xaccess),

let x = e2 in �xthnk.let xconv = C⌧1 7!⌧1(xthnk ())
in let xaccess = once(xconv) in C⌧2 7!⌧2(x xaccess))

2 EJ(unit ! ⌧1) ! ⌧2K·

We appeal to Lemma B.1.11 to reduce this to

(W †,�xthnk.let xconv = C⌧1 7!⌧1(xthnk ())
in let xaccess = once(xconv) in C⌧2 7!⌧2(v1 xaccess),

�xthnk.let xconv = C⌧1 7!⌧1(xthnk ())
in let xaccess = once(xconv) in C⌧2 7!⌧2(v2 xaccess))

2 EJ(unit ! ⌧1) ! ⌧2K·
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where W v W † and (W †, v1, v2) 2 VJ⌧1 ( ⌧2K·. Since these are clearly
values, what remains to show is that these two values are related at W † in
VJ(unit ! ⌧1) ! ⌧2K·.
The definition of VJ(unit ! ⌧1) ! ⌧2K· says that we need to take any

W † @W 0, v0
1
, and v0

2
that are in VJunit ! ⌧1K· and show that

(W 0, [xthnk 7!v0
1
]let xconv = C⌧1 7!⌧1(xthnk ()) in

let xaccess = once(xconv) in C⌧2 7!⌧2(v1 xaccess),
[xthnk 7!v0

2
]let xconv = C⌧1 7!⌧1(xthnk ()) in

let xaccess = once(xconv) in C⌧2 7!⌧2(v2 xaccess)) 2 EJ⌧2K·

Where if we substitute, we get:

(W 0, let xconv = C⌧1 7!⌧1(v
0
1
()) in let xaccess = once(xconv) in C⌧2 7!⌧2(v1 xaccess),

let xconv = C⌧1 7!⌧1(v
0
2
()) in let xaccess = once(xconv) in C⌧2 7!⌧2(v2 xaccess))

2 EJ⌧2K·

Now we can expand the definition of once(·), to get:

(W 0, let xconv = C⌧1 7!⌧1(v
0
1
()) in let xaccess =

(let rfresh = ref 1 in � .{if !rfresh {fail Conv} {rfresh := 0; xconv}})
in C⌧2 7!⌧2(v1 xaccess),

let xconv = C⌧1 7!⌧1(v
0
2
()) in let xaccess =

(let rfresh = ref 1 in � .{if !rfresh {fail Conv} {rfresh := 0; xconv}})
in C⌧2 7!⌧2(v2 xaccess))

2 EJ⌧2K·

From our induction hypothesis, instantiated with W 0, we know that,
if they don’t run forever or fail, (W 0,C⌧1 7!⌧1(v

0
1 ()), C⌧1 7!⌧1(v

0
2 ())) will

be in EJ⌧1K· if (W 0, v0
1
(), v0

2
()) is in EJ⌧1K. Since we got v0

1
and v0

2
from

VJunit ! ⌧1K·, the latter holds, and thus we know the converted terms will
eventually run to related values vc1 and vc2 at some future world W 00 of
W 0 in VJ⌧1K. We can further step, substituting those values and reducing
to a future world W 000 that has in W 000.⇥ a pair of fresh locations (`1, `2)
pointing to unused. That means, by appeal to Lemma B.1.11, we reduce
our obligation to showing:

(W 000,C⌧2 7!⌧2(v1 (� .{if !`1 {fail Conv} {`1 := 0; vc1}})),
C⌧2 7!⌧2(v2 (� .{if !`2 {fail Conv} {`2 := 0; vc2}}))) 2 EJ⌧2K·

Our induction hypothesis reduces this to proving that:
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(W 000,
v1(� .{if !`1 {fail Conv} {`1 := 0; vc1}}),
v2(� .{if !`2 {fail Conv} {`2 := 0; vc2}})) 2 EJ⌧2K·

If we return to how we got v1 and v2, we know they are in VJ⌧1 ( ⌧2K·
with world W †, but via Lemma B.1.3, they are also related under W 000.
From that definition, we know that vi has the form � a.ei, and that:

((W ⇤.k,W ⇤. ,W ⇤.⇥ ] (`1, `2) 7! unused),
close({a 7! guard(v1⇤, `1)}, e1), close({a 7! guard(v2⇤, `2)}, e2)) 2 EJ⌧2K·

Given any related values v1⇤ and v2⇤ at a future world W ⇤ of W 000. If
we expand out the definition of guard(·), we note that it exactly matches
the terms that we have, and thus our vc1 and vc2 are exactly v1⇤ and v1⇤,
which we already know are related at VJ⌧1K·, and due to Lemma B.1.3,
they are related not only at W 00 but also at W ⇤. Thus, we are done with
the first direction.

Now we have to prove the other direction, that is, that:

8 (W , e1, e2) 2 EJ(unit ! ⌧1) ! ⌧2K· =)
(W , C(unit ! ⌧1) ! ⌧2 7!⌧1(⌧2

(e1), C(unit ! ⌧1) ! ⌧2 7!⌧1(⌧2
(e2)) 2 EJ⌧1 ( ⌧2K·

Expanding the definition of the convertibility boundaries, we refine our
goal to:

(W , let x = e1 in �xthnk.let xaccess = once(C⌧1 7!⌧1(xthnk ())) in C⌧2 7!⌧2(x xaccess),
let x = e2 in �xthnk.let xaccess = once(C⌧1 7!⌧1(xthnk ())) in C⌧2 7!⌧2(x xaccess))
2 EJ⌧1 ( ⌧2K·

We appeal to Lemma B.1.11 to reduce this together

(W †,�xthnk.let xaccess = once(C⌧1 7!⌧1(xthnk ())) in C⌧2 7!⌧2(v1 xaccess),
�xthnk.let xaccess = once(C⌧1 7!⌧1(xthnk ())) in C⌧2 7!⌧2(v2 xaccess))
2 EJ⌧1 ( ⌧2K·

where W v W † and (W †, v1, v2) 2 VJ⌧1 ! ⌧2K·. Since these are clearly
values, what remains to show is that they are in VJ⌧1 ( ⌧2K·.

The definition of VJ⌧1 ( ⌧2K· says that we need to take any W † @W 0,
v0
1
, v0

2
, `1, `2 where (W †, v0

1
, v0

2
) are in VJ⌧1K· and (`1, `2) are not in either

W 0. or W 0.⇥ and show that
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(W 0, [xthnk 7!guard(v0
1
, `1)]let xaccess = once(C⌧1 7!⌧1(xthnk ())) in C⌧2 7!⌧2(v1 xaccess),

[xthnk 7!guard(v0
2
, `2)]let xaccess = once(C⌧1 7!⌧1(xthnk ())) in C⌧2 7!⌧2(v2 xaccess))

2 EJ⌧2K·

Where if we substitute, we get:

(W 0, let xaccess = once(C⌧1 7!⌧1(guard(v
0
1
, `1) ())) in C⌧2 7!⌧2(v1 xaccess),

let xaccess = once(C⌧1 7!⌧1(guard(v
0
2
, `2) ())) in C⌧2 7!⌧2(v2 xaccess))

2 EJ⌧2K·

First, let’s expand the definition of once(·):

(W 0, let xaccess = let rfresh = ref unused in
� .{if !rfresh {fail Conv} {rfresh := used;C⌧1 7!⌧1(guard(v

0
1
, `1) ())})

in C⌧2 7!⌧2(v1 xaccess)

,

let xaccess = let rfresh = ref unused in
� .{if !rfresh {fail Conv} {rfresh := used;C⌧1 7!⌧1(guard(v

0
2
, `2) ()))}

in C⌧2 7!⌧2(v2 xaccess)

)

2 EJ⌧2K·

From Lemma B.1.11 we can take three steps forward: allocating a new
reference (`0

i
), substituting it for rfresh, and then substituting all of xaccess,

and thus su�ces to show that:

(W †,C⌧2 7!⌧2(v1 (� .{if !`0
1
{fail Conv} {`0

1
:= used;C⌧1 7!⌧1(guard(v

0
1
, `1) ())})),

C⌧2 7!⌧2(v2 (� .{if !`0
2
{fail Conv} {`0

2
:= used;C⌧1 7!⌧1(guard(v

0
2
, `2) ())}))

2 EJ⌧2K·

Where W ⇧ has a new pair of references in W ⇧.⇥ (set to unused), a
smaller step index, but otherwise is identical to W 0.

For this, we can appeal to our induction hypothesis, which requires us to
show that:

(W ⇧, v1 (� .{if !`0
1
{fail Conv} {`0

1
:= used;C⌧1 7!⌧1(guard(v

0
1
, `1) ())}),

v2 (� .{if !`0
2
{fail Conv} {`0

2
:= used;C⌧1 7!⌧1(guard(v

0
2
, `2) ())}))

2 EJ⌧2K·

Recalling that v1 and v2 came from VJ(unit ! ⌧1) ! ⌧2K·, we can proceed
by appealing to the definition of that relation, which tells us that for any
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arguments in VJunit ! ⌧1K·, the result of substituting will be in EJ⌧2K·. It
thus remains to show that:

(W ⇤,� .{if !`0
1
{fail Conv} {`0

1
:= used;C⌧1 7!⌧1(guard(v

0
1
, `1) ())},

� .{if !`0
2
{fail Conv} {`0

2
:= used;C⌧1 7!⌧1(guard(v

0
2
, `2) ())})

2 VJunit ! ⌧1K·

Where W ⇤ is some future world of W ⇧. From the definition of
VJunit ! ⌧1K·, we have to show that substituting () for the unused ar-
gument results in terms in EJ⌧1K·, at some arbitrary future world W ⇤⇤.
We proceed first by case analysis on whether the a�ne flags (`01, `

0
2)

have been set to used, which they can be in a future world. If they have
been, we can expand the definition of the expression relation, choose heaps
H⇤⇤
1 ,H⇤⇤

2 : W ⇤⇤, and show that

hH1, if !`01 {fail Conv} {`0
1
:= used;C⌧1 7!⌧1(guard(v

0
1
, `1) ())i

2
! hH1, fail Convi

At which point we are done.
Thus, we now consider if (`01, `

0
2) are still set to unused. If that’s the case,

we instead appeal to Lemma B.1.11, taking three steps to move into the
else branches and update the a�ne flags to used. That means we reduce
our task to showing that in a world W ⇤⇤⇤, which now has those locations
marked used in ⇥, we need to show:

(W ⇤⇤⇤,C⌧1 7!⌧1(guard(v
0
1
, `1) ()),C⌧1 7!⌧1(guard(v

0
2
, `2) ())) 2 EJ⌧1K·

We now again appeal to our induction hypothesis, expanding the definition
of guard(·) at the same time to yield the following obligation:

(W ⇤⇤⇤, (� .{if !`1 {fail Conv} {`1 := used; v0
1
}}) (),

(� .{if !`2 {fail Conv} {`2 := used; v0
2
}}) ()) 2 EJ⌧1K·

We can appeal to Lemma B.1.11 to take one step, eliminating the pointless
beta-reduction (for simplicity, we use the same name for the world, even
though it is a future world):

(W ⇤⇤⇤, if !`1 {fail Conv} {`1 := used; v0
1
}}, if !`2 {fail Conv} {`2 := used; v0

2
}) 2 EJ⌧1K·

Now we again do case analysis on whether (`1, `2) is used in W ⇤⇤⇤.⇥.
If it is, then, as before, we trivially reduce the left side to failure and are
done. If it is not, then we update those a�ne flags and reduce both sides to
the values v0

1
and v0

2
, at a future world W final. Now we knew, originally,

that those values were in VJ⌧1K· at world W †, but since, through many
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applications of Lemma B.1.4 and Lemma B.1.3, that also means that they
are related at W final, we are finally done.

Lemma B.1.14 (Compat unit).

�;⌦;�;� ` () � () : unit

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦K·

we must show

(W , �1�(�
1
�(�

1
⌦(()

+))), �2�(�
2
�(�

2
⌦(()

+)))) 2 EJunitK⇢

()+ = () is a closed term, so the closings have no e↵ect. Ergo,

�1�(�
1
�(�

1
⌦(()

+))) = �2�(�
2
�(�

2
⌦(()

+)))) = ()

One can easily see (W , (), ()) 2 VJunitK⇢, which su�ces to show
(W , (), ()) 2 EJunitK⇢ by Lemma B.1.1. This su�ces to finish the proof.

Lemma B.1.15 (Compat int).

�;⌦;�;� ` Z � Z : int

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦K·

we must show

(W , �1�(�
1
�(�

1
⌦(n

+))), �2�(�
2
�(�

2
⌦(n

+)))) 2 EJintK⇢

n+ = n is a closed term, so the closings have no e↵ect. Ergo,

�1�(�
1
�(�

1
⌦(n

+))) = �2�(�
2
�(�

2
⌦(n

+))) = n

Since n 2 Z, one can easily see (W , n, n) 2 VJintK⇢, which su�ces to show
(W , n, n) 2 EJintK⇢ by Lemma B.1.1. This su�ces to finish the proof.

Lemma B.1.16 (Compat x).

� ` ⌧ ^ x : ⌧ 2 � =) �;⌦;�;� ` x � x : ⌧
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Proof. Expanding this conclusion, given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦K·

we must show

(W , �1�(�
1
�(�

1
⌦(x

+))), �2�(�
2
�(�

2
⌦, (x

+)))) 2 EJ⌧K⇢

Notice that x+ = x. Then, since x /2 ⌦ and (W, �⌦) 2 GJ⌦K·, we have

�1⌦(x) = �2⌦(x) = x

Next, since x /2 � and (W, ��) 2 GJ�K·, we have

�1�(x) = �2�(x) = x

Finally, since x : ⌧ 2 � and (W , ��) 2 GJ�K·, there must exist v1, v2 such
that

��(x) = (v1, v2) ^ (W , v1, v2) 2 VJ⌧K⇢

Thus,
�1�(x) = v1 ^ �2�(x) = v2

Ergo, since (W, v1, v2) 2 VJ⌧K⇢, this su�ces to show that

(W , �1�(�
1
�(�

1
⌦(x

+))), �2�(�
2
�(�

2
⌦, (x

+)))) 2 VJ⌧K⇢

By Lemma B.1.1, VJ⌧K⇢ ✓ EJ⌧K⇢, which su�ces to finish the proof.

Lemma B.1.17 (Compat ⇥).

�;⌦1;�;� ` e1 � e1 : ⌧1
^�;⌦2;�;� ` e2 � e2 : ⌧2

=) �;⌦1 ] ⌦2;�;� ` (e1, e2) � (e1, e2) : ⌧1 ⇥ ⌧2

Proof. Expanding the conclusion, we must show that given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦1]⌦2K·

then

(W , �1�(�
1
�(�

1
⌦((e1, e2)

+))), �2�(�
2
�(�

2
⌦((e1, e2)

+)))) 2 EJ⌧1 ⇥ ⌧2K⇢

Notice that both of the expressions have no free variables by Lemma
B.1.9. We can push the compiler and substitutions through the pair to
refine that to:
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(W , (�1�(�
1
�(�

1
⌦(e1

+))), �1�(�
1
�(�

1
⌦(e2

+)))),
(�2�(�

2
�(�

2
⌦(e1

+))), ��,2 (�2�(�
2
⌦(e2

+))))) 2 EJ⌧1 ⇥ ⌧2K⇢
We now appeal to Lemma B.1.11, which combined with our hypotheses

and Lemma B.1.1 is su�cient to complete the proof.

Lemma B.1.18 (Compat fst).

�;⌦;�;� ` e � e : ⌧1 ⇥ ⌧2 =) �;⌦;�;� ` fst e � fst e : ⌧1

Proof. Expanding the conclusion, we must show that given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦K·

then

(W , �1�(�
1
�(�

1
⌦(fst e+))), �2�(�

2
�(�

2
⌦(fst e+)))) 2 EJ⌧1K⇢

We can push the compiler and substitutions through fst to refine that
to:

(W , fst �1�(�
1
�(�

1
⌦(e

+))), fst (�2�(�
2
�(�

2
⌦(e

+)))) 2 EJ⌧1K⇢

We then appeal to Lemma B.1.11, using our hypothesis to first reduce
the problem to:

(W 0, fst v1, fst v2) 2 EJ⌧1K⇢

where W v W 0 and (W 0, v1, v2) 2 VJ⌧1 ⇥ ⌧2K⇢. We can then complete
the proof by appealing again to Lemma B.1.11, since we know vi are pairs
and from Lemma B.1.1, their first projections are in EJ⌧1K⇢.

Lemma B.1.19 (Compat snd).

�;⌦;�;� ` e � e : ⌧1 ⇥ ⌧2 =) �;⌦;�;� ` snd e � snd e : ⌧2

Proof. This proof is essentially identical to that of fst.

Lemma B.1.20 (Compat inl).

� ` ⌧2 ^ �;⌦;�;� ` e � e : ⌧1 =) �;⌦;�;� ` inl e � inl e : ⌧1 + ⌧2

Proof. Expanding the conclusion, we must show that given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦K·



B.1 dynamic logical relation 209

then

(W , �1�(�
1
�(�

1
⌦(inl e+))), �2�(�

2
�(�⌦(inl e+)))) 2 EJ⌧1 + ⌧2K⇢

We can push the compiler and substitutions through inl to refine that
to:

(W , inl �1�(�
1
�(�

1
⌦(e

+))), inl �2�(�
2
�(�

2
⌦(e

+)))) 2 EJ⌧1 + ⌧2K⇢

We complete the proof by appealing to Lemma B.1.11, our hypothesis,
and Lemma B.1.1.

Lemma B.1.21 (Compat inr).

� ` ⌧1 ^ �;⌦;�;� ` e � e : ⌧2 =) �;⌦;�;� ` inr e � inr e : ⌧1 + ⌧2

Proof. This proof is essentially identical to that of inl.

Lemma B.1.22 (Compat match).

�;⌦1;�;� ` e � e : ⌧1 + ⌧2
^�;⌦2;�;�[x : ⌧1] ` e1 � e1 : ⌧
^�;⌦2;�;�[y : ⌧2] ` e2 � e2 : ⌧

=) �;⌦1 ] ⌦2;�;� ` match e x{e1} y{e2} � match e x{e1} y{e2} : ⌧

Proof. Expanding the conclusion, we must show that given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦1]⌦2K·

then
(W , �1�(�

1
�(�

1
⌦(match e x{e1} y{e2}

+))),
�2�(�

2
�(�

2
⌦(match e x{e1} y{e2}

+)))) 2 EJ⌧K⇢
We can push the compiler and substitutions through the match to refine

that to:

(W ,match �1�(�
1
�(�

1
⌦(e

+)))x{�1�(�
1
�(�

1
⌦(e1

+)))} y{�1�(�
1
�(�

1
⌦(e2

+)))},
match �2�(�

2
�(�

2
⌦(e

+)))x{�2�(�
2
�(�

2
⌦(e1

+)))} y{�2�(�
2
�(�

2
⌦(e2

+)))},2 EJ⌧K⇢

In order to proceed, first notice that, by applying Lemma B.1.2 twice, we
find that �⌦ = �1 ] �2 where

(W , �1) 2 GJ⌦1K· and (W , �2) 2 GJ⌦2K·

and for any i 2 {1, 2},

�i⌦(e
+) = �i1(e

+) and �i⌦(e) = �i2(e)

Thus, we can rewrite our goal to:
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(W ,match �1�(�
1
�(�

1
1(e

+)))x{�1�(�
1
�(�

1
2(e1

+)))} y{�1�(�
1
�(�

1
2(e2

+)))},
match �2�(�

2
�(�

2
1(e

+)))x{�2�(�
2
�(�

2
2(e1

+)))} y{�2�(�
2
�(�

2
2(e2

+)))},2 EJ⌧K⇢

Now we appeal to Lemma B.1.11 to reduce this to

(W1,match e⇤
1
x{�1�(�

1
�(�

1
2(e1

+)))} y{�1�(�
1
�(�

1
2(e2

+)))},

match e†
1
x{�2�(�

2
�(�

2
2(e1

+)))} y{�2�(�
2
�(�

2
2(e2

+)))},2 EJ⌧K⇢

For some future world W1 where W v W1 and (W1, e⇤1, e
†
1
) 2 VJ⌧1 + ⌧2K⇢.

Given (W1, e⇤1, e
†
1
) 2 VJ⌧1 + ⌧2K⇢, there must exist v⇤

1
, v†

1
such that either

e⇤1 = inl v⇤
1
, e†1 = inl v†

1
, and (W1, v⇤1, v

†
1
) 2 VJ⌧1K⇢ or e⇤1 = inr v⇤

1
, e†1 = inr v†

1
,

and (W1, v⇤1, v
†
1
) 2 VJ⌧2K⇢.

First, consider the case where e⇤
1
= inl v⇤

1
and e†

1
= inl v†

1
; the other case

is analogous. We complete the proof by appeal to Lemma B.1.11 using
our first hypothesis, noting that the substitution of v⇤

1
and v†

1
satisfy the

extended substitution.

Lemma B.1.23 (Compat !).

�;⌦;�;�[x : ⌧1] ` e � e : ⌧2 =) �;⌦;�;� ` �x : ⌧1.e � �x : ⌧1.e : ⌧1 ! ⌧2

Proof. Expanding the conclusion, we must show that given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦K·

then

(W , �1�(�
1
�(�

1
⌦(�x : ⌧1.e

+))), �1�(�
2
�(�

2
⌦(�x : ⌧1.e

+)))) 2 EJ⌧1 ! ⌧2K⇢

We can push the compiler and substitutions through the lambda to refine
that to:

(W ,�x.�1�(�
1
�(�

1
⌦(e

+))),�x.�2�(�
2
�(�

2
⌦(e

+)))) 2 EJ⌧1 ! ⌧2K⇢

Since these are already values, from Lemma B.1.1 it su�ces to show that
they are in VJ⌧1 ! ⌧2K⇢. Consider arbitrary v1, v2,W 0 where W @W 0 and
(W 0, v1, v2) 2 VJ⌧1K⇢. Then, we must show

(W 0, [x ! v1]�1�(�
1
�(�

1
⌦(e

+))), [x ! v2]�2�(�
2
�(�

2
⌦(e

+)))) 2 EJ⌧2K⇢

Notice that ��[x ! (v1, v2)] 2 GJ�[x : ⌧1]K⇢ because (W 0, ��) 2 GJ�K⇢
(by W v W 0 and Lemma B.1.3) and (W 0, v1, v2) 2 VJ⌧1K⇢. Then, we can
instantiate the first induction hypothesis with W 0, ��[x ! (v1, v2)], ��, �⌦, ⇢
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because W v W 0 and GJ�K⇢,GJ�K·,GJ⌦K· are closed under world extension
by Lemma B.1.3. Therefore,

(W 0, ��[x ! (v1, v2)]1(�1�(�
1
⌦(e

+))), ��[x ! (v1, v2)]2(�2�(�
2
⌦(e

+)))) 2 EJ⌧2K⇢

Which, after rearranging substitutions is exactly what we needed to
show.

Lemma B.1.24 (Compat app).

�;⌦1;�;� ` e1 � e1 : ⌧1 ! ⌧2 ^ �;⌦2;�;� ` e2 � e2 : ⌧1 =)
�;⌦1 ] ⌦2;�;� ` e1 e2 � e1 e2 : ⌧2

Proof. Expanding the conclusion, we must show that given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦1]⌦2K·

then

(W , �1�(�
1
�(�

1
⌦(e1 e2

+))), �2�(�
2
�(�

2
⌦(e1 e2

+)))) 2 EJ⌧2K⇢

We can push the compiler and substitutions through to refine that to:

(W , �1�(�
1
�(�

1
⌦(e1

+))) �1�(�
1
�(�

1
⌦(e2

+))),
�2�(�

2
�(�

2
⌦(e1

+))) �2�(�
2
�(�

2
⌦(e2

+)))) 2 EJ⌧2K⇢
In order to proceed, first notice that, by Lemma B.1.2, �⌦ = �1]�2 where

(W , �1) 2 GJ⌦1K· and (W , �2) 2 GJ⌦2K·

and, for any i 2 {1, 2}

�i⌦(e1
+) = �i1(e1

+) and �i⌦(e2
+) = �i2(e2

+)

Thus, we can rewrite our goal to:

(W , �1�(�
1
�(�

1
1(e1

+))) �1�(�
1
�(�

1
2(e2

+))),
�2�(�

2
�(�

2
2(e1

+))) �2�(�
2
�(�

2
2(e2

+)))) 2 EJ⌧2K⇢
We proceed by appealing to Lemma B.1.11, using our first hypothesis to

reduce our obligation to:

(W1, e⇤1 �1�(�
1
�(�

1
2(e2

+))),

e†
1
�2�(�

2
�(�

2
2(e2

+)))) 2 EJ⌧2K⇢

Where for W v W1, (W1, e⇤1, e
†
1
) 2 VJ⌧1 ! ⌧2K⇢. And then again, using

our second hypothesis to reduce our obligation to:
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(W2, e⇤1 e⇤
2
, e†

1
e†
2
) 2 EJ⌧2K⇢

Where for W1 v W2, (W2, e⇤2, e
†
2
) 2 VJ⌧1K⇢.

Then, instantiate (W1, e⇤1, e
†
1
) 2 VJ⌧1 ! ⌧2K⇢ with e⇤

2
, e†

2
,BW2. Because

W1 v W2 and W2 @ BW2, it follows that W1 @ BW2. Moreover,
(BW2, e⇤2, e

†
2
) 2 VJ⌧1K⇢ (because (W2, e⇤2, e

†
2
) 2 VJ⌧1K⇢ and W2 v BW2),

so we find that there exist e⇤
b
, e†

b
such that

e⇤1 = �x.e⇤
b

and
e†1 = �x.e†

b

and
(BW2, [x 7! e⇤2]e

⇤
b
), [x ! e†

2
]e†

b
)) 2 EJ⌧2K⇢

By appeal to Lemma B.1.11, this is su�cient to complete the proof.

Lemma B.1.25 (Compat 8).

�;⌦;�,↵;� ` e � e : ⌧ =) �;⌦;�;� ` ⇤↵.e � ⇤↵.e : 8↵.⌧

Proof. Expanding the conclusion, we must show that given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦K·

then

(W , �1�(�
1
�(�

1
⌦(⇤↵.e+))), �2�(�

2
�(�

2
⌦(⇤↵.e+)))) 2 EJ8↵.⌧K⇢

We can push the compiler and substitutions through the pair to refine
that to:

(W ,� .�1�(�
1
�(�

1
⌦(e

+))),� .�1�(�
2
�(�

2
⌦(e

+)))) 2 EJ8↵.⌧K⇢

Since these are already values, by Lemma B.1.1, it su�ces to show that

(W ,� .�1�(�
1
�(�

1
⌦(e

+))),� .�2�(�
2
�(�

2
⌦(e

+)))) 2 VJ8↵.⌧K⇢
Consider some arbitrary R 2 Typ and W 0 such that W @W 0. We must

prove that

(W 0, �1�(�
1
�(�

1
⌦(e

+))), �2�(�
2
�(�

2
⌦(e

+)))) 2 EJ⌧K⇢[↵ 7!R]

Since R 2 Typ and ⇢ 2 DJ�K, it follows that ⇢[↵ 7! R] 2 DJ�,↵K. Thus, we
can instantiate the first induction hypothesis with W 0, ��, ��, �⌦, ⇢[↵ 7! R],
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because W v W 0 and GJ�K⇢,GJ�K·,GJ⌦K· is closed under world extension
by Lemma B.1.3. This su�ces to prove the above fact.

Lemma B.1.26 (Compat [⌧/↵]).

� ` ⌧ 0 ^ �;⌦;�;� ` e � e : 8↵.⌧ =) �;⌦;�;� ` e[⌧ 0] � e[⌧ 0] : ⌧ [⌧ 0/↵]

Proof. Expanding the conclusion, we must show that given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦K·

then

(W , �1�(�
1
�(�

1
⌦(e[⌧

0]+))), �2�(�
2
�(�

2
⌦(e[⌧

0]+)))) 2 EJ⌧ [⌧ 0/↵]K⇢

We can push the compiler and substitutions through the type application
to refine this to:

(W , �1�(�
1
�(�

1
⌦(e

+))) (), �2�(�
2
�(�

2
⌦(e

+))) ()) 2 EJ⌧ [⌧ 0/↵]K⇢

Expanding the expression relation definition, we find that given

8H1,H2:W , e0
1
, H0

1, j < W .k.

hH1, �1�(�
1
�(�

1
⌦(e

+))) ()i
j
! hH0

1, e
0
1
i 9

we must show either e0
1
= fail Conv or there exist v2,H0

2,W
0 such that:

hH2, �2�(�
2
�(�

2
⌦(e

+))) ()i
⇤
! hH0

2, v2i ^W v W 0
^ H0

1,H
0
2 : W

0
^ (W 0, e0

1
, v2) 2 VJ⌧ [⌧ 0/↵]K⇢

To proceed, we must find what e0
1
is. From the operational semantics, we

know the application will run its subexpression using H1 until it reaches a
target value or gets stuck. From the induction hypothesis instantiated with
W , ��, ��, �⌦, ⇢, we find that:

(W , �1�(�
1
�(�

1
⌦(e

+))), �2�(�
2
�(�

2
⌦(e

+)))) 2 EJ8↵.⌧K⇢

By instantiating this fact with H1,H2, we find that hH1, �1�(�
1
�(�

1
⌦(e

+)))i
either reduces to fail Conv, in which case the entire term reduced to
fail Conv, or it will reduce to some hH⇤

1, e1
⇤
i, in which case the other

side with H2 will reduce to some hH⇤
2, e1

†
i and

(W1, e1
⇤, e1

†) 2 VJ8↵.⌧K⇢

for some world W1 where W v W1 and H⇤
1,H

⇤
2 : W1.
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Then, we can instantiate this fact with VJ⌧ 0K⇢ and BW1. (Note that
VJ⌧ 0K⇢ 2 Typ by Lemma B.1.6.) Since W @ BW1 (as W v W1 and
W1 @ BW1), we find that there exist e⇤

b
, e†

b
such that

e⇤1 = � .e⇤
b

e†
1
= � .e†

b

and
(BW1, e

⇤
b
, e†

b
) 2 EJ⌧K

⇢[↵!VJ⌧ 0K⇢]

Ergo, by the operational semantics, the original configuration with heap
H1 steps to hH⇤

1,� .e⇤
b
()i and, on the other side, the configuration with

H2 steps to hH⇤
2,� .e†

b
()i. Next, both of these configurations take a step

to hH⇤
1, e

⇤
b
i and hH⇤

2, e
†
b
i, respectively. (Notice that () is not substituted

anywhere because the binding in the lambda values are unused.) Next,
since H⇤

1,H
⇤
2 : W1, by Lemma B.1.5, it follows that H⇤

1,H
⇤
2 : BW1, so we

can instantiate the above fact with H⇤
1,H

⇤
2 to deduce that either the first

configuration steps to fail Conv, in which case the original configuration
with H1 steps to fail Conv, or the first configuration steps to some irreducible
configuration hH⇤⇤

1 , e⇤
f
i, in which case the second configuration also steps to

some irreducible configuration hH⇤⇤
2 , e†

f
i, and there exists some W2 where

BW1 v W2, H⇤⇤
1 ,H⇤⇤

2 : W2, and (W2, e⇤f , e
†
f
) 2 VJ⌧K

⇢[↵!VJ⌧ 0K⇢]. Therefore,

by Lemma B.1.7, (W2, e⇤f , e
†
f
) 2 VJ⌧ [⌧ 0/↵]K⇢. Ergo, e01 = e†

f
, so this su�ces

to show e0
1
is in the value relation at ⌧ [⌧ 0/↵] along with the value stepped

to by the configuration with H2 on the other side. Finally, since W v W1,
W1 v BW1, and BW1 v W2, we have W v W2 (by Lemma B.1.4), which
su�ces to finish the proof.

Lemma B.1.27 (Compat ref).

�;⌦;�;� ` e � e : ⌧ =) �;⌦;�;� ` ref e � ref e : ref ⌧

Proof. Expanding the conclusion, we must show that given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦K·

then

(W , �1�(�
1
�(�

1
⌦(ref e+))), �2�(�

2
�(�

2
⌦(ref e+)))) 2 EJref ⌧K⇢

We can push the compiler and substitutions through the type application
to refine this to:

(W , ref �1�(�
1
�(�

1
⌦(e

+))), ref �2�(�
2
�(�

2
⌦(e

+)))) 2 EJref ⌧K⇢



B.1 dynamic logical relation 215

We appeal to Lemma B.1.11 and our hypothesis to reduce our proof to:

(W 0, ref v1, ref v2) 2 EJref ⌧K⇢

Where W v W 0 and (W 0, v1, v2) 2 VJ⌧K⇢. At this point, the result follows
from another appeal to Lemma B.1.11 and Lemma B.1.1, since each will
take a single step to fresh locations that point to values vi.

Lemma B.1.28 (Compat !).

�;⌦;�;� ` e � e : ref ⌧ =) �;⌦;�;� ` !e �!e : ⌧

Proof. Expanding the conclusion, we must show that given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦K·

then
(W , �1�(�

1
�(�

1
⌦(!e

+))), �2�(�
2
�(�

2
⌦(!e

+)))) 2 EJ⌧K⇢

We can push the compiler and substitutions through the dereference to
refine this to:

(W , !�1�(�
1
�(�

1
⌦(e

+))), !�2�(�
2
�(�

2
⌦(e

+)))) 2 EJ⌧K⇢

We appeal to Lemma B.1.11 and our hypothesis to reduce our obligation
to:

(W 0, !v1, !v2) 2 EJ⌧K⇢
Where W v W 0 and (W 0, v1, v2) 2 VJref ⌧K⇢. From the definition of

VJref ⌧K⇢, we know that vi are locations that point to values in VJ⌧K⇢, and
thus the result follows from Lemma B.1.11 and Lemma B.1.1.

Lemma B.1.29 (Compat :=).

�;⌦1;�;� ` e1 � e1 : ref ⌧ ^ �;⌦2;�;� ` e2 � e2 : ⌧
=) �;⌦1 ] ⌦2;�;� ` e1 := e2 � e1 := e2 : unit

Proof. Expanding the conclusion, we must show that given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦1]⌦2K·

then

(W , �1�(�
1
�(�

1
⌦(e1 := e2

+))), �2�(�
2
�(�

2
⌦(e1 := e2

+)))) 2 EJunitK⇢

We can push the compiler and substitutions through the assignment to
refine that to:
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(W , �1�(�
1
�(�

1
⌦(e1

+))) := �1�(�
1
�(�

1
⌦(e2

+))),
�2�(�

2
�(�

2
⌦(e1

+))) := �2�(�
2
�(�

2
⌦(e2

+)))) 2 EJunitK⇢
In order to proceed, first notice that, by Lemma B.1.2, �⌦ = �1]�2 where

(W , �1) 2 GJ⌦1K· and (W , �2) 2 GJ⌦2K·

and, for any i 2 {1, 2}

�i⌦(e1
+) = �i1(e1

+) and �i⌦(e2
+) = �i2(e2

+)

This means we can rewrite our obligation to:

(W , �1�(�
1
�(�

1
1(e1

+))) := �1�(�
1
�(�

1
2(e2

+))),
�2�(�

2
�(�

2
1(e1

+))) := �2�(�
2
�(�

2
2(e2

+)))) 2 EJunitK⇢
We now appeal to Lemma B.1.11, using the first hypothesis to reduce our

obligation to:

(W1, e⇤1 := �1�(�
1
�(�

1
2(e2

+))), e†
1

:= �2�(�
2
�(�

2
2(e2

+)))) 2 EJunitK⇢

Where W v W1 and (W1, e⇤1, e
†
1
) 2 VJref ⌧K⇢. We then appeal again to

Lemma B.1.11, resulting in the following obligation:

(W2, e⇤1 := e⇤
2
, e†

1
:= e†

2
) 2 EJunitK⇢

Where W1 v W2 and (W2, e⇤2, e
†
2
) 2 VJ⌧K⇢. Since our value relations

are closed under extension (Lemma B.1.3), we can reduce again using
Lemma B.1.11 to step to a future world with unit values, which by
Lemma B.1.1 are in EJunitK⇢, thus completing the proof.

Lemma B.1.30 (Compat LeM⌧ ).

�;�;�;⌦ ` e � e : ⌧ ^ ⌧ ⇠ ⌧ =) �;⌦;�;� ` LeM⌧ � LeM⌧ : ⌧ ^ : ⌧ ⇠ ⌧

Proof. We must show that given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦K·

then

(W , �1�(�
1
�(�

1
⌦(LeM⌧+))), �2�(�2�(�2⌦(LeM⌧+)))) 2 EJ⌧K⇢

We can push the compiler and substitutions through to refine that to:

(W , C⌧ 7!⌧ (�
1
�(�

1
�(�

1
⌦(e

+)))), C⌧ 7!⌧ (�
2
�(�

2
�(�⌦,

2 (e+))))) 2 EJ⌧K⇢
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Now, by instantiating our induction hypothesis with W , ��, ��, �⌦, ⇢, we
find that:

(W , �1�(�
1
�(�

1
⌦(e

+))), �2�(�
2
�(�

2
⌦(e

+)))) 2 EJ⌧ K·

Therefore, by Theorem B.1.13, we have

(W , C⌧ 7!⌧ (�
1
�(�

1
�(�

1
⌦(e

+)))), C⌧ 7!⌧ (�
2
�(�

2
�(�

2
⌦(e

+))))) 2 EJ⌧K·

Finally, by Lemma B.1.8, we have

(W , C⌧ 7!⌧ (�
1
�(�

1
�(�

1
⌦(e

+)))), C⌧ 7!⌧ (�
2
�(�

2
�(�

2
⌦(e

+))))) 2 EJ⌧K⇢

as was to be proven.

Lemma B.1.31 (Compat unit).

�;�;�;⌦ ` () � () : unit

Proof. Expanding this definition, given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦K·

we must show

(W , �1�(�
1
�(�

1
⌦(()

+))), �2�(�
2
�(�

2
⌦(()

+)))) 2 EJunitK·

()+ = () is a closed term, so the closings have no e↵ect. Ergo,

�1�(�
1
�(�

1
⌦(()

+))) = �2�(�
2
�(�

2
⌦(()

+))) = ()

One can easily see (W , (), ()) 2 VJunitK·, which su�ces to show
(W , (), ()) 2 EJunitK· by Lemma B.1.1. This su�ces to finish the proof.

Lemma B.1.32 (Compat true).

�;�;�;⌦ ` true � true : bool

Proof. Expanding this definition, given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦K·

we must show

(W , �1�(�
1
�(�

1
⌦(true

+))), �2�(�
2
�(�

2
⌦(true

+)))) 2 EJboolK·

true+ = 0 is a closed term, so the closings have no e↵ect. Ergo,

�1�(�
1
�(�

1
⌦(true

+))) = �2�(�
2
�(�

2
⌦(true

+))) = 0



218 value interoperability: affine functions

One can easily see (W , 0, 0) 2 VJboolK·, which su�ces to show (W , 0, 0) 2
EJboolK· by Lemma B.1.1. This su�ces to finish the proof.

Lemma B.1.33 (Compat false).

�;�;�;⌦ ` false � false : bool

Proof. This is very similar to the proof for true, except false+ = 1, and
since 1 6= 0, (W , 1, 1) 2 VJboolK· by the second clause.

Lemma B.1.34 (Compat int).

�;�;�;⌦ ` n � n : int

Proof. Expanding this definition, given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦K·

we must show

(W , �1�(�
1
�(�

1
⌦(n

+))), �2�(�
2
�(�

2
⌦(n

+)))) 2 EJintK·

n+ = n is a closed term, so the closings have no e↵ect. Ergo,

�1�(�
1
�(�

1
⌦(n

+))) = �2�(�
2
�(�

2
⌦(n

+))) = n

Since n 2 Z, one can easily see (W , n, n) 2 VJintK·, which su�ces to show
(W , n, n) 2 EJintK· by Lemma B.1.1. This su�ces to finish the proof.

Lemma B.1.35 (Compat a).

a : ⌧ 2 ⌦ =) �;�;�;⌦ ` a � a : ⌧

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦K·

we must show

(W , �1�(�
1
�(�

1
⌦(a

+))), �2�(�
2
�(�

2
⌦(a

+)))) 2 EJ⌧ K·

We can push the compiler and substitutions through this expression to
refine this to:

(W , �1�(�
1
�(�

1
⌦(a))) (), �

2
�(�

2
�(�

2
⌦(a))) ()) 2 EJ⌧ K·
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Since (W , �⌦) 2 GJ⌦K·, there must exist (`1, `2) 2 W .⇥ and values v1, v2
such that

�1⌦(a) = guard(v1, `1) = � .if !`1 {fail Conv} {`1 := used; v1}}

and

�2⌦(a) = guard(v2, `2) = � .if !`2 {fail Conv} {`2 := used; v2}}

and (W , v1, v2) 2 VJ⌧ K·.
Ergo, we must show

(W ,� .if !`1 {fail Conv} {`1 := used; v1}} (),� .if !`2 {fail Conv} {`2 := used; v2}} ())
2 EJ⌧ K·

We appeal to Lemma B.1.11, noting that any heaps that satisfies W
will map `i to either used or unused. If it is used, then we reduce
our obligation to (W 0, fail Conv, fail Conv) 2 EJ⌧ K·, which is trivially
true. Otherwise, we reduce to heaps where `i := used and reduce our
obligation to (W 0, v1, v2) 2 EJ⌧ K·, but that follows from Lemma B.1.3 and
Lemma B.1.1.

Lemma B.1.36 (Compat x).

x : ⌧ 2 � =) �;�;�;⌦ ` x � x : ⌧

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦K·

we must show

(W , �1�(�
1
�(�

1
⌦(x

+))), �2�(�
2
�(�

2
⌦(x

+)))) 2 EJ⌧ K·

Notice that x+ = x. Then, since x /2 ⌦ and (W, �⌦) 2 GJ⌦K·, we have

�1⌦(x) = �2⌦(x) = x

Then, since x : ⌧ 2 � and (W , ��) 2 GJ�K·, there must exist v1, v2 such
that

��(x) = (v1, v2)

and (W , v1, v2) 2 VJ⌧ K·. Ergo,

�1�(x) = v1 ^ �2�(x) = v2
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Since (W , v1, v2) 2 VJ⌧ K·, this su�ces to show that

(W , �1�(�
1
�(�

1
⌦(x))), �

2
�(�

2
�(�

2
⌦(x)))) 2 VJ⌧ K·

By Lemma B.1.1, VJ⌧ K· ✓ EJ⌧ K·, so this su�ces to finish the proof.

Lemma B.1.37 (Compat ().

�;�;�;⌦,a : ⌧1 ` e � e : ⌧2 =) �;�;�;⌦ ` �a : ⌧1.e � �a : ⌧1.e : ⌧1 ( ⌧2

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦K·

we must show

(W , �1�(�
1
�(�

1
⌦(�a : ⌧1.e

+))), �2�(�
2
�(�

2
⌦(�a : ⌧1.e

+)))) 2 EJ⌧1 ( ⌧2K·

We can push the compiler and the substitutions to refine that to:

(W ,�a.�1�(�
1
�(�

1
⌦(e

+))),�a.�2�(�
2
�(�

2
⌦(e

+)))) 2 EJ⌧1 ( ⌧2K·

Since these are clearly values, by Lemma B.1.1, it su�ces to show

(W ,�a.�1�(�
1
�(�

1
⌦(e

+))),�a.�2�(�
2
�(�

2
⌦(e

+)))) 2 VJ⌧1 ( ⌧2K⇢

Expanding the value relation definition, given

8v1 v2 W 0.W @W 0
^ (W 0, v1, v2) 2 VJ⌧1K·

we must show

((W 0.k,W 0. ,W 0.⇥ ] (`1, `2) 7! unused),
[a 7!guard(v1, `1)]�1�(�

1
�(�

1
⌦(e

+)))),
[a 7!guard(v2, `2)]�2�(�

2
�(�

2
⌦(e

+))))) 2 EJ⌧2K·

Notice that W 00 = (W 0.k,W 0. ,W 0.⇥ ] (`1, `2) 7! unused) is a world
extension of W 0 because it has the same heap typing as W 0 and has all the
a�ne flags as W 0 plus one new a�ne flag which is disjoint from any a�ne
flag in W 0. Ergo, since W v W 0 and W 0

v W 00, we have W v W 00. Next,
notice that:

(W 00, �⌦[a 7! (guard(v1, `1), guard(v2, `2))]) 2 GJ⌦, a : ⌧1K·

because (`1, `2) 2 dom(W 00.⇥), (W 00, v1, v2) 2 VJ⌧1K· because (W , v1, v2) 2
VJ⌧1K· and Lemma B.1.3, and (W 00, �⌦) 2 GJ⌦K· because (W , �⌦) 2 GJ⌦K·
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and Lemma B.1.3. Therefore, we can instantiate the first induction hypoth-
esis with W 00, ��, ��, �⌦[a 7! (guard(v1, `1), guard(v2, `2))], ⇢ to find

(W 00, �1�(�
1
�(�⌦[a 7! (guard(v1, `1), guard(v2, `2))]1(e+))),

�2�(�
2
�(�⌦[a 7! (guard(v1, `1), guard(v2, `2))]2(e+)))) 2 EJ⌧2K·

which is equivalent to what was to be proven.

Lemma B.1.38 (Compat app).

�1;�1;�;⌦1 ` e1 � e1 : ⌧1 ( ⌧2 ^ �2;�2;�;⌦2 ` e2 � e2 : ⌧1
=) �1;�1;�;⌦1 ] ⌦2 ` e1 e2 � e1 e2 : ⌧2

Proof. Expanding this definition, given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦1 ] ⌦2K·

we must show

(W , �1�(�
1
�(�

1
⌦(e1 e2

+))), �2�(�
2
�(�

2
⌦(e1 e2

+)))) 2 EJ⌧2K·

We can push the compiler and substitutions through the application to
refine this to:

(W , �1�(�
1
�(�

1
⌦(e1

+))) (let x = �1�(�
1
�(�

1
⌦(e2

+))) in once(x)),
�2�(�

2
�(�

2
⌦(e1

+))) (let x = �2�(�
2
�(�

2
⌦(e2

+))) in once(x))) 2 EJ⌧2K·

First, notice that, by Lemma B.1.2, �⌦ = �1 ] �2 where

(W , �1) 2 GJ⌦1K· and (W , �2) 2 GJ⌦2K·

and, for any i 2 {1, 2}

�i⌦(e1
+) = �i1(e1

+) and �i⌦(e2
+) = �i2(e2

+)

We proceed by appealing to Lemma B.1.11, using our first hypothesis to
reduce our obligation to:

(W1, e⇤1 (let x = �1�(�
1
�(�

1
⌦(e2

+))) in once(x)),

e†
1
(let x = �2�(�

2
�(�

2
⌦(e2

+))) in once(x))) 2 EJ⌧2K·

For some W1 where W v W1 and (W1, e⇤1, e
†
1
) 2 VJ⌧1 ( ⌧2K·. And then

again, using our second hypotheses to reduce our obligation to:

(W2, e⇤1 once(e⇤
2
), e†

1
once(e†

2
)) 2 EJ⌧2K·

For some W2 where W1 v W2 and (W2, e⇤2, e
†
2
) 2 VJ⌧1K·.
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Then, instantiate (W1, e⇤1, e
†
1
) 2 VJ⌧1 ( ⌧2K· with e⇤2, e

†
2,BW2. Because

W1 v W2 and W2 @ BW2, it follows that W1 @ BW2. Moreover,
(BW2, e⇤2, e

†
2
) 2 VJ⌧1K· (because (W2, e⇤2, e

†
2
) 2 VJ⌧1K· and W2 v BW2,

so we can apply Lemma B.1.3). Ergo, there exist e⇤
b
, e†

b
such that

e⇤1 = �a.e⇤
b

and
e†
1
= �a.e†

b

and, for any (`1, `2) /2 dom(BW2. ) [ dom(BW2.⇥),

((BW2.k,BW2. ,BW2.⇥ ] (`1, `2) 7! unused),

[a 7! guard(e⇤
2
, `2)]e⇤b, [a 7! guard(e†

2
, `1)]e

†
b
) 2 EJ⌧2K·

In particular, we choose `1, `2 to match those that arise due to reducing
the once()s, and thus complete the proof by appeal to Lemma B.1.11.

Lemma B.1.39 (Compat !).

�;�;�; · ` v � v : ⌧ =) �;�;�; · ` !v �!v : !⌧

Proof. Expanding this definition, given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦K·

we must show

(W , ��,
1 (�1�(�

1
⌦(!v

+))), �2�(�
2
�(�

2
⌦(!v

+)))) 2 EJ!⌧ K·

Note that !v+ = v+. Thus, the result follows immediately from our
hypothesis.

Lemma B.1.40 (Compat let!).

�;�;�;⌦1 ` e1 � e1 : !⌧ ^ �;�;�, x : ⌧ ;⌦2 ` e2 � e2 : ⌧ 0

=) �;�;�;⌦1 ] ⌦2 ` let !x = e1 in e2 � let !x = e1 in e2 : ⌧ 0

Proof. Expanding the conclusion, we must show that given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦1 ] ⌦2K·

we must show

(W , �1�(�
1
�(�

1
⌦(let !x = e1 in e2

+))),
�2�(�

2
�(�

2
⌦(let !x = e1 in e2

+)))) 2 EJ⌧ 0K·
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We can push the compiler and substitutions through the let expression
and refine this to:

(W , let x = �1�(�
1
�(�

1
⌦(e1

+))) in �1�(�
1
�(�

1
⌦(e2

+))),
let x = �2�(�

2
�(�

2
⌦(e1

+))) in �2�(�
2
�(�

2
⌦(e2

+))) 2 EJ⌧ 0K·

Then, by Lemma B.1.2, we find that �⌦ = �1 ] �2 where

(W , �1) 2 GJ⌦1K· and (W , �2) 2 GJ⌦2K·

and, for any i 2 {1, 2}

�i⌦(e1
+) = �i1(e1

+) and �i⌦(e2) = �i2(e2
+)

Thus, we must show

(W , let x = �1�(�
1
�(�

1
1(e1

+))) in �1�(�
1
�(�

1
2(e2

+))),
let x = �2�(�

2
�(�

2
1(e1

+))) in �2�(�
2
�(�

2
2(e2

+))) 2 EJ⌧ 0K·

We appeal to Lemma B.1.11, using the first hypothesis to reduce this to:

(W1, let x = e⇤
1
in �1�(�

1
�(�

1
2(e2

+))),

let x = e†
1
in �2�(�

2
�(�

2
2(e2

+))) 2 EJ⌧ 0K·

For some W1 where W v W1, H⇤
1,H

⇤
2 : W1, and (W1, e⇤1, e

†
1
) 2 VJ!⌧ K·. By

expanding the value relation definition, we find (W1, e⇤1, e
†
1
) 2 VJ⌧ K·. That

means that we can appeal to Lemma B.1.11 again, reducing our problem
to exactly what is provided by instantiating our second hypothesis with
substitutions extended with x 7! (e⇤

1
, e†

1
).

Lemma B.1.41 (Compat &).

�;�;�;⌦ ` e1 � e1 : ⌧1 ^ �;�;�;⌦ ` e2 � e2 : ⌧2
=) �;�;�;⌦ ` he1, e2i � he1, e2i : ⌧1&⌧2

Proof. Expanding the conclusion, we must show that given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦K·

we must show

(W , �1�(�
1
�(�

1
⌦(he1, e2i

+))), �2�(�
2
�(�

2
⌦(he1, e2i

+)))) 2 EJ⌧1&⌧2K·

We can push the compiler and substitutions through the product expres-
sion and refine this to:

(W , (� .�1�(�
1
�(�

1
⌦(e1

+))),� .�1�(�
1
�(�

1
⌦(e2

+)))),
(� .�2�(�

2
�(�

2
⌦(e1

+))),� .�2�(�
2
�(�

2
⌦(e2

+))))) 2 EJ⌧1&⌧2K·
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Clearly, this is a target value. Thus, it su�ces to show

(W , (� .�1�(�
1
�(�

1
⌦(e1

+))),� .�1�(�
1
�(�

1
⌦(e2

+)))),
(� .�2�(�

2
�(�

2
⌦(e1

+))),� .�2�(�
2
�(�

2
⌦(e2

+))))) 2 VJ⌧1&⌧2K·

First, we can instantiate the first induction hypothesis with W , ��, ��, �⌦, ⇢
to show that

(W , �1�(�
1
�(�⌦, e1

+))), �2�(�
2
�(�

2
⌦(e1

+)))) 2 VJ⌧1K·

and we can instantiate the second induction hypothesis with
W , ��, ��, �⌦, ⇢ to show that

(W , �1�(�
1
�(�

1
⌦(e2

+))), �2�(�
2
�(�

2
⌦(e2

+)))) 2 VJ⌧2K·

This su�ces to show that the pairs of lambdas are in the value relation
at ⌧1&⌧2, as was to be proven.

Lemma B.1.42 (Compat .1).

�;�;�;⌦ ` e � e : ⌧1&⌧2 =) �;�;�;⌦ ` e.1 � e.1 : ⌧1

Proof. Expanding this definition, given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦K·

we must show

(W , �1�(�
1
�(�

1
⌦(e.1

+))), �2�(�
2
�(�

2
⌦(e.1

+)))) 2 EJ⌧1K·

We can push the compiler and substitutions through the projection to
refine this to:

(W , (fst �1�(�
1
�(�

1
⌦(e

+)))) (), (fst �2�(�
2
�(�

2
⌦(e

+)))) ()) 2 EJ⌧1K·

We can appeal to Lemma B.1.11 to reduce this to:

(W , (fst e⇤1) (), (fst e
†
1
)) 2 EJ⌧1K·

For some world W1 where W v W1 and (W1, e⇤, e†) 2 VJ⌧1&⌧2K·.
Ergo, there exists some e⇤

1
, e†

1
, e⇤

2
, e†

2
such that

e⇤ = (� .e⇤1,� .e⇤2) and e† = (� .e†
1
,� .e†

2
)

and
(W1, e

⇤
1, e

†
1
) 2 EJ⌧1K· and (W1, e

⇤
2, e

†
2
) 2 EJ⌧2K·
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We can thus complete the proof by appeal to Lemma B.1.11, since the
terms take two steps to the former, which su�ce to complete the proof.

Lemma B.1.43 (Compat .2).

�;�;�;⌦ ` e � e : ⌧1&⌧2 =) �;�;�;⌦ ` e.2 � e.2 : ⌧2

Proof. This proof is essentially identical to that of .1.

Lemma B.1.44 (Compat ⌦).

�;�;�;⌦1 ` e1 � e1 : ⌧1 ^ �;�;�;⌦2 ` e2 � e2 : ⌧2
=) �;�;�;⌦1 ] ⌦2 ` (e1, e2) � (e1, e2) : ⌧1 ⌦ ⌧2

Proof. Expanding the conclusion, we must show that given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦1 ] ⌦2K·

we must show

(W , �1�(�
1
�(�

1
⌦((e1, e2)

+))), �2�(�
2
�(�

2
⌦((e1, e2)

+)))) 2 EJ⌧1 ⌦ ⌧2K·

We can push the compiler and substitutions through the product expres-
sion and refine this to:

(W , �1�(�
1
�(�

1
⌦(e1

+))),�1�(�
1
�(�

1
⌦(e2

+)))),
(�2�(�

2
�(�

2
⌦(e1

+))),�2�(�
2
�(�

2
⌦(e2

+))))) 2 EJ⌧1 ⌦ ⌧2K·

Then, by Lemma B.1.2, we find that �⌦ = �1 ] �2 where

(W , �1) 2 GJ⌦1K· and (W , �2) 2 GJ⌦2K·

and, for any i 2 {1, 2}

�i⌦(e1
+) = �i1(e1

+) and �i⌦(e2
+) = �i2(e2

+)

Thus, we must show

(W , (�1�(�
1
�(�

1
1(e1

+))),�1�(�
1
�(�

1
2(e2

+)))),
(�2�(�

2
�(�

2
1(e1

+))),�2�(�
2
�(�

2
2(e2

+))))) 2 EJ⌧1 ⌦ ⌧2K·

We appeal to Lemma B.1.11 twice, using both of our hypotheses, to
reduce out obligation to:

(W2, (e⇤1, e
⇤
2
),

(e†
1
, e†

2
)) 2 EJ⌧1 ⌦ ⌧2K·



226 value interoperability: affine functions

Where for some W1 where W v W1, (W1, e⇤1, e
†
1
) 2 VJ⌧1K·, and for some

W2 where W1 v W2, (W2, e⇤2, e
†
2
) 2 VJ⌧2K·. By Lemma B.1.3, we have

(W2, e⇤1, e
†
1
) 2 VJ⌧1K· and thus (W2, (e⇤1, e

⇤
2
), (e†

1
, e†

2
) 2 VJ⌧1 ⌦ ⌧2K·, which

su�ces to finish the proof.

Lemma B.1.45 (Compat let).

�;�;�;⌦1 ` e1 � e1 : ⌧1 ⌦ ⌧2 ^ �;�;�;⌦2,a : ⌧1, a0 : ⌧2 ` e2 � e2 : ⌧
=) �;�;�;⌦1 ] ⌦2 ` let (a, a0) = e1 in e2 � let (a, a0) = e1 in e2 : ⌧

Proof. Expanding the conclusion, we must show that given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K ^ (W , ��) 2 GJ�K⇢
^(W , ��) 2 GJ�K· ^ (W , �⌦) 2 GJ⌦1 ] ⌦2K·

we must show

(W , �1�(�
1
�(�

1
⌦(let (a, a0) = e1 in e2

+))),
�2�(�

2
�(�

2
⌦(let (a, a0) = e1 in e2

+)))) 2 EJ⌧ K·

We can push the compiler and substitutions through the let expression
and refine this to:

(W , let xfresh =�1�(�
1
�(�

1
⌦(e1

+))) in let x0fresh = fst xfresh in let x00fresh = snd xfresh in
let a = once(x0fresh) in let a0 = once(x00fresh) in �1�(�

1
�(�

1
⌦(e2

+))),
let xfresh =�2�(�

2
�(�

2
⌦(e1

+))) in let x0fresh = fst xfresh in let x00fresh = snd xfresh in
let a = once(x0fresh) in let a0 = once(x00fresh) in �2�(�

2
�(�

2
⌦(e2

+))),2 EJ⌧ K·

Then, by Lemma B.1.2, we find that �⌦ = �1 ] �2 where

(W , �1) 2 GJ⌦1K· and (W , �2) 2 GJ⌦2K·

and, for any i 2 {1, 2}

�i⌦(e1
+) = �i1(e1

+) and �i⌦(e2
+) = �i2(e2

+)

We appeal to Lemma B.1.11 using the first hypothesis, with the refined
substitutions, to reduce our obligation to:

(W1, let xfresh = e⇤
1
in let x0fresh = fst xfresh in let x00fresh = snd xfresh in

let a = once(x0fresh) in let a0 = once(x00fresh) in �1�(�
1
�(�

1
2(e2

+))),

let xfresh = e†
1
in let x0fresh = fst xfresh in let x00fresh = snd xfresh in

let a = once(x0fresh) in let a0 = once(x00fresh) in �2�(�
2
�(�

2
2(e2

+)))) 2 EJ⌧ K·

Where for some W1 where W v W1 and (W1, e⇤1, e
†
1
) 2 VJ⌧1 ⌦ ⌧2K·.
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By expanding the value relation, we find that e⇤
1
= (v⇤

1
, v⇤

2
) and e†

1
= (v†

1
, v†

2
)

where (W1, v⇤1, v
†
1
) 2 VJ⌧1K· and (W1, v⇤2, v

†
2
) 2 VJ⌧2K·.

Thus, we can appeal to Lemma B.1.11 again to reduce our obligation to:

(W2, [e⇤1 7! a, e⇤
2
7! a0]�1�(�

1
�(�

1
2(e2

+))),

[e†
1
7! a, e†

2
7! a0]�2�(�

2
�(�

2
2(e2

+)))) 2 EJ⌧ K·
Where W2 only di↵ers from W1 by reduced step index. Now, note that

we can combine our substitutions and instantiate our second hypothesis to
complete the proof.

Lemma B.1.46 (Compat LeM⌧ ).

�;⌦;�;� ` e � e : ⌧ ^ ⌧ ⇠ ⌧ =) �;�;�;⌦ ` LeM⌧ � LeM⌧ : ⌧

Proof. Expanding this conclusion, we must show that given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ��) 2 GJ�K⇢^(W , ��) 2 GJ�K·^(W , �⌦) 2 GJ⌦K·

then

(W , �1�(�
1
�(�

1
⌦(LeM⌧+))), �2�(�

2
�(�

2
⌦(LeM⌧+)))) 2 EJ⌧ K·

We can push the compiler and substitutions through the pair to refine
that to:

(W , C⌧ 7!⌧ (�
1
�(�

1
�(�

1
⌦(e

+)))), C⌧ 7!⌧ (�
2
�(�

2
�(�

2
⌦(e

+))))) 2 EJ⌧ K·

Now, by instantiating our induction hypothesis with W , ��, ��, �⌦, ⇢, we
find that:

(W , �1�(�
1
�(�

1
⌦(e

+))), �2�(�
2
�(�

2
⌦, e

+)))) 2 EJ⌧K⇢

By Lemma B.1.8, it follows that:

(W , �1�(�
1
�(�

1
⌦(e

+))), �2�(�
2
�(�

2
⌦(e

+)))) 2 EJ⌧K·

Therefore, by Theorem B.1.13, we have

(W , C⌧ 7!⌧ (�
1
�(�

1
�(�

1
⌦(e

+)))), C⌧ 7!⌧ (�
2
�(�

2
�(�

2
⌦(e

+))))) 2 EJ⌧ K·

as was to be proven.

b.2 static logical relation

As before, we first present supporting lemmas, and then the compatibility
lemmas. Note that we omit many of the MiniML compatibility lemmas
because the di↵erences between the proofs from the MiniML compatibility
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lemmas from the last case study and the corresponding compatibility lem-
mas in this case study are relatively straightforward; we do a selection of
representative cases to demonstrate that this is the case.

Lemma B.2.1 (Expression Relation Contains Value Relation).

VJ⌧K⇢ ✓ EJ⌧K⇢

Proof. All terms in the value relation are irreducible, and thus are trivially
in the expression relation.

Lemma B.2.2 (Values With No Flags Are In Expression Relation).
For all ⌧, ⇢,W ,�1, v1,�2, v2, if (W , (;, v1), (;, v2)) 2 VJ⌧K⇢, then

(W , (�1, v1), (�2, v2)) 2 EJ⌧K⇢.

Proof. Expanding the definition of the expression relation, given:

8�r1,�r2,H1,H2:W , e0
1
, H0

1, j < W .k.
�r1#�1 ^ �r2#�2 ^ �r1 ] �1,�r2 ] �2 : W^

h�r1 ] flags(W , 1) ] �1,H1, v1i
j99K h�0

1,H
0
1, e

0
1
i 9

we must show that either e0
1

is fail Conv or there exist
�f1,�g1,�f2,�g2, v⇤2,H

0
2,W

0 such that:

h�r2 ] flags(W , 2) ] �2,H2, v2i
⇤99K h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H0

2, v
⇤
2
i 9

^ �0
1 = �r1 ] flags(W 0, 1) ] �f1 ] �g1^

^ W v�r1,�r2 W 0
^ H0

1,H
0
2 : W

0

^ (W 0, (�f1, e01), (�f2, v⇤2)) 2 VJ⌧K⇢)

Since v1, v2 are in the value relation, they are target values, so the
configurations

h�r1 ] flags(W , 1) ] �1,H1, v1i

and
h�r2 ] flags(W , 2) ] �2,H2, v2i

are irreducible. Thus, �0
1 is simply equal to the set of static flags in the

initial configuration, so �0
1 = �r1 ] flags(W , 1) ] �1. Then, we can take

�f1 = ;, �g1 = �1, �f2 = ;, �g2 = �2, v⇤2 = v2, H0
2 = H2, and W 0 = W .

Since �r1,�r2 : W by assumption, we have W v�r1,�r2 W . Everything
else in the expression relation is trivial by assumption, so this su�ces to
finish the proof.

Lemma B.2.3 (Expressions With No Flags Are In Expression Rela-
tion). For all ⌧, ⇢,W ,�1, e1,�2, e2, if (W , (;, e1), (;, e2)) 2 EJ⌧K⇢, then
(W , (�1, e1), (�2, e2)) 2 EJ⌧K⇢.
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Proof. Expanding the definition of the expression relation, given:

8�r1,�r2,H1,H2:W , e0
1
, H0

1, j < W .k.
�r1#�1 ^ �r2#�2 ^ �r1 ] �1,�r2 ] �2 : W^

h�r1 ] flags(W , 1) ] �1,H1, e1i
j99K h�0

1,H
0
1, e

0
1
i 9

we must show that either e0
1

is fail Conv or there exist
�f1,�g1,�f2,�g2, v2,H0

2,W
0 such that:

h�r2 ] flags(W , 2) ] �2,H2, e2i
⇤99K h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H0

2, v2i 9
^ �0

1 = �r1 ] flags(W 0, 1) ] �f1 ] �g1^

^ W v�r1,�r2 W 0
^ H0

1,H
0
2 : W

0

^ (W 0, (�f1, e01), (�f2, v2)) 2 VJ⌧K⇢)

Now, by expanding the expression relation in the assumption, we have
that, if

8�⇤
r1,�

⇤
r2,H1,H2:W , e0

1
, H0

1, j < W .k.
�⇤
r1#; ^ �⇤

r2#; ^ �⇤
r1 ] ;,�⇤

r2 ] ; : W^

h�⇤
r1 ] flags(W , 1) ] �1,H1, e1i

j99K h�0
1,H

0
1, e

0
1
i 9

then either e0
1
is fail Conv or there exist �⇤

f1,�
⇤
g1,�

⇤
f2,�

⇤
g2, v2,H

0
2,W

0

such that:

h�⇤
r2 ] flags(W , 2) ] �2,H2, e2i

⇤99K h�⇤
r2 ] flags(W 0, 2) ] �⇤

f2 ] �⇤
g2,H

0
2, v2i 9

^ �0
1 = �⇤

r1 ] flags(W 0, 1) ] �⇤
f1 ] �⇤

g1^

^ W v�⇤
r1,�

⇤
r2

W 0
^ H0

1,H
0
2 : W

0

^ (W 0, (�⇤
f1, e

0
1
), (�⇤

f2, v2)) 2 VJ⌧K⇢)

Then, we can instantiate this fact with �⇤
r1 = �r1 ] �1,�⇤

r2 = �r2 ] �2.
We then find that:

h�r2 ] �2 ] flags(W , 2) ] �2,H2, e2i
⇤99K h�r2 ] �2 ] flags(W 0, 2) ] �⇤

f2 ] �⇤
g2,H

0
2, v2i 9

^ �0
1 = �r1 ] �1 ] flags(W 0, 1) ] �⇤

f1 ] �⇤
g1^

^ W v�⇤
r1,�

⇤
r2

W 0
^ H0

1,H
0
2 : W

0

^ (W 0, (�⇤
f1, e

0
1
), (�⇤

f2, v2)) 2 VJ⌧K⇢)

Then, we can take �f1 = �⇤
f1,�g1 = �⇤

g1]�1,�f2 = �⇤
f2,�g2 = �⇤

g2]�2.
Then, everything in the expression relation we have to prove trivially follows
from the above, so the proof is finished.

Lemma B.2.4 (A� Values Compile to Target Values).

Proof. By induction over the syntax: () compiles to (), �aG# : ⌧.e compiles
to a target function, he, e0i compiles to a pair of target functions, !v compiles
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to v+ (which is a target value by the induction hypothesis), and (v, v0)
compiles to (v+,v0+) (where both v+ and v0+ are target values by the
induction hypothesis).

Lemma B.2.5 (Split Substitutions). For any world W , flagsets �1,�2,
and substitution � such that

(W ,�1,�2, �) 2 GJ⌦1 ]⌦2K⇢

there exist flagsets �1l,�1r,�2l,�2r such that �1 = �1l]�1r, �2 = �2l]�2r,
and substitutions �1, �2 such that � = �1 ] �2 and

(W ,�1l,�2l, �1) 2 GJ⌦1K⇢

and
(W ,�1r,�2r, �2) 2 GJ⌦2K⇢

Moreover, for any i, j 2 {1, 2}, for any �;⌦j;�;� ` e : ⌧ ,

�i(e+) = �ij(e
+)

and for any �;⌦j;�;� ` e : ⌧ ,

�i(e+) = �ij(e
+)

Proof. First, we need to show that there exist substitutions �1 and �2. This
follows from the inductive structure of GJ⌦K⇢, where we can separate the
parts that came from GJ⌦1K⇢ and GJ⌦2K⇢. The second follows from the fact
that the statics means that the rest of the substitution must not occur in
the term, and thus �i(e+) = �i1(�

i

2(e
+)) = �i1(e

+) (for example).

Lemma B.2.6 (No Static Variables in MiniML Terms). For any world W ,
flagsets �1,�2, and substitution � such that

(W ,�1,�2, �) 2 GJ⌦K⇢

then there exists a substitution �0 such that

(W , ;, ;, �0) 2 GJ⌦#K⇢

and, for all �;⌦;�;� ` e : ⌧ and for all i 2 {1, 2},

�i(e+) = �0i(e+)

Proof. Let ⌦ be the set of all static variables in ⌦. Since ⌦ only contains
dynamic or static variables, ⌦ = ⌦# ]⌦ , so by Lemma B.2.5, there exist
flagsets f1l, f1r, f2l, f2r and substitutions �1, �2 such that f1 = f1l ] f1r, f2 =
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f2l] f2r, � = �1]�2, (W , f1l, f2l, �1) 2 GJ⌦#K⇢ and (W , f1r, f2r, �2) 2 GJ⌦ K⇢.
Since ⌦# only contains dynamic variables, f1l = f2l = ;. Thus, we can take
�0 = �1.

Now, we must prove, for any �;⌦;�;� ` e : ⌧ and for any i 2 {1, 2}, it
holds that �i(e+) = �i1(e

+). Since � = �1 ] �2, we have

�i(e+) = �i1(�
i

2(e
+))

Notice that �2 only contains variables annotated with  . However, e+

contains no free variables annotated with  because, if it did, then there
would need to be a free static variable would under a L·M⌧ boundary, as
only static variables in A� get compiled to variables annotated with  

in the target. However, the typing rule for L·M⌧ does not allow for free
static variables, so this is impossible and thus e+ contains no free variables
annotated with  . Ergo, closing e+ with �2 has no impact, so

�i(e+) = �i1(�
i

2(e
+)) = �i1(e

+)

as was to be proven.

Lemma B.2.7 (Strengthening Logical Relation for MiniML). For all
�;⌦;�;� ` e � e : ⌧ , if there exists some (W ,�1,�2, �⌦) 2 GJ⌦K·, it holds
that:

8W .8⇢ �� �� �⌦
⇢ 2 DJ�K ^ (W , ;, ;, ��) 2 GJ�K⇢ ^ (W , ;, ;, ��) 2 GJ�K· ^ (W , ;, ;, �⌦#) 2 GJ⌦#K·
=) (W , (;, �1�(�

1
�(�

1
⌦#

(e+)))), (;, �2�(�
2
�(�

2
⌦#

(e+))))) 2 EJ⌧K⇢

Proof. Since ⌦ only contains dynamic or static variables, ⌦ = ⌦# ]⌦ , so
by Lemma B.2.5, there exist flagsets f1l, f1r, f2l, f2r and substitutions �1, �2
such that f1 = f1l ] f1r, f2 = f2l ] f2r, � = �1 ] �2, (W , f1l, f2l, �1) 2 GJ⌦#K⇢
and (W , f1r, f2r, �2) 2 GJ⌦ K⇢.
Now, consider the given hypothesis. Given

8W .8⇢ �� �� �⌦.
⇢ 2 DJ�K ^ (W , ;, ;, ��) 2 GJ�K⇢ ^ (W , ;, ;, ��) 2 GJ�K· ^ (W , ;, ;, �⌦#) 2 GJ⌦#K·

we must show:

(W , (;, �1�(�
1
�(�

1
⌦(e

+)))), (;, �2�(�
2
�(�

2
⌦(e

+))))) 2 EJ⌧K⇢

Since (W , f1r, f2r, �2) 2 GJ⌦ K⇢, (W , ;, ;, �⌦#) 2 GJ⌦#K·, and ⌦ =
⌦ ] ⌦#, it holds that (W , f1r, f2r, �2 ] �⌦#) 2 GJ⌦K·. Thus, by apply-
ing �;⌦;�;� ` e � e : ⌧ , we find

(W , (;, �1�(�
1
�(�2 ] �1⌦#

(e+)))), (;, �2�(�
2
�(�2 ] �2⌦#

(e+))))) 2 EJ⌧K⇢
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As explained in the proof for Lemma B.2.6, e+ has no free variables anno-
tated with  , so closing e+ over with �2 has no impact. Ergo,

(W , (;, �1�(�
1
�(�

1
⌦#

(e+)))), (;, �2�(�
2
�(�

2
⌦#

(e+))))) 2 EJ⌧K⇢

which su�ces to finish the proof.

Lemma B.2.8 (World Extension).

1. If (W1, (�1, v1), (�2, v2)) 2 VJ⌧K⇢ and W1 v�1,�2 W2, then
(W2, (�1, v1), (�2, v2)) 2 VJ⌧K⇢

2. If (W1,�1,�2, �) 2 GJ�K⇢ and W1 v�1,�2 W2, then (W2,�1,�2, �) 2
GJ�K⇢

Proof. We note that world extension allows three things: the step index
to decrease, the heap typing to add bindings (holding all existing bindings
at same relation, module decreasing step index), and add flag references
(ensuring existing flag references can go from pairs of sets of static flags to
used, but not the other way). In all cases, this is straightforward based on
the definition (relying on Lemma B.1.4 in some cases).

Lemma B.2.9 (World Extension Transitive). If W1 v�1,�2 W2 and
W2 v�0

1,�
0
2
W3 then W1 v�1\�0

1,�2\�0
2
W3.

Proof. This holds trivially for step indices, the heap typing, and the mono-
tonicity of marking a�ne flags as used. What remains is the side condition
that the world satisfies �1,�2. Since that is defined as being disjoint from
the set of flags in W and W 0, the set of flags that is disjoint from both W1

and W3 is the intersection.

Lemma B.2.10 (Heaps in Later World). For any W 2 World and
H1,H2 : W, it holds that H1,H2 : BW.

Proof. For H1,H2 : BW , we need three things.
The first is that for any mapping (`1, `2) 7!R in BW . ,

(BBW ,H1(`1),H2(`2)) 2 R. Since R is drawn from Typ, we know it is closed
under world extension and thus the fact that (BW ,H1(`1),H2(`2)) 2 R
means this holds.
The other two conditions, which relate to W .⇥, are una↵ected by the

shift of step index, and so hold trivially in BW .

Lemma B.2.11 (Heaps in Later World). For any W 2 World and
H1,H2 : W, it holds that H1,H2 : BW.

Proof. Since heap typings map to relations that are by definition closed
under world extension, and world extension cannot remove locations, only
restrict them to future step indices, this holds by definition.
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Lemma B.2.12 (Logical Relations for MiniML in UnrTyp). For any �,
⇢ 2 DJ�K, and ⌧ , if � ` ⌧ , then VJ⌧K⇢ 2 UnrTyp.

Proof. First, we show VJ⌧K⇢ 2 Typ. By the definition of Typ, it su�ces
to show, for all natural numbers n, bVJ⌧K⇢cn 2 Typn, for which we must
show two facts: first, that it is in 2AtomV aln , and second that it is closed
under world extension. The latter holds by Lemma B.2.8. For the former,
we note that we are required to show that the worlds are in Worldn, which
holds by definition, and that for any (W , (�1, v1), (�2, v2)) in the relation,
�1,�2 : W . For the latter, note that �1 = �2 = ; as shown earlier, and ;

is trivially disjoint from flags(W , 1) and flags(W , 2).

Second, we show that for any (W , (�1, v1), (�2, v2)) 2 VJ⌧K⇢, �1 = �2 = ;.
This is trivial by the definition of VJ⌧K⇢, aside from the case for ↵, where it
holds because the relation is drawn from UnrTyp.

Lemma B.2.13 (Compositionality).

(W , (�1, v1), (�2, v2)) 2 VJ⌧K
⇢[↵ 7!VJ⌧ 0K⇢] () (W , (�1, v1), (�2, v2)) 2 VJ⌧ [⌧ 0/↵]K⇢

Proof. The proof for compositionality in this case study is essentially verba-
tim the proof for compositionality in the last case study.

Lemma B.2.14 (Expression Relation for Closed Types). For any MiniML

type ⌧ where · ` ⌧ and any ⇢,

EJ⌧K⇢ = EJ⌧K·

Proof. Since EJ⌧K⇢ is defined in terms of VJ⌧K⇢, this proof is analogous
to Lemma B.2.13, though since what we are substituting is not used, the
interpretation can be arbitrary.

Lemma B.2.15 (Closing MiniML Terms). For any MiniML term e where
�;⌦;�;� ` e : ⌧ , for any W , ��, ��, �⌦, ⇢ where ⇢ 2 DJ�K, (W , ;, ;, ��) 2
GJ�K⇢, (W , ;, ;, ��) 2 GJ�K·, and (W ,�1,�2, �⌦) 2 GJ⌦K·, it holds that

�1�(�
1
�(�

1
⌦(e

+)))

and
�2�(�

2
�(�

2
⌦(e

+)))

are closed terms.

Proof. Since free variables are compiled to free variables, and no other free
variables are introduced via compilation, this follows trivially from the
structure of GJ�K⇢.



234 value interoperability: affine functions

Lemma B.2.16 (Closing A� Terms). For any A� term e where
�;�;�;⌦ ` e : ⌧ , for any W , ��, ��, �⌦, ⇢ where ⇢ 2 DJ�K, (W , ;, ;, ��) 2
GJ�K⇢, (W , ;, ;, ��) 2 GJ�K·, and (W ,�1,�2, �⌦) 2 GJ⌦K·, it holds that

�1�(�
1
�(�

1
⌦(e

+)))

and
�2�(�

2
�(�

2
⌦(e

+)))

are closed terms.

Proof. Since free variables are compiled to free variables, and no other free
variables are introduced via compilation, this follows trivially from the
structure of GJ�K⇢.

Lemma B.2.17 (MiniML Values Contain No Flags). If � ` ⌧ , ⇢ 2 DJ�K,
and (W , (�1, v1), (�2, v2)) 2 VJ⌧K⇢, then �1 = �2 = ;.

Proof. If ⌧ is not a type variable, then the theorem is trivially true because
all non-type variable interpretations of MiniML types are defined to only
contain tuples where the sets of static flags are ;.
If ⌧ is some type variable ↵, then, since � ` ⌧ , ↵ 2 �. Thus,

since ⇢ 2 DJ�K, it must be that ⇢(↵) 2 UnrTyp. Then, for any
(W , (�1, v1), (�2, v2)) 2 VJ⌧K⇢ = ⇢(↵), it must be that �1 = �2 = ;

by the definition of UnrTyp.

Theorem B.2.18 (Convertibility Soundness). If ⌧A ⇠ ⌧B then
8 (W , (�1, e1), (�2, e2)) 2 EJ⌧AK· =)
(W , (�1, C⌧A 7!⌧B (e1)), (�2, C⌧A 7!⌧B (e2))) 2 EJ⌧BK·

^ 8 (W , (�1, e1), (�2, e2)) 2 EJ⌧BK· =)
(W , (�1, C⌧B 7!⌧A(e1)), (�2, C⌧B 7!⌧A(e2))) 2 EJ⌧AK·.

Proof. We prove this by simultaneous induction on the structure of the
convertibility relation.

unit ⇠ unit There are two directions to this proof:

8 (W , (�1, e1), (�2, e2)) 2 EJunitK·
=) (W , (�1, Cunit7!unit(e1)), (�2, Cunit7!unit(e2))) 2 EJunitK·

and:

8 (W , (�1, e1), (�2, e2)) 2 EJunitK·
=) (W , (�1, Cunit7!unit(e1)), (�2, Cunit7!unit(e2))) 2 EJunitK·

Both directions are trivially similar to each other, so we will only prove
the first direction.
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Expanding the definition of the convertibility boundaries, we refine this
to:

8 (W , (�1, e1), (�2, e2)) 2 EJunitK· =) (W , (�1, e1), (�2, e2)) 2 EJunitK·

From the expression relation, we first need to show e1, e2 are closed. This
follows directly from the fact the assumption that (W , (�1, e1), (�2, e2)) 2
EJunitK·, and all terms in the expression relation are closed. Next, we need
to show that given:

8�r1,�r2,H1,H2:W , e0
1
, H0

1, j < W .k.
�r1,�r2 : W^

h�r1 ] flags(W , 1) ] �1,H1, e1i
j99K h�0

1,H
0
1, e

0
1
i 9

Then it holds that:

e0
1
= fail Conv _ (9�f1 �g1 �f2 �g2 v2H0

2W
0.

h�r2 ] flags(W , 2) ] �2,H2, e2i
⇤99K h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H0

2, v2i 9
^ �0

1 = �r1 ] flags(W 0, 1) ] �f1 ] �g1^

^ W v�r1,�r2 W 0
^ H0

1,H
0
2 : W

0

^ (W 0, (�f1, e01), (�f2, v2)) 2 VJ⌧ K·)}

By instantiating the assumption (W , (�1, e1), (�1, e2)) 2 EJunitK· with
�r1,�r2,H1,H2, etc, we find that

e0
1
= fail Conv _ (9�f1 �g1 �f2 �g2 v2H0

2W
0.

h�r2 ] flags(W , 2) ] �2,H2, e2i
⇤99K h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H0

2, v2i 9
^ �0

1 = �r1 ] flags(W 0, 1) ] �f1 ] �g1^

^ W v�r1,�r2 W 0
^ H0

1,H
0
2 : W

0

^ (W 0, (�f1, e01), (�f2, v2)) 2 VJ⌧K·)}

Ergo, it su�ces to show that if (W 0, (�f1, e01), (�f2, v2)) 2 VJunitK·,
then (W 0, (�f1, e01), (�f2, v2)) 2 VJunitK·. However, this is trivial because
VJunitK· = VJunitK· = {(W , (;, ()), (;, ()))}.

int ⇠ bool There are two directions to this proof:

8 (W , (�1, e1), (�2, e2)) 2 EJintK·
=) (W , (�1, Cint7!bool(e1)), (�2, Cint 7!bool(e2))) 2 EJboolK·
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and:

8 (W , (�1, e1), (�2, e2)) 2 EJintK·
=) (W , (�1, Cbool 7!int(e1)), (�2, Cbool 7!int(e2))) 2 EJintK·

First, consider the first direction.

Expanding the definition of the convertibility boundaries, we refine this
to:

8 (W , (�1, e1), (�2, e2)) 2 EJintK· =) (W , (�1, e1), (�2, e2)) 2 EJboolK·

From the expression relation, we first need to show e1, e2 are closed. This
follows directly from the fact the assumption that (W , (�1, e1), (�2, e2)) 2
EJintK·, and all terms in the expression relation are closed. Next, we need
to show that given:

8�r1,�r2,H1,H2:W , e0
1
, H0

1, j < W .k.
�r1,�r2 : W^

h�r1 ] flags(W , 1) ] �1,H1, e1i
j99K h�0

1,H
0
1, e

0
1
i 9

Then it holds that:

e0
1
= fail Conv _ (9�f1 �g1 �f2 �g2 v2H0

2W
0.

h�r2 ] flags(W , 2) ] �2,H2, e2i
⇤99K h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H0

2, v2i 9
^ �0

1 = �r1 ] flags(W 0, 1) ] �f1 ] �g1^

^ W v�r1,�r2 W 0
^ H0

1,H
0
2 : W

0

^ (W 0, (�f1, e01), (�f2, v2)) 2 VJboolK·)}

By instantiating the assumption (W , (�1, e1), (�1, e2)) 2 EJintK· with
�r1,�r2,H1,H2, etc, we find that

e0
1
= fail Conv _ (9�f1 �g1 �f2 �g2 v2H0

2W
0.

h�r2 ] flags(W , 2) ] �2,H2, e2i
⇤99K h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H0

2, v2i 9
^ �0

1 = �r1 ] flags(W 0, 1) ] �f1 ] �g1^

^ W v�r1,�r2 W 0
^ H0

1,H
0
2 : W

0

^ (W 0, (�f1, e01), (�f2, v2)) 2 VJintK·)}

Ergo, it su�ces to show that if (W 0, (�f1, e01), (�f2, v2)) 2 VJintK·,
then (W 0, (�f1, e01), (�f2, v2)) 2 VJboolK·. However, this is trivial because
VJintK· ✓ VJboolK·.

Next, consider the first direction.

Expanding the definition of the convertibility boundaries, we refine this
to:
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8 (W , (�1, e1), (�2, e2)) 2 EJboolK· =) (W , (�1, if e1 0 1), (�2, if e2 0 1)) 2 EJintK·

Expanding the expression relation, we must show that given

8�r1,�r2,H1,H2:W , e0
1
, H0

1, j < W .k.
�r1#�1 ^ �r2#�2 ^ �r1 ] �1,�r2 ] �2 : W^

h�r1 ] flags(W , 1) ] �1,H1, if e1 0 1i
j99K h�0

1,H
0
1, e

0
1
i 9

it holds that:

e0
1
= fail Conv _ (9�f1 �g1 �f2 �g2 v2H0

2W
0.

h�r2 ] flags(W , 2) ] �2,H2, if e2 0 1i
⇤99K h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H0

2, v2i 9
^ �0

1 = �r1 ] flags(W 0, 1) ] �f1 ] �g1^

^ W v�r1,�r2 W 0
^ H0

1,H
0
2 : W

0

^ (W 0, (�f1, e01), (�f2, v2)) 2 VJintK⇢)

By applying (W , (�1, e1), (�2, e2)) 2 EJintK·, we find that
h�r1 ] flags(W , 1) ] �1,H1, e1i either steps to fail Conv, in which case the
original configuration with if e1 0 1 takes another step to fail Conv, or steps
to an irreducible configuration

h�r1 ] flags(W 0, 1) ] �f1 ] �g1,H
⇤
1, e

⇤
1i

in which case h�r2 ] flags(W , 2) ] �2,H2, e2i steps to an irreducible config-
uration

h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H
⇤
2, e

⇤
2i

and there exists some world W 0 such that W v�r1,�r2 W 0, H⇤
1,H

⇤
2 : W 0,

and (W 0, (�f1, e⇤1), (�f2, e⇤2)) 2 VJboolK⇢. By expanding the value relation,
we find �f1 = �f2 = ; and there are two cases:

1. e⇤
1
= e⇤

2
= 0. In this scenario, we have

h�r1 ] flags(W , 1) ] �1,H1, if e1 0 1i
⇤99K

h�r1 ] flags(W 0, 1) ] �f1 ] �g1,H⇤
1, if 0 0 1i 99K

h�r1 ] flags(W 0, 1) ] �f1 ] �g1,H⇤
1, 0i

and
h�r2 ] flags(W , 2) ] �2,H2, if e2 0 1i

⇤99K
h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H⇤

2, if 0 0 1i 99K
h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H⇤

2, 0i
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Then, we have from before that W v�r1,�r2 W 0 and H⇤
1,H

⇤
2 : W 0, and

one can easily see that (W 0, (;, 0), (;, 0)) 2 VJintK·, which su�ces to
finish the proof.

2. e⇤
1
= n1 and e⇤

2
= n2 with n1, n2 6= 0. In this scenario, we have

h�r1 ] flags(W , 1) ] �1,H1, if e1 0 1i
⇤99K

h�r1 ] flags(W 0, 1) ] �f1 ] �g1,H⇤
1, if n1 0 1i 99K

h�r1 ] flags(W 0, 1) ] �f1 ] �g1,H⇤
1, 1i

and
h�r2 ] flags(W , 2) ] �2,H2, if e2 0 1i

⇤99K
h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H⇤

2, if n2 0 1i 99K
h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H⇤

2, 1i

Then, we have from before that W v�r1,�r2 W 0 and H⇤
1,H

⇤
2 : W 0, and

one can easily see that (W 0, (;, 1), (;, 1)) 2 VJintK·, which su�ces to
finish the proof.

⌧1 ⌦ ⌧2 ⇠ ⌧1 ⇥ ⌧2 There are two directions to this proof:

8 (W , (�1, e1), (�2, e2)) 2 EJ⌧1 ⌦ ⌧2K·
=) (W , (�1, C⌧1⌦⌧2 7!⌧1 ⇥ ⌧2(e1)), (�2, C⌧1⌦⌧2 7!⌧1 ⇥ ⌧2(e2))) 2 EJ⌧1 ⇥ ⌧2K·

and:

8 (W , (�1, e1), (�2, e2)) 2 EJ⌧1 ⇥ ⌧2K·
=) (W , (�1, C⌧1 ⇥ ⌧2 7!⌧1⌦⌧2(e1)), (�2, C⌧1 ⇥ ⌧2 7!⌧1⌦⌧2(e2))) 2 EJ⌧1 ⌦ ⌧2K·

Both directions are trivially similar to each other, so we will only prove
the first direction.

Expanding the definition of the convertibility boundaries, we refine this
to:

8 (W , (�1, e1), (�1, e2)) 2 EJ⌧1 ⌦ ⌧2K· =)
(W ,
(�1, let x = e1 in (C⌧1 7!⌧1(fst x),C⌧2 7!⌧2(snd x))),
(�2, let x = e2 in (C⌧1 7!⌧1(fst x),C⌧2 7!⌧2(snd x)))) 2 EJ⌧1 ⇥ ⌧2K·

From the expression relation, we first need to show the two expressions in
the conclusion are closed. This follows from the fact that e1, e2 are closed,
by the assumption that (W , (�1, e1), (�2, e2)) 2 EJ⌧1 ⌦ ⌧2K·, and that the
new expressions do not introduce any new free variables. Next, we need to
show that given:
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8�r1,�r2,H1,H2:W , e0
1
, H0

1, j < W .k.
�r1,�r2 : W^

h�r1 ] flags(W , 1) ] �1,H1, let x = e1 in (C⌧1 7!⌧1(fst x),C⌧2 7!⌧2(snd x))i
j99K h�0

1,H
0
1, e

0
1
i 9

Then it holds that:

e0
1
= fail Conv _ (9�f1 �g1 �f2 �g2 v2H0

2W
0.

h�r2 ] flags(W , 2) ] �2,H2, let x = e2 in (C⌧1 7!⌧1(fst x),C⌧2 7!⌧2(snd x))i
⇤99K h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H0

2, v2i 9
^ �0

1 = �r1 ] flags(W 0, 1) ] �f1 ] �g1^

^ W v�r1,�r2 W 0
^ H0

1,H
0
2 : W

0

^ (W 0, (�f1, e01), (�f2, v2)) 2 VJ⌧1 ⇥ ⌧2K)}

First, since the let expression in the first configuration terminates to
an irreducible configuration, by inspection on the operational semantic, it
must be the case that h�r1 ] flags(W , 1) ] �1,H1, e1i terminates to some
irreducible configuration h�⇤

1,H
⇤
1, e

⇤
1
i. Then, by assumption, it follows that

either e⇤
1
= fail Conv, in which case the whole let expression steps to

fail Conv, or that e⇤
1
is a value, in which case h�r2 ] flags(W , 2) ] �2,H2, e2i

also steps to some irreducible configuration h�⇤
2,H

⇤
2, e

⇤
2
i and there exists

some world W1 where �⇤
i
= �ri ]flags(W1, i)]�†

i
, W v�r1,�r2 W1, H⇤

1,H
⇤
2 :

W1, and (W1, (�
†
1, e

⇤
1
), (�†

2, e
⇤
2
)) 2 VJ⌧1 ⌦ ⌧2K·. By expanding the value

relation definition, we find that e⇤
1
= (v⇤

1
, v⇤

2
) and e⇤

2
= (v†

1
, v†

2
) where

(W1, (�1a, v⇤1), (�2a, v
†
1
)) 2 VJ⌧1K· and (W1, (�1b, v⇤2), (�2b, v

†
2
)) 2 VJ⌧2K·,

where �†
1 = �1a ] �1b and �†

2 = �2a ] �2b.

Thus, the first configuration steps as follows:

h�r1 ] flags(W , 1) ] �1,H1, let x = e1 in (C⌧1 7!⌧1(fst x),C⌧2 7!⌧2(snd x))i
⇤
!

h�r1 ] flags(W1, 1) ] �†
1,H

⇤
1, let x = (v⇤

1
, v⇤

2
) in (C⌧1 7!⌧1(fst x),C⌧2 7!⌧2(snd x))i !

h�r1 ] flags(W1, 1) ] �†
1,H

⇤
1, (C⌧1 7!⌧1(fst (v

⇤
1
, v⇤

2
)),C⌧2 7!⌧2(snd (v⇤

1
, v⇤

2
)))i !

h�r1 ] flags(W1, 1) ] �†
1,H

⇤
1, (C⌧1 7!⌧1(v

⇤
1
),C⌧2 7!⌧2(v

⇤
2
))i

By a similar argument, the configuration on the other side with H2 steps
to

h�r2 ] flags(W1, 2) ] �†
2,H

⇤
2, (C⌧1 7!⌧1(v

†
1
),C⌧2 7!⌧2(v

†
2
))i

Since (W1, (�1a, v⇤1), (�2a, v
†
1
)) 2 VJ⌧1K· ✓ EJ⌧1K· and

(W1, (�1b, v⇤2), (�2b, v
†
2
)) 2 VJ⌧2K· ✓ EJ⌧2K·, by the induction hypoth-

esis, we have that

(W1, (�1a,C⌧1 7!⌧1(v
⇤
1)), (�2a,C⌧1 7!⌧1(v

†
1
))) 2 EJ⌧1K·
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and
(W1, (�1b,C⌧2 7!⌧2(v

⇤
2)), (�2b,C⌧2 7!⌧2(v

†
2
))) 2 EJ⌧2K·

By the first fact, either h�r1 ] �1b ] flags(W1, 1) ] �1a,H⇤
1,C⌧1 7!⌧1(v

⇤
1
)i

steps to fail Conv (note our choice of “rest” of flags includes those owned
by the other half of the pair), in which case the original configuration with
H1 steps to fail Conv, or it steps to an irreducible configuration

h�r1 ] �1b ] flags(W2, 1) ] �f

1a,H
†
1, v

⇤⇤
1 i

in which case h�r2 ] �2b ] flags(W1, 2) ] �2a,H⇤
2,C⌧1 7!⌧1(v

†
1
)i also steps

to an irreducible configuration

h�r2 ] �2b ] flags(W2, 2) ] �f

2a,H
†
2, v

††
1
i

and there exists some world W2 where W1 v�r1]�1b,�r2]�2b W2, H
†
1,H

†
2 :

W2, and (W2, (�
f

1a, v
⇤⇤
1
), (�f

2a, v
††
1
)) 2 VJ⌧1K·.

Once the first component of the pair in the configurations above have
stepped to values v⇤⇤

1
and v††

1
, the pair will continue reducing on the second

component. Then, by Lemma B.2.8, since W1 v�r1]�1b,�r2]�2b W2 (which
includes �1b and �2b),

(W2, (�1b,C⌧2 7!⌧2(v
⇤
2)), (�2b,C⌧2 7!⌧2(v

†
2
))) 2 EJ⌧2K·

Thus, either h�r1 ] �f

1a ] flags(W2, 1) ] �1b,H
†
1,C⌧2 7!⌧2(v

⇤
2
)i steps to

fail Conv, in which case the original configuration also takes a step to
fail Conv, or it steps to an irreducible configuration

h�r1 ] �f

1a ] flags(W3, 1) ] �f

1b,H
f

1 , v
⇤⇤
2 i

in which case h�r2 ] �f

2a ] flags(W2, 1) ] �2b,H
†
2,C⌧2 7!⌧2(v

†
2
)i also steps

to an irreducible configuration h�r2 ] �f

2a ] flags(W3, 1) ] �f

2b,H
f

2 , v
††
2
i and

there exists some world W3 where

W2 v
�r1]�f

1a,�r2]�f
2a

W3, H
f

1 ,H
f

2 : W3, and (W3, (�
f

1b, v
⇤⇤
2
), (�f

2b, v
††
2
)) 2

VJ⌧2K·.

Thus, the original configuration with H1 and �1 ] �2 steps to
h�r ] flags(W3, 1) ] �f

1a ] �f

1b,H
f

1 , (v
⇤⇤
1
, v⇤⇤

2
)i and the original configuration

with H2 steps to h�r ] flags(W3, 2) ] �f

2a ] �f

2b,H
f

2 , (v
††
1
, v††

2
)i. We have

Hf

1 ,H
f

2 : W3 and, since W v�r1,�r2 W1, W1 v
�r1]�†

1b,�r2]�†
2b

W2, and

W2 v�r1]�f
1a,�r2]�f

2a
W3, it follows from Lemma B.2.9 that W v�r1,�r2 W3.

Moreover, since W2 v�r1]�f
1a,�r2]�f

2a
W3 and (W2, (�

f

1a, v
⇤⇤
1
), (�f

2a, v
††
1
)) 2
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VJ⌧1K·, we have (W3, (�
f

1a, v
⇤⇤
1
), (�f

2a, v
††
1
)) 2 VJ⌧1K·. Finally, we also have

(W3, (�
f

1b, v
⇤⇤
2
), (�f

2b, v
††
2
)) 2 VJ⌧2K·. Ergo,

(W3, (�
f

1a ] �f

1b, (v
⇤⇤
1 , v⇤⇤2 )), (�f

2a ] �f

2b, (v
††
1
, v††

2
))) 2 VJ⌧1 ⇥ ⌧2K·

which su�ces to finish the proof.

⌧1 ( ⌧2 ⇠ (unit ! ⌧1) ! ⌧2

There are two directions, we first prove the former implication, that is,
that:

8 (W , (�1, e1), (�2, e2)) 2 EJ⌧1 ( ⌧2K· =)
(W , (�1, C⌧1(⌧2 7!(unit ! ⌧1) ! ⌧2

(e1)),

(�2, C⌧1(⌧2 7!(unit ! ⌧1) ! ⌧2
(e2))) 2 EJ(unit ! ⌧1) ! ⌧2K·

Expanding the definition of the convertibility boundaries, we refine our
goal to:

(W , (�1, let x = e1 in �xthnk.let xconv = C⌧1 7!⌧1(xthnk ())
in let xaccess = once(xconv) in C⌧2 7!⌧2(x xaccess)),

(�2, let x = e2 in �xthnk.let xconv = C⌧1 7!⌧1(xthnk ())
in let xaccess = once(xconv) in C⌧2 7!⌧2(x xaccess)))

2 EJ(unit ! ⌧1) ! ⌧2K·

From the expression relation, we must show first that the terms are closed,
which follows from out hypothesis given we did not introduce any new free
variables. Then, we need to show that given:

8�r1,�r2,H1,H2:W , e0
1
, H0

1, j < W .k.
�r1,�r2 : W^

h�r1 ] flags(W , 1) ] �1,H1, let x = e1 in �xthnk.let xconv = C⌧1 7!⌧1(xthnk ()) in
let xaccess = once(xconv) in C⌧2 7!⌧2(x xaccess)

i

j99K h�0
1,H

0
1, e

0
1
i 9

Then it holds that:
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e0
1
= fail Conv _ (9�f1 �g1 �f2 �g2 v2H0

2W
0.

h�r2 ] flags(W , 2) ] �2,H2, let x = e2 in �xthnk.let xconv = C⌧1 7!⌧1(xthnk ()) in
let xaccess = once(xconv) in C⌧2 7!⌧2(x xaccess)

i

⇤99K h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H0
2, v2i 9

^ �0
1 = �r1 ] flags(W 0, 1) ] �f1 ] �g1^

^ W v�r1,�r2 W 0
^ H0

1,H
0
2 : W

0

^ (W 0, (�f1, e01), (�f2, v2)) 2 VJ(unit ! ⌧1) ! ⌧2K)}

To figure out what e0
1
is, we know from the operational semantics that

first we will evaluate e1 until it is a value and then will substitute. From
our hypothesis, which we can instantiate with �r1,�r2,H1,H2, etc, we know
that either e1 will run forever, in which case the entire term will and we are
done (trivially). Otherwise, we have that:

h�r1 ] flags(W , 1) ] �1,H1, e1i
j99K h�1,H

†
1, e

†
1
i 9

And that:

e†
1
= fail Conv _ (9�f1 �g1 �f2 �g2 v2H0

2W
0.

h�r2 ] flags(W , 2) ] �2,H2, e2i
⇤99K h�r2 ] flags(W †, 2) ] �†

2 ] �g2,H
†
2, e

†
2
i 9

^ �1 = �r1 ] flags(W †, 1) ] �†
1 ] �g1^

^ W v�r1,�r2 W †
^ H†

1,H
†
2 : W

†

^ (W †, (�†
1, e

†
1
), (�†

2, e
†
2
)) 2 VJ⌧1 ( ⌧2K)}

Where if e1† is fail Conv then the operational semantics will lift that to
the entire term and we will be done. Note also that from the definition of
VJ⌧1 ( ⌧2K·, we know �†

i
= ;.

Now, returning to our original reduction, we will take another step and
substitute e1† for x, which results in the following term:

�xthnk.let xconv = C⌧1 7!⌧1(xthnk ()) in let xaccess = once(xconv) in C⌧2 7!⌧2(e
†
1
xaccess)

This is clearly irreducible (it is a value), so we now need to show that the
other side similarly reduces to a value, which follows in the same way from
our hypothesis, and thus what remains to show is that these two values are
related at W † in VJ(unit ! ⌧1) ! ⌧2K· (we choose W † because no changes
to heap or flags happened in the substitution).

The definition of VJ(unit ! ⌧1) ! ⌧2K· says that we need to take any
world W 0, where W † @;,; W 0, (W 0, (;, v0

1
), (;, v0

2
)) 2 VJunit ! ⌧1K· and

show that
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(W 0, (;, [xthnk 7!v0
1
]let xconv = C⌧1 7!⌧1(xthnk ()) in let xaccess = once(xconv)

in C⌧2 7!⌧2(e
†
1
xaccess)),

(;, [xthnk 7!v0
2
]let xconv = C⌧1 7!⌧1(xthnk ()) in let xaccess = once(xconv)

in C⌧2 7!⌧2(e
†
2
xaccess))) 2 EJ⌧2K·

Where if we substitute, we get:

(W 0, (;, let xconv = C⌧1 7!⌧1(v
0
1
()) in let xaccess = once(xconv)

in C⌧2 7!⌧2(e
†
1
xaccess)),

(;, let xconv = C⌧1 7!⌧1(v
0
2
()) in let xaccess = once(xconv)

in C⌧2 7!⌧2(e
†
2
xaccess))) 2 EJ⌧2K·

Now we can expand the definition of once(·), to get:

(W 0, (;, let xconv = C⌧1 7!⌧1(v
0
1
()) in let xaccess =

(let rfresh = ref 1 in � .{if !rfresh {fail Conv} {rfresh := 0; xconv}})

in C⌧2 7!⌧2(e
†
1
xaccess)),

(;, let xconv = C⌧1 7!⌧1(v
0
2
()) in let xaccess =

(let rfresh = ref 1 in � .{if !rfresh {fail Conv} {rfresh := 0; xconv}})

in C⌧2 7!⌧2(e
†
2
xaccess)))

2 EJ⌧2K·

From our induction hypothesis, instantiated with BW 0 we know
(BW 0, (;,C⌧1 7!⌧1(v

0
1
())), (;,C⌧1 7!⌧1(v

0
2 ()))) will be in EJ⌧1K· if

(BW 0, (;, v0
1
()), (;, v0

2
())) is in EJ⌧1K. But, since (W 0, (;, v0

1
), (;, v0

2
) 2

VJunit ! ⌧1K·, by definition the latter holds, since the only values in
VJunitK· are ().

This means we can unfold the definition of EJ⌧1K· and know that for any
�r1,�r2 : BW 0, H1,H2 : BW 0:

h�r1 ] flags(BW 0, 1) ] ;,H1,C⌧1 7!⌧1(v
0
1 ())i

j99K h�1,Hc1, vc1i 9

Assuming vc1 is not fail Conv:

9�c1 �g1 �c2 �g2 vc2Hc2W 00.
h�r2 ] flags(BW 0, 2) ] ;,H2,C⌧1 7!⌧1(v

0
2 ()))i

⇤99K h�r2 ] flags(W c, 2) ] �c2 ] �g2,Hc2, vc2i 9
^ �1 = �r1 ] flags(W 00, 1) ] �c1 ] �g1^

^ BW 0
v�r1,�r2 W 00

^ Hc1,Hc2 : W 00

^ (W 00, (�c1, vc1), (�c2, vc2)) 2 VJ⌧1 ( ⌧2K)}
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If we return to our original obligation, we need to show that for some
�0
r1,�

0
r2,H

0
1,H

0
2 : W

0 that if:

h�0
r1 ] flags(W 0, 1) ] ;,H1, let xconv = C⌧1 7!⌧1(v

0
1
()) in let xaccess =

(let rfresh = ref 1 in � .{if !rfresh {fail Conv}
{rfresh := 0; xconv}}) in

C⌧2 7!⌧2(e
†
1
xaccess)

i

j99K h�1,H00
1, e

0
1
i 9

Then:

9�00
1 �g1 �00

2 �g2 e0
2
H00
2W

000.

h�r2 ] flags(W 0, 2) ] ;,H2,

let xconv = C⌧1 7!⌧1(v
0
2
()) in

let xaccess = (let rfresh = ref 1 in
� .{if !rfresh {fail Conv} {rfresh := 0; xconv}})

in C⌧2 7!⌧2(v2 xaccess)

i

⇤99K h�r2 ] flags(W c, 2) ] �c2 ] �g2,Hc2, vc2i 9
^ �1 = �r1 ] flags(W 00, 1) ] �c1 ] �g1^

^ BW 0
v�r1,�r2 W 00

^ Hc1,Hc2 : W 00

^ (W 00, (�c1, vc1), (�c2, vc2)) 2 VJ⌧1 ( ⌧2K)}

If we choose �0
ri

to be that chosen above, we know C⌧1 7!⌧1(v
0
1
()) reduces

to vc2 with �c1, and thus the entire term takes a step to:

h�r1 ] flags(W 00, 1) ] �c1,Hc1,
let xconv = vc1 in let xaccess =
(let rfresh = ref 1 in � .{if !rfresh {fail Conv} {rfresh := 0; xconv}}) in

C⌧2 7!⌧2(e
†
1
xaccess)

i

Which then takes two more steps to:

h�r1 ] flags(W 00, 1) ] �c1,Hc1,

C⌧2 7!⌧2(e
†
1

(let rfresh = ref 1 in � .{if !rfresh {fail Conv} {rfresh := 0; vc1}}))
i

To figure out where that steps next, we need to appeal to our induction
hypothesis. In particular, we instantiate it with W 00, which then tells us
that:
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(W 00, (�c1,C⌧2 7!⌧2(e
†
1
(let rfresh = ref 1 in � .{if !rfresh {fail Conv} {rfresh := 0; vc1}}))),

(�c2,C⌧2 7!⌧2(e
†
2
(let rfresh = ref 1 in � .{if !rfresh {fail Conv} {rfresh := 0; vc2}})))) 2 EJ⌧2K·

If we can show:

(W 00, (�c1, (e
†
1
(let rfresh = ref 1 in � .{if !rfresh {fail Conv} {rfresh := 0; vc1}}))),

(�c2, (e
†
2
(let rfresh = ref 1 in � .{if !rfresh {fail Conv} {rfresh := 0; vc2}})))) 2 EJ⌧2K·

To show the latter, recall that (W †, (;, e†
1
), (;, e†

2
)) 2 VJ⌧1 ( ⌧1K·.

We know that W †
v;,; W 0, W 0

v;,; BW 0, and BW 0
v�r1,�r2

W 00, so via Lemma B.2.9, W †
v;,; W 00 and thus via Lemma B.2.8,

(W 00, (;, e†
1
), (;, e†

2
)) 2 VJ⌧1 ( ⌧1K·. In particular, we know that each have

the form �x.e⇤
i
.

That means, if we can show, for some �c1,�c2 and some world W 000 where
W 00

v;,; W
000, that

(W 000, (�c1, vc1), (�c2, vc2)) 2 VJ⌧2K· (which we have from before) then

(W A, (;, [x 7!guard(vc1, `1)]e⇤1), (;, [x 7!guard(vc2, `2)]e⇤2)) 2 EJ⌧1K·

Where W A = (W 000.k,W 000. ,W 000.⇥ ] (`1, `2) 7!(�c1,�c2)).

In particular, we let W 000 = W 00.

To connect these two together, we first unfold the former: the definition
means that for any �00

r1,�
00
r1 : W

00 and H00
1,H

00
2 : W 00, we need to show:

h�00
r1 ] flags(W 00, 1) ] �c1,H00

1, (�x.e
⇤
1
) ( let rfresh = ref 1

in � .{if !rfresh {fail Conv} {rfresh := 0; vc1}}
)i

j99K h�000
1 ,H

0000
1 , e0000

1
i 9

The latter will give us the reduction, for �A

r1,�
A

r2 : W A and HA

1 ,H
A

2 : W A:

h�A

r1 ] flags(W A, 1) ] ;,HA

1 , [x 7!guard(vc1, `1)]e⇤1i
j99K h�A

1 ,H
B

1 , e
B

1
i 9

In particular, since W A is identical to W 00 aside from gaining �c1,�c2,
we can use �00

ri
as �A

ri
and flags(W 00) ] �c1 = flags(W A) ] ;.

Thus, the former takes one step to the latter, and the rest of what we
need follows.

We now return to our original goal, that is, showing how this reduces:
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h�r1 ] flags(W 00, 1) ] �c1,Hc1, C⌧2 7!⌧2(e
†
1

(let rfresh = ref 1
in � .{if !rfresh {fail Conv} {rfresh := 0; vc1}}))

i

Since we now know:

(W 00,

(�c1,C⌧2 7!⌧2(e
†
1
(let rfresh = ref 1 in � .{if !rfresh {fail Conv} {rfresh := 0; vc1}}))),

(�c2,C⌧2 7!⌧2(e
†
2
(let rfresh = ref 1 in � .{if !rfresh {fail Conv} {rfresh := 0; vc2}}))))

2 EJ⌧2K·

We can unfold the definition and get exactly what we need, as what we
were originally showing was that the term in question was in EJ⌧2K·.

Thus, we are done with the first direction.

Now we have to prove the other direction, that is, that:

8 (W , (�1, e1), (�2, e2)) 2 EJ(unit ! ⌧1) ! ⌧2K· =)
(W , (�1, C(unit ! ⌧1) ! ⌧2 7!⌧1(⌧2

(e1)),

(�2, C(unit ! ⌧1) ! ⌧2 7!⌧1(⌧2
(e2))) 2 EJ⌧1 ( ⌧2K·

Expanding the definition of the convertibility boundaries, we refine our
goal to:

(W ,
(�1, let x = e1 in �xthnk.let xaccess = once(C⌧1 7!⌧1(xthnk ())) in C⌧2 7!⌧2(x xaccess)),
(�2, let x = e2 in �xthnk.let xaccess = once(C⌧1 7!⌧1(xthnk ())) in C⌧2 7!⌧2(x xaccess)))

2 EJ⌧1 ( ⌧2K·

From the expression relation, we must show first that the terms are closed,
which follows from out hypothesis given we did not introduce any new free
variables. Then, we need to show that given:

8�r1,�r2,H1,H2:W , e0
1
, H0

1, j < W .k.
�r1,�r2 : W^

h�r1 ] flags(W , 1) ] �1,H1,
let x = e1 in �xthnk.let xaccess = once(C⌧1 7!⌧1(xthnk ())) in
C⌧2 7!⌧2(x xaccess)

i

j99K h�0
1,H

0
1, e

0
1
i 9
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Then it holds that:

e0
1
= fail Conv _ (9�f1 �g1 �f2 �g2 v2H0

2W
0.

h�r2 ] flags(W , 2) ] �2,H2,
let x = e2 in �xthnk.let xaccess = once(C⌧1 7!⌧1(xthnk ())) in
C⌧2 7!⌧2(x xaccess)

i

⇤99K h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H0
2, v2i 9

^ �0
1 = �r1 ] flags(W 0, 1) ] �f1 ] �g1^

^ W v�r1,�r2 W 0
^ H0

1,H
0
2 : W

0

^ (W 0, (�f1, e01), (�f2, v2)) 2 VJ⌧1 ( ⌧2K)}

To figure out what e0
1
is, we know from the operational semantics that

first we will evaluate e1 until it is a value and then will substitute. From
our hypothesis, which we can instantiate with �r1,�r2,H1,H2, etc, we
know that e1 will run with either fail Conv (in which case this will lift
into the entire term running to fail Conv) or will run to a value v1 related
in VJ(unit ! ⌧1) ! ⌧2K· at a future world W † where W v�r1,�r2 W † to
another value v2 that e2 will run to, where the heaps have evolved to
H†
1,H

†
2 : W

†, and empty flag stores.

Now, our original term will take another step and substitute v1 for x (note
that the operational semantics lifts steps on the subterm to steps on the
whole term), which results in the following term:

�xthnk.let xaccess = once(C⌧1 7!⌧1(xthnk ())) in C⌧2 7!⌧2(v1 xaccess)

This is clearly irreducible (it is a value), so we now need to show that the
other side similarly reduces to a value v2, which follows in the same way
from our hypothesis, and thus what remains to show is that:

(W †, (;,�xthnk.let xaccess = once(C⌧1 7!⌧1(xthnk ())) in C⌧2 7!⌧2(v1 xaccess)),
(;,�xthnk.let xaccess = once(C⌧1 7!⌧1(xthnk ())) in C⌧2 7!⌧2(v2 xaccess)))
2 VJ⌧1 ( ⌧2K·

The definition of VJ⌧1 ( ⌧2K· says that we need to take any W † @W 0,
v0
1
, v0

2
, `1, `2 where (W †, (�0

1, v
0
1
), (�0

2, v
0
2
)) are in VJ⌧1K· and (`1, `2) are not

in either W 0. or W 0.⇥ and show that
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((W 0.k,W 0. ,W 0.⇥ ] (`1, `2) 7!(�0
1,�

0
2)),

(;, [xthnk 7!guard(v0
1
, `1)]let xaccess = once(C⌧1 7!⌧1(xthnk ()))

in C⌧2 7!⌧2(v1 xaccess)),
(;, [xthnk 7!guard(v0

2
, `2)]let xaccess = once(C⌧1 7!⌧1(xthnk ()))

in C⌧2 7!⌧2(v2 xaccess)))
2 EJ⌧2K·

Where if we substitute (letting W ⇤ = (W 0.k,W 0. ,W 0.⇥ ]

(`1, `2) 7!(�0
1,�

0
2))), we get:

(W ⇤, (;, let xaccess = once(C⌧1 7!⌧1(guard(v
0
1
, `1) ())) in C⌧2 7!⌧2(v1 xaccess)),

(;, let xaccess = once(C⌧1 7!⌧1(guard(v
0
2
, `2) ())) in C⌧2 7!⌧2(v2 xaccess)))

2 EJ⌧2K·

First, let’s expand the definition of once(·):

(W ⇤, (;, let xaccess = let rfresh = ref unused in
� .{if !rfresh {fail Conv} {rfresh := used;C⌧1 7!⌧1(guard(v

0
1
, `1) ())})

in C⌧2 7!⌧2(v1 xaccess))

,

(;, let xaccess = let rfresh = ref unused in
� .{if !rfresh {fail Conv} {rfresh := used;C⌧1 7!⌧1(guard(v

0
2
, `2) ()))}

in C⌧2 7!⌧2(v2 xaccess))

)

2 EJ⌧2K·

To understand what happens, consider the operational reductions: allo-
cating a new reference (`0

i
), substituting it for rfresh, and then substituting

all of xaccess, and thus su�ces to show that:

(W †, (;,C⌧2 7!⌧2(v1 (� .{if !`0
1
{fail Conv} {`0

1
:= used;C⌧1 7!⌧1(guard(v

0
1
, `1) ())}))),

(;,C⌧2 7!⌧2(v2 (� .{if !`0
2
{fail Conv} {`0

2
:= used;C⌧1 7!⌧1(guard(v

0
2
, `2) ())})))

2 EJ⌧2K·

Where W † has a new pair of references in W †.⇥ (set to (;, ;)) but
otherwise is identical to W ⇤.

For this, we can appeal to our induction hypothesis, which requires us to
show that:

(W †, (;, v1 (� .{if !`0
1
{fail Conv} {`0

1
:= used;C⌧1 7!⌧1(guard(v

0
1
, `1) ())})),

(;, v2 (� .{if !`0
2
{fail Conv} {`0

2
:= used;C⌧1 7!⌧1(guard(v

0
2
, `2) ())})))

2 EJ⌧2K·
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Recalling that v1 and v2 came from VJ(unit ! ⌧1) ! ⌧2K·, we can proceed
by appealing to the definition of that relation, which tells us that for any
arguments in VJunit ! ⌧1K·, the result of substituting will be in EJ⌧2K·. It
thus remains to show that:

(W ⇤, (;,� .{if !`0
1
{fail Conv} {`0

1
:= used;C⌧1 7!⌧1(guard(v

0
1
, `1) ())}),

(;,� .{if !`0
2
{fail Conv} {`0

2
:= used;C⌧1 7!⌧1(guard(v

0
2
, `2) ())}))

2 VJunit ! ⌧1K·

Where W ⇤ is some future world of W †. From the definition of
VJunit ! ⌧1K·, we have to show that substituting () for the unused ar-
gument results in terms in EJ⌧1K·, at some arbitrary future world W ⇤⇤.

We proceed first by case analysis on whether the a�ne flags (`01, `
0
2) have

been set to used, which they can be in a future world. If they have been, we
can expand the definition of the expression relation, choose �r1 and heaps
H⇤⇤
1 ,H⇤⇤

2 : W ⇤⇤, and show that

h�r1 ] flags(W ⇤⇤, 1),H1, if !`01 {fail Conv} {`0
1
:= used;C⌧1 7!⌧1(guard(v

0
1
, `1) ())i

299K
h�r1 ] flags(W ⇤⇤, 1),H1, fail Convi

At which point we are done.

Thus, we now consider if (`01, `
0
2) are still set to a pair of flag sets (�a,�0

a).
If that’s the case, we instead take three steps to move into the else branches
and update the a�ne flags to used. That means we reduce our task to
showing that in a world W ⇤⇤⇤, which now has those locations marked used
in ⇥, we need to show:

(W ⇤⇤⇤, (;,C⌧1 7!⌧1(guard(v
0
1
, `1) ())), (;,C⌧1 7!⌧1(guard(v

0
2
, `2) ()))) 2 EJ⌧1K·

We now again appeal to our induction hypothesis, expanding the definition
of guard(·) at the same time to yield the following obligation:

(W ⇤⇤⇤, (;, (� .{if !`1 {fail Conv} {`1 := used; v0
1
}}) ()),

(;, (� .{if !`2 {fail Conv} {`2 := used; v0
2
}}) ())) 2 EJ⌧1K·

We can then take one step, eliminating the pointless beta-reduction (for
simplicity, we use the same name for the world, even though it is a future
world):

(W ⇤⇤⇤, (;, if !`1 {fail Conv} {`1 := used; v0
1
}}),

(;, if !`2 {fail Conv} {`2 := used; v0
2
})) 2 EJ⌧1K·

Now we again do case analysis on whether (`1, `2) is used in W ⇤⇤⇤.⇥.
If it is, then, as before, we trivially reduce the left side to failure and are
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done. If it is not, then we update those a�ne flags and reduce both sides to
the values v0

1
and v0

2
, at a future world W final. Now we knew, originally,

that those values were in VJ⌧1K· at world W †, but since, through many
applications of Lemma B.2.9 and Lemma B.2.8, that also means that they
are related at W final, we are done.

Lemma B.2.19 (Phantom Steps Translate to Actual Steps). For any
expression e in the phantom LCVM language, let Z(e) be an expression in the
original LCVM language where every subexpression of the form protect(e0, f )
is replaced with e0.

For any heap H in the phantom LCVM language, let ZH(H) = {` 7! Z(v) |
` 7! v 2 H}.

For any sets of flags �,�0, heaps H,H0, and expressions e, e0, if

h�,H, ei
m99K h�0,H0, e0i

then
hZH(H), Z(e)i

n
! hZH(H0), Z(e0)i

where n is the number of steps in the first reduction sequence which are not
invoked by the following reduction rule

h� ] {f },H, protect(e, f )i 99K h�,H, ei (15)

Proof. There exists some natural number j such that h�,H, ei
j99K h�0,H0, e0i.

We will prove the theorem by induction on j.
If j = 0, then � = �0, H = H0, and e = e0. It is then trivial to show that

hZH(H), Z(e)i
0
! hZH(H), Z(e)i, which finishes the proof for this case.

If j > 0, then there exist �j ,Hj , ej such that

h�,H, ei
j�199K h�j ,Hj , eji

and
h�j ,Hj , eji 99K h�0,H0, e0i

By the induction hypothesis, we have

hZH(H), Z(e)i
nj
! hZH(Hj), Z(ej)i

where nj is the number of steps in the sequence h�,H, ei
j�199K h�j ,Hj , eji not

invoked by (15).
Thus, by transitivity of

⇤
!, it su�ces to show

hZH(Hj), Z(ej)i
k
! hZH(H0), Z(e0)i
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where k = 0 if h�j ,Hj , eji 99K h�0,H0, e0i is invoked by (15), and k = 1
otherwise.

We will prove the above by induction over the derivation of h�j ,Hj , eji 99K
h�0,H0, e0i. Most cases of this proof by induction are trivial because most
reduction rules in 99K come from the original !. Thus, we prove the three
non-trivial cases where the reduction rule is not derived from ! and then
show three of the trivial cases which comes from !.

1. Consider the reduction rule

h� ] {f },H, protect(e, f )i 99K h�,H, ei

Then, we must show

hZH(H), Z(protect(e, f ))i
0
! hZH(H), Z(e)i

However, notice that Z(protect(e, f )) = Z(e). Then, we trivially have

hZH(H), Z(e)i
0
! hZH(H), Z(e)i

which finishes the proof for this case.

2. Consider the reduction rule

f fresh

h�,H, let a = v in ei 99K h� ] {f },H, [a 7! protect(v, f )]ei

Then, we must show

hZH(H), Z(let a = v in e)i
1
! hZH(H), Z([a 7! protect(v, f )]e)i

Factor the Z function through the expressions:

hZH(H), let a = Z(v) in Z(e)i
1
! hZH(H), [a 7! Z(v)]Z(e)i

Since Z(v) is still a target value, the above reduction follows from the
normal reduction rule on let.

3. Consider the reduction rule

f fresh

h�,H,�a .e vi 99K h� ] {f },H, [a 7! protect(v, f )]ei

Then, we must show

hZH(H), Z(�a .e v)i
1
! hZH(H), Z([a 7! protect(v, f )]e)i
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Factor the Z function through the expressions:

hZH(H),�a .Z(e) Z(v)i
1
! hZH(H), [a 7! Z(v)]Z(e)i

Since Z(v) is still a target value, the above reduction follows from the
normal reduction rule on �.

4. Consider the reduction rule

fresh `

h�,H, ref vi 99K h�,H[` 7!v], `i

Thus, we must show

hZH(H), Z(ref v)i
1
! hZH(H[` 7! v]), Z(`)i

Factor through ZH and Z:

hZH(H), ref Z(v)i
1
! hZH(H)[` 7! Z(v)], `i

Since Z(v) is a target value, the above reduction follows directly from
the normal ref reduction rule.

5. Consider the reduction rule

H[`] = v

h�,H, !`i 99K h�,H, vi

Thus, we must show

hZH(H), Z(!`)i
1
! hZH(H), Z(v)i

Factor through Z on the left side:

hZH(H), !`i
1
! hZH(H), Z(v)i

By the definition of ZH , if H[`] = v, then ZH(H)[`] = Z(v). Thus, the
above follows directly from the normal ! reduction rule.

6. Consider the reduction rule

h�,H, ei 99K h�,H0, e0i

h�,H,K[e]i 99K h�,H0,K[e0]i
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By the induction hypothesis, we have hZH(H), Z(e)i
k
!

hZH(H0), Z(e0)i, where k = 0 if h�,H, ei 99K h�,H0, e0i was invoked by
(15) and k = 1 otherwise. Then, we must show

hZH(H), Z(K[e])i
k
! hZH(H0), Z(K[e0])i

Factor Z through K:

hZH(H),Z(K)[Z(e)]i
k
! hZH(H0),Z(K)[Z(e0)]i

If k = 0, then by hZH(H), Z(e)i
k
! hZH(H0), Z(e0)i, we must have

ZH(H) = ZH(H0) and Z(e) = Z(e0), in which case the above is trivial.
Otherwise, if k = 1, the above follows directly from the evaluation
context reduction rule in the target.

Lemma B.2.20 (Phantom Steps Bounded). If

hH, e+i
n
! hH0, e0i 9

then for any set of static flags �r1, there exists some set of static flags
�0
1, m  2n, and expression e0

1
such that

h�r1,H, e
+
i

m99K h�0
1,H

0
1, e

0
1i 9

where, if e0
1
is a value, then H0 = Z(H0

1
) and e0 = Z(e0

1
)

where, as defined in the previous Lemma, let Z(e) be an expression in the
original LCVM language where every subexpression of the form protect(e0, f )
is replaced with e0

and, for any heap H, let ZH(H) = {` 7! Z(v) | ` 7! v 2 H}.
Note that we write e+ to indicate that we are proving this with respect

to compiled terms. The only constraint we actually need is that H and e+

is a valid heap and expression, respectively, in the original LCVM language
and thus does not include any subexpressions of the form protect(·), as it is
not intended to be written by programmers (or compilers), but rather arise
through reduction in the phantom operational semantics.

Proof. Suppose that h�r1,H, e+i
m99K h�0

1,H
0
1, e

0
1
i for some m. Then, by

Lemma B.2.19,

hZH(H), Z(e+)i = hH, e+i
n
0

! hZH(H0
1), Z(e01)i

where n0 is the number of steps in the original reduction sequence not
invoked by protect(·). Since hH, e+i terminates in n steps by assumption,
n0

 n.
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Consider that, since protect(·) does not occur in H or e+, protect(·)
instructions are only introduced by let and �, and they are substituted for
variable occurrences. Further, note that, for the reduction to have succeeded
in the phantom semantics, out of each set of variable uses (that share a
flag), only one protect(·) term could have been evaluated. This means
that each reduction of protect(·) corresponds to a reduction of the let or
� that introduced it, so the number of reductions of protect(·) is at most
the number of reductions not of protect(·), which means m� n0

 n0. Ergo,
m  2n0

 2n.

This su�ces to show that h�r1,H, e+i can not take more than 2n steps,

so there is some m  2n such that h�r1,H, e+i
m99K h�0

1,H
0
1, e

0
1
i 9.

To finish the proof, suppose that e0
1
is a value. Then, as shown above,

hH, e+i
n
0

! hZH(H0
1), Z(e0

1
)i. If e0

1
is a value, then Z(e0

1
) is also a value, so

hZH(H0
1), Z(e0

1
)i is irreducible. Ergo, since hH, e+i

n
! hH0, e0i 9 and hH, e+i

can only possibly step to one irreducible configuration, H0 = ZH(H0
1) and

e0 = Z(e0
1
).

Lemma B.2.21 (Compat !).

�;⌦;�;�[x : ⌧1] ` e � e : ⌧2 =) �;⌦;�;� ` �x : ⌧1.e � �x : ⌧1.e : ⌧1 ! ⌧2

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.
⇢ 2 DJ�K ^ (W , ;, ;, ��) 2 GJ�K⇢ ^ (W , ;, ;, ��) 2 GJ�K· ^ (W ,�1,�2, �⌦) 2 GJ⌦K·

we must show

(W , (;, �1�(�
1
�(�

1
⌦(�x : ⌧1.e

+)))), (;, �2�(�
2
�(�

2
⌦(�x : ⌧1.e

+))))) 2 EJ⌧1 ! ⌧2K·

Notice that both of the expressions have no free variables by Lemma
B.2.15.

We can push the compiler and substitutions through the lambda to refine
that to:

(W , (;,�x.�1�(�
1
�(�

1
⌦(e

+)))), (;,�x.�2�(�
2
�(�

2
⌦(e

+))))) 2 EJ⌧1 ! ⌧2K⇢

Then, by Lemma B.2.6, there exists a �0 such that (W , ;, ;, �0) 2 GJ⌦#K·
and closing over e+ with �0 is the same as closing with �⌦. Thus, we refine
the above to:

(W , (;,�x.�1�(�
1
�(�

01(e+)))), (;,�x.�2�(�
2
�(�

02(e+))))) 2 EJ⌧1 ! ⌧2K⇢
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Since VJ⌧1 ! ⌧2K⇢ ✓ EJ⌧1 ! ⌧2K⇢ by Lemma B.2.1, it su�ces to show
that:

(W , (;,�x.�1�(�
1
�(�

01(e+)))), (;,�x.�2�(�
2
�(�

02(e+))))) 2 VJ⌧1 ! ⌧2K⇢

Expanding the value relation, given

8v1 v2 W 0.W @;,; W
0
^ (W 0, (;, v1), (;, v2)) 2 VJ⌧1K⇢

we must prove:

(W 0, (;, [x 7!v1]�1�(�
1
�(�

01(e+)))), (;, [x 7!v2]�2�(�
2
�(�

02(e+))))) 2 EJ⌧2K⇢

By W v;,; W
0 and Lemma B.2.8, we have

(W 0, ;, ;, ��) 2 GJ�K⇢

(W 0, ;, ;, ��) 2 GJ�K⇢
(W 0, ;, ;, �0) 2 GJ⌦#K⇢

Notice that
(W 0, ;, ;, ��[x ! (v1, v2)]) 2 GJ�[x : ⌧1]K⇢

because (W 0, ;, ;, ��) 2 GJ�K⇢ and (W 0, (;, v1), (;, v2)) 2 VJ⌧1K⇢. Then,
we can instantiate Lemma B.2.7 with the first induction hypothesis and
W 0, ��[x ! (v1, v2)], ��, �0, ⇢. Therefore,

(W 0, (;, ��[x ! (v1, v2)]1(�1�(�
01(e+)))), (;, ��[x ! (v1, v2)]2(�2�(�

02(e+))))) 2 EJ⌧2K⇢

We can simplify the above statement by bringing x ! v1 out on the left
side and bringing x ! v2 out on the right side. This su�ces to finish the
proof.

Lemma B.2.22 (Compat app).

�;⌦1;�;� ` e1 � e1 : ⌧1 ! ⌧2 ^ �;⌦2;�;� ` e2 � e2 : ⌧1 =)
�;⌦1 ] ⌦2;�;� ` e1 e2 � e1 e2 : ⌧2

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.
⇢ 2 DJ�K ^ (W , ;, ;, ��) 2 GJ�K⇢ ^ (W , ;, ;, ��) 2 GJ�K·
^(W ,�1,�2, �⌦) 2 GJ⌦1 ] ⌦2K·

we must show

(W , (;, �1�(�
1
�(�

1
⌦(e1 e2

+)))), (;, �2�(�
2
�(�

2
⌦(e1 e2

+))))) 2 EJ⌧2K·
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Notice that both of the expressions have no free variables by Lemma
B.2.15.

We can push the compiler and substitutions through the application to
refine that to:

(W , (;, �1�(�
1
�(�

1
⌦(e1

+))) �1�(�
1
�(�

1
⌦(e2

+)))),
(;, �2�(�

2
�(�

2
⌦(e1

+))) �2�(�
2
�(�

2
⌦(e2

+))))) 2 EJ⌧2K⇢

Next, by Lemma B.2.5, we have that �⌦ = �1 ] �2, �1 = �1l ] �1r, and
�2 = �2l ] �2r where

(W ,�1l,�2l, �1) 2 GJ⌦1K·

and
(W ,�1r,�2r, �2) 2 GJ⌦2K·

and for all i 2 {1, 2},
�i⌦(e1

+) = �i1(e1
+)

and
�i⌦(e2

+) = �i1(e2
+)

Thus, we refine the statement we need to prove to:

(W , (;, �1�(�
1
�(�

1
1(e1

+))) �1�(�
1
�(�

1
2(e2

+)))),
(;, �2�(�

2
�(�

2
1(e1

+))) �2�(�
2
�(�

2
2(e2

+))))) 2 EJ⌧2K⇢

Let e1 and e2 be the first and second expressions, respectively, in the
above tuple. Expanding the definition of the expression relation, given:

8�r1,�r2,H1,H2:W , e0
1
, H0

1, j < W .k.
�r1#; ^ �r2#; ^ �r1 ] ;,�r2 ] ; : W^

h�r1 ] flags(W , 1) ] ;,H1, e1i
j99K h�0

1,H
0
1, e

0
1
i 9

we must show that either e0
1

is fail Conv or there exist
�f1,�g1,�f2,�g2, v2,H0

2,W
0 such that:

h�r2 ] flags(W , 2) ] ;,H2, e2i
⇤99K h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H0

2, v2i 9
^ �0

1 = �r1 ] flags(W 0, 1) ] �f1 ] �g1^

^ W v�r1,�r2 W 0
^ H0

1,H
0
2 : W

0

^ (W 0, (�f1, e01), (�f2, v2)) 2 VJ⌧K⇢)

Next, we need to know what e0
1
is. From the operational semantic, the

application will run the first subexpression using the heap H1 until it reaches
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a target value or gets stuck. By appealing to our first induction hypothesis,
instantiated with W , ��, ��, �1, ⇢, we get that:

(W , (;, �1�(�
1
�(�

1
1(e1

+)))), (;, �2�(�
2
�(�

2
1(e1

+))))) 2 EJ⌧1K⇢

Therefore, the configuration

h�r1 ] flags(W , 1),H1, �
1
�(�

1
�(�

1
1(e1

+)))i

either steps to fail Conv, in which case the whole application expres-
sion steps to fail Conv, or steps to some irreducible configuration
h�r1 ] flags(W1, 1) ] �f1l ] �g1l,H⇤

1, e
⇤
1
i, in which case the configuration

h�r2 ] flags(W , 2),H2, �
2
�(�

2
�(�

2
1(e1

+)))i

steps to some irreducible configuration
h�r2 ] flags(W1, 2) ] �f2l ] �g2l,H⇤

2, e
†
1
i and there exists some world

W1 such that W v�r1,�r2 W1, H⇤
1,H

⇤
2 : W1, and (W1, (�f1l, e⇤1), (�f2l, e

†
1
)).

By Lemma B.2.17, �f1l = �f2l = ;.

Since terms in the value relation are target values, the original appli-
cation will continue reducing on the second subexpression according to
the operational semantics. Then, we can appeal to the second induction
hypothesis instantiated with W1, ��, ��, �2, ⇢, because W v�r1,�r2 W1 and
GJ�K⇢,GJ�K·,GJ⌦1 ] ⌦2K· are closed under world extension by Lemma B.2.8.
Thus,

(W1, (;, �
1
�(�

1
�(�

1
2(e2

+)))), (;, �2�(�
2
�(�

2
2(e2

+))))) 2 EJ⌧2K⇢

Therefore, the configuration:

h�r1 ] �g1l ] flags(W1, 1),H
⇤
1, �

1
�(�

1
�(�

1
2(e2

+)))i

either reduces to fail Conv, in which case the whole expres-
sion steps to fail Conv, or to some irreducible configuration
h�r1 ] �g1l ] flags(W2, 1) ] �f1r ] �g1r,H⇤⇤

1 , e⇤
2
i, in which case on the other

side, the configuration

h�r2 ] �g2l ] flags(W1, 2),H
⇤
2, �

2
�(�

2
�(�

2
2(e2

+)))i

reduces to some irreducible configuration
h�r2 ] �g2l ] flags(W2, 2) ] �f2r ] �g2r,H⇤⇤

2 , e†
2
i, and there exists

some W2 such that W1 v�r1]�g1l,�r2]�g2l W2, H⇤⇤
1 ,H⇤⇤

2 : W2, and

(W2, (�f1r, e⇤2), (�f2r, e
†
2
)) 2 VJ⌧1K⇢. By Lemma B.2.17, �f1r = �f2r = ;.

Then, instantiate (W1, (;, e⇤1), (;, e
†
1
)) 2 VJ⌧1 ! ⌧2K⇢ with e⇤

2
, e†

2
,BW2.

Because W1 v;,; W2 and W2 @;,; BW2, it follows that W1 @;,; BW2.
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Moreover, (BW2, (;, e⇤2), (;, e
†
2
)) 2 VJ⌧1K⇢ (because (W2, (;, e⇤2), (;, e

†
2
)) 2

VJ⌧1K⇢ and W2 v;,; BW2), so we find that there exist e⇤
b
, e†

b
such that

e⇤1 = �x.e⇤
b

and
e†
1
= �x.e†

b

and
(BW2, (;, [x 7! e⇤2]e

⇤
b
), (;, [x ! e†

2
]e†
b
)) 2 EJ⌧2K⇢

Now, by the operational semantic, the original configuration with heap
H1 steps to

h�r1 ] �g1l ] �g1r ] flags(W2, 1),H⇤⇤
1 ,�x.e⇤

b
e⇤
2
i 99K

h�r1 ] �g1l ] �g1r ] flags(W2, 1),H⇤⇤
1 , [x 7! e⇤

2
]e⇤
b
i

and, on the other side, the original configuration with H2 steps to

h�r2 ] �g2l ] �g2r ] flags(W2, 2),H⇤⇤
2 ,�x.e†

b
e†
2
i 99K

h�r2 ] �g2l ] �g2r ] flags(W2, 2),H⇤⇤
2 , [x 7! e†

2
]e†
b
i

Then, since H⇤⇤
1 ,H⇤⇤

2 : W2, by Lemma B.2.11, it follows that H⇤⇤
1 ,H⇤⇤

2 : BW2.
We also have flags(W2, 1) = flags(BW2, 1) and flags(W2, 2) = flags(BW2, 2),
since B does not change the dynamic flags in the world. Thus, we can
instantiate the above fact to deduce that either the first configuration steps
to fail Conv, in which case the original configuration with H1 steps to
fail Conv, or the first configuration steps to some irreducible configuration

h�r1 ] �g1l ] �g1r ] flags(W3, 1) ] �f1f ] �g1f ,H
f

1 , e
⇤
f
i

in which case the second configuration steps to some irreducible configuration

h�r2 ] �g2l ] �g2r ] flags(W3, 2) ] �f2f ] �g2f ,H
f

2 , e
†
f
i

and there exists some W3 such that BW2 v�r1]�g1l]�g1r,�r2]�g2l]�g2r W3,

Hf

1 ,H
f

2 : W3, and

(W3, (�f1f , e
⇤
f
), (�f2f , e

†
f
)) 2 VJ⌧2K⇢

Then, since W v�r1,�r2 W1, W1 v�r1,�r2 W2, W2 v�r1,�r2 BW2,
BW2 v�r1,�r2 W3, we have W v�r1,�r2 W3, which su�ces to finish the
proof.

Lemma B.2.23 (Compat 8).

�;⌦;�,↵;� ` e � e : ⌧ =) �;⌦;�;� ` ⇤↵.e � ⇤↵.e : 8↵.⌧



B.2 static logical relation 259

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.
⇢ 2 DJ�K ^ (W , ;, ;, ��) 2 GJ�K⇢ ^ (W , ;, ;, ��) 2 GJ�K· ^ (W ,�1,�2, �⌦) 2 GJ⌦K·

we must show

(W , (;, �1�(�
1
�(�

1
⌦(⇤↵.e+)))), (;, �2�(�

2
�(�

2
⌦(⇤↵.e+))))) 2 EJ8↵.⌧K·

Notice that both of the expressions have no free variables by Lemma
B.2.15.

We can push the compiler and substitutions through the pair to refine
that to:

(W , (;,� .�1�(�
1
�(�

1
⌦(e

+)))), (;,� .�2�(�
2
�(�

2
⌦(e

+))))) 2 EJ8↵.⌧K⇢

Then, by Lemma B.2.6, there exists a �0 such that (W , ;, ;, �0) 2 GJ⌦#K·
and closing over e+ with �0 is the same as closing with �⌦. Thus, we refine
the above to:

(W , (;,� .�1�(�
1
�(�

01(e+)))), (;,� .�2�(�
2
�(�

02(e+))))) 2 EJ8↵.⌧K⇢

Then, since VJ8↵.⌧K⇢ ✓ EJ8↵.⌧K⇢, it su�ces to prove:

(W , (;,� .�1�(�
1
�(�

01(e+)))), (;,� .�2�(�
2
�(�

02(e+))))) 2 VJ8↵.⌧K⇢

Consider some arbitrary R 2 UnrTyp and W 0 such that W @;,; W 0. We
must prove that

(W 0, (;, �1�(�
1
�(�

01(e+)))), (;, �2�(�
2
�(�

02(e+))))) 2 EJ⌧K⇢[↵ 7!R]

Since R 2 UnrTyp and ⇢ 2 DJ�K, it follows that ⇢[↵ 7! R] 2 DJ�,↵K.
Thus, we can instantiate Lemma B.2.7 with the first induction hypothesis
and W 0, ��, ��, �0, ⇢[↵ 7! R], because W v;,; W 0 and thus by Lemma B.2.8,
the substitutions are still in the interpretation of GJ�K⇢,GJ�K·,GJ⌦1 ] ⌦2K·,
respectively, with the world W 0. This su�ces to prove the above fact.

Lemma B.2.24 (Compat [⌧/↵]).

� ` ⌧ 0 ^ �;⌦;�;� ` e � e : 8↵.⌧ =) �;⌦;�;� ` e[⌧ 0] � e[⌧ 0] : ⌧ [⌧ 0/↵]

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.
⇢ 2 DJ�K ^ (W , ;, ;, ��) 2 GJ�K⇢
^(W , ;, ;, ��) 2 GJ�K· ^ (W ,�1,�2, �⌦) 2 GJ⌦K·
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we must show

(W , (;, �1�(�
1
�(�

1
⌦(e[⌧

0]+)))), (;, �2�(�
2
�(�

2
⌦(e[⌧

0]+))))) 2 EJ⌧ [⌧ 0/↵]K·

Notice that both of the expressions have no free variables by Lemma
B.2.15.

We can push the compiler and substitutions through the type application
to refine this to:

(W , (;, �1�(�
1
�(�

1
⌦(e

+))) ()), (;, �2�(�
2
�(�

2
⌦(e

+))) ())) 2 EJ⌧ [⌧ 0/↵]K⇢

Let e1 and e2 be the first and second expressions, respectively, in the
above tuple. Expanding the definition of the expression relation, given:

8�r1,�r2,H1,H2:W , e0
1
, H0

1, j < W .k.
�r1#; ^ �r2#; ^ �r1 ] ;,�r2 ] ; : W^

h�r1 ] flags(W , 1) ] ;,H1, e1i
j99K h�0

1,H
0
1, e

0
1
i 9

we must show that either e0
1

is fail Conv or there exist
�f1,�g1,�f2,�g2, v2,H0

2,W
0 such that:

h�r2 ] flags(W , 2) ] ;,H2, e2i
⇤99K h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H0

2, v2i 9
^ �0

1 = �r1 ] flags(W 0, 1) ] �f1 ] �g1^

^ W v�r1,�r2 W 0
^ H0

1,H
0
2 : W

0

^ (W 0, (�f1, e01), (�f2, v2)) 2 VJ⌧K⇢)

To proceed, we must find what e0
1
is. From the operational semantic, we

know the application will run its subexpression using H1 until it reaches a
target value or gets stuck. From the induction hypothesis instantiated with
W , ��, ��, �⌦, ⇢, we find that:

(W , (;, �1�(�
1
�(�

1
⌦(e

+)))), (;, �2�(�
2
�(�

2
⌦(e

+))))) 2 EJ8↵.⌧K⇢

Thus, the configuration

h�r1 ] flags(W , 1),H1, �
1
�(�

1
�(�

1
⌦(e

+)))i

either reduces to fail Conv, in which case the entire
term reduced to fail Conv, or it will reduce to some
h�r1 ] flags(W1, 1) ] �f1l ] �g1l,H⇤

1, e1
⇤
i, in which case the configu-

ration
h�r2 ] flags(W , 2),H2, �

2
�(�

2
�(�

2
⌦(e

+)))i
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will reduce to some h�r2 ] flags(W1, 2) ] �f2l ] �g2l,H⇤
2, e1

†
i and there ex-

ists some world W1 where W v�r1,�r2 W1, H⇤
1,H

⇤
2 : W1, and

(W1, (�f1l, e1
⇤), (�f2l, e1

†)) 2 VJ8↵.⌧K⇢

By expanding the value relation, we find �f1l = �f2l = ;.

Then, we can instantiate the above fact with VJ⌧ 0K⇢ and BW1. (Note that
VJ⌧ 0K⇢ 2 UnrTyp by Lemma B.2.12.) Since W @ BW1 (as W v�r1,�r2 W1

and W1 @�r1,�r2 BW1 since W1 and BW1 have the same dynamic flags),
we find that there exist e⇤

b
, e†

b
such that

e⇤1 = � .e⇤
b

e†
1
= � .e†

b

and
(BW1, (;, e

⇤
b
), (;, e†

b
)) 2 EJ⌧K

⇢[↵!VJ⌧ 0K⇢]

Notice that flags(W1, 1) = flags(BW1, 1) and flags(W1, 2) = flags(BW1, 2)
because B does not change the dynamic flags in the world.

Ergo, by the operational semantic, the original configuration with heap
H1 steps to

h�r1 ] �g1l ] flags(BW1, 1),H⇤
1,� .e⇤

b
()i 99K

h�r1 ] �g1l ] flags(BW1, 1),H⇤
1, e

⇤
b
i

and, on the other side, the configuration with H2 steps to

h�r2 ] �g2l ] flags(BW1, 2),H⇤
2,� .e†

b
()i 99K

h�r2 ] �g2l ] flags(BW1, 2),H⇤
2, e

†
b
i

Next, since H⇤
1,H

⇤
2 : W1, by Lemma B.2.11, it follows that H⇤

1,H
⇤
2 : BW1,

so we can instantiate the above fact with H⇤
1,H

⇤
2 to deduce that either the

first configuration steps to fail Conv, in which case the original configu-
ration with H1 steps to fail Conv, or the first configuration steps to some
irreducible configuration h�r1 ] �g1l ] flags(W2, 1) ] �f1f ] �g1f ,H⇤⇤

1 , e⇤
f
i,

in which case the second configuration also steps to some irreducible
configuration h�r2 ] �g2l ] flags(W2, 2) ] �f2f ] �g2f ,H⇤⇤

2 , e†
f
i, and there

exists some W2 where BW1 v�r1]�g1l,�r2]�g2l W2, H⇤⇤
1 ,H⇤⇤

2 : W2, and

(W2, (�f1f , e⇤f ), (�f2f , e
†
f
)) 2 VJ⌧K

⇢[↵!VJ⌧ 0K⇢]. Therefore, by Lemma B.2.13,

(W2, (�f1f , e⇤f ), (�f2f , e
†
f
)) 2 VJ⌧ [⌧ 0/↵]K⇢. Finally, since W v�r1,�r2 W1,

W1 v�r1,�r2 BW1, and BW1 v�r1,�r2 W2, we have W v�r1,�r2 W2, which
su�ces to finish the proof.
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Lemma B.2.25 (Compat LeM⌧ ).

�;�;�;⌦ ` e � e : ⌧ ^ no (⌦) ^ : ⌧ ⇠ ⌧
=) �;⌦;�;� ` LeM⌧ � LeM⌧ : ⌧ ^ : ⌧ ⇠ ⌧

Proof. We must show that given

8W .8⇢ �� �� �⌦.
⇢ 2 DJ�K ^ (W , ;, ;, ��) 2 GJ�K⇢ ^ (W , ;, ;, ��) 2 GJ�K· ^ (W ,�1,�2, �⌦) 2 GJ⌦K·

we must show

(W , (;, �1�(�
1
�(�

1
⌦(LeM⌧+)))), (;, �2�(�2�(�2⌦(LeM⌧+))))) 2 EJ⌧K⇢

We can push the compiler and substitutions through the pair to refine
that to:

(W , (;, C⌧ 7!⌧ (�1�(�
1
�(�

1
⌦(e

+))))), (;, C⌧ 7!⌧ (�2�(�
2
�(�

2
⌦(e

+)))))) 2 EJ⌧K⇢

Now, by instantiating our induction hypothesis with W , ��, ��, �⌦, ⇢, we
find that:

(W , (�1, �
1
�(�

1
�(�

1
⌦(e

+)))), (�2, �
2
�(�

2
�(�

2
⌦(e

+))))) 2 EJ⌧ K·

However, since no (⌦), there are no static a�ne variables in ⌦, because
⌦ ✓ ⌦. Ergo, since (W ,�1,�2, �⌦) 2 GJ⌦K·, it must be the case that
�1 = �2 = ;.

Therefore, by Theorem B.2.18, we have

(W , (;, C⌧ 7!⌧ (�1�(�
1
�(�

1
⌦(e

+))))), (;, C⌧ 7!⌧ (�2�(�
2
�(�

2
⌦(e

+)))))) 2 EJ⌧K·

Finally, by Lemma B.2.14, we have

(W , (;, C⌧ 7!⌧ (�1�(�
1
�(�

1
⌦(e

+))))), (;, C⌧ 7!⌧ (�2�(�
2
�(�

2
⌦(e

+)))))) 2 EJ⌧K⇢

as was to be proven.

Lemma B.2.26 (Compat unit).

�;�;�;⌦ ` () � () : unit

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K ^ (W , ;, ;, ��) 2 GJ�K⇢
^(W , ;, ;, ��) 2 GJ�K· ^ (W ,�1,�2, �⌦) 2 GJ⌦K·
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we must show

(W , (�1, �
1
�(�

1
�(�

1
⌦(()

+)))), (�2, �
2
�(�

2
�(�

2
⌦(()

+))))) 2 EJunitK·

()+ = () is a closed term, so the closings have no e↵ect. Ergo, we must
show:

(W , (�1, ()), (�2, ()) 2 EJ⌧ K·

This trivially follows from (W , (;, ()), (;, ()) 2 VJunitK⇢ and Lemma
B.2.2.

Lemma B.2.27 (Compat true).

�;�;�;⌦ ` true � true : bool

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K ^ (W , ;, ;, ��) 2 GJ�K⇢ ^ (W , ;, ;, ��) 2 GJ�K·
^(W ,�1,�2, �⌦) 2 GJ⌦K·

we must show

(W , (�1, �
1
�(�

1
�(�

1
⌦(true

+)))), (�2, �
2
�(�

2
�(�

2
⌦(true

+))))) 2 EJboolK·

true+ = 0 is a closed term, so the closings have no e↵ect. Ergo, we must
show:

(W , (�1, 0), (�2, 0)) 2 EJboolK·

This trivially follows from (W , (;, 0), (;, 0) 2 VJboolK⇢ and Lemma B.2.2.

Lemma B.2.28 (Compat false).

�;�;�;⌦ ` false � false : bool

Proof. This case is trivially similar to true, since false+ = 1 and
(W , (;, 1), (;, 1) 2 VJboolK⇢.

Lemma B.2.29 (Compat int).

�;�;�;⌦ ` n � n : int

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.
⇢ 2 DJ�K ^ (W , ;, ;, ��) 2 GJ�K⇢ ^ (W , ;, ;, ��) 2 GJ�K· ^ (W ,�1,�2, �⌦) 2 GJ⌦K·
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we must show

(W , (�1, �
1
�(�

1
�(�

1
⌦(n

+)))), (�2, �
2
�(�

2
�(�

2
⌦(n

+))))) 2 EJintK·

n+ = n is a closed term, so the closings have no e↵ect. Ergo, we must
show:

(W , (�1, n), (�2, n)) 2 EJ⌧ K·
This trivially follows from (W , (;, n), (;, n) 2 VJintK⇢ and Lemma B.2.2.

Lemma B.2.30 (Compat x).

x : ⌧ 2 � =) �;�;�;⌦ ` x � x : ⌧

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.
⇢ 2 DJ�K ^ (W , ;, ;, ��) 2 GJ�K⇢ ^ (W , ;, ;, ��) 2 GJ�K· ^ (W ,�1,�2, �⌦) 2 GJ⌦K·

we must show

(W , (�1, �
1
�(�

1
�(�

1
⌦(x

+)))), (�2, �
2
�(�

2
�(�

2
⌦(x

+))))) 2 EJ⌧ K·

Notice that x+ = x. Then, since x : ⌧ 2 � and (W , ;, ;, ��)), we have

��(x) = (v1, v2)

where (W , (;, v1), (;, v2)) 2 VJ⌧ K·.
Thus,

�1�(�
1
�(�

1
⌦(x

+))) = v1

and
�2�(�

2
�(�

2
⌦(x

+))) = v2

Ergo, we must show

(W , (�1, v1), (�2, v2)) 2 EJ⌧ K·

This trivially follows from (W , (;, v1), (;, v2)) 2 VJ⌧ K· and Lemma B.2.2.

Lemma B.2.31 (Compat a#).

a# : ⌧ 2 ⌦ =) �;�;�;⌦ ` a# � a# : ⌧

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K ^ (W , ;, ;, ��) 2 GJ�K⇢
^(W , ;, ;, ��) 2 GJ�K· ^ (W ,�1,�2, �⌦) 2 GJ⌦K·
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we must show:

(W , (�1, �
1
�(�

1
�(�

1
⌦(a#

+)))), (�2, �
2
�(�

2
�(�

2
⌦(a#

+))))) 2 EJ⌧ K·

We can push the compiler and the substitutions through this expression
to refine this to:

(W , (�1, �
1
�(�

1
�(�

1
⌦(a))) ()), (�2, �

2
�(�

2
�(�

2
⌦(a))) ())) 2 EJ⌧ K·

Since (W ,�1,�2, �⌦) 2 GJ⌦K·, there must exist (`1, `2) 2 W .⇥ and
values v1, v2 such that:

�⌦(a) = (guard(v1, `1), guard(v2, `2))

where either W .⇥(`1, `2) = used or W .⇥ = ⇥0
] (`1, `2) 7! (�⇤

1,�
⇤
2) and

((W .k,W . ,⇥0), (�⇤
1, v1), (�

⇤
2, v2)) 2 VJ⌧ K·

Ergo, we must show:

(W , (�1, guard(v1, `1) ()), (�2, guard(v2, `2) ())) 2 EJ⌧ K·

which we can expand to:

(W , (�1, (� .if !`1 {fail Conv} {`1 := used; v1}) ()),
(�2, (� .if !`2 {fail Conv} {`2 := used; v2}) ())) 2 EJ⌧ K·

Notice that both expressions have no free variables because v1 and v2 are
closed, as they are in the value relation.

Let e1 and e2 be the first and second expressions, respectively, in the
above tuple. Expanding the definition of the expression relation, given:

8�r1,�r2,H1,H2:W , e0
1
, H0

1, j < W .k.
�r1#�1 ^ �r2#�2 ^ �r1 ] �1,�r2 ] �2 : W^

h�r1 ] flags(W , 1) ] �1,H1, e1i
j99K h�0

1,H
0
1, e

0
1
i 9

we must show that either e0
1

is fail Conv or there exist
�f1,�g1,�f2,�g2, v2,H0

2,W
0 such that:

h�r2 ] flags(W , 2) ] �2,H2, e2i
⇤99K h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H0

2, v2i 9
^ �0

1 = �r1 ] flags(W 0, 1) ] �f1 ] �g1^

^ W v�r1,�r2 W 0
^ H0

1,H
0
2 : W

0

^ (W 0, (�f1, e01), (�f2, v2)) 2 VJ⌧K⇢)
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Then, by application, we have

h�r1 ] flags(W , 1) ] �1,H1, (� .if !`1 {fail Conv} {`1 := used; v1}) ()i 99K
h�r1 ] flags(W , 1) ] �1,H1, if !`1 {fail Conv} {`1 := used; v1}i

and

h�r2 ] flags(W , 2) ] �2,H2, (� .if !`2 {fail Conv} {`2 := used; v2}) ()i 99K
h�r2 ] flags(W , 2) ] �2,H2, if !`2 {fail Conv} {`2 := used; v2}i

Then, as mentioned before, we have two cases: either W .⇥(`1, `2) = used
or W .⇥(`1, `2) = (�⇤

1,�
⇤
2).

If W .⇥(`1, `2) = used, then since H1,H2 : W , it follows that H1(`1) =
H2(`2) = used. In this case, the configuration steps to fail Conv, so we are
done.

If W .⇥(`1, `2) = (�⇤
1,�

⇤
2), then since H1,H2 : W , it follows that H1(`1) =

H2(`2) = unused.

h�r1 ] flags(W , 1) ] �1,H1, if !`1 {fail Conv} {`1 := used; v1}i
99K h�r1 ] flags(W , 1) ] �1,H1, `1 := used; v1i
99K h�r1 ] flags(W , 1) ] �1,H1[`1 7! used], v1i

and

h�r2 ] flags(W , 2) ] �2,H2, if !`2 {fail Conv} {`2 := used; v2}i
99K h�r2 ] flags(W , 2) ] �2,H2, `2 := used; v2i
99K h�r2 ] flags(W , 2) ] �2,H2[`2 7! used], v2i

Now, consider

W 0 = (W .k,W . ,W .⇥[(`1, `2) 7! used])

Notice that for all i 2 {1, 2}, flags(W , i) = flags(W 0, i) ] �⇤
i
. This is

because the dynamic flags in W 0 are the exact same as W , except (`1, `2)
has been switched to used, meaning �⇤

1 has been removed from the left side
and �⇤

2 has been removed from the right side. Ergo, since �r1,�r2 ✓ W
and flags(W 0, i) ✓ flags(W , i) for all i 2 {1, 2}, it follows that �r1,�r2 : W 0.
Since W and W 0 also have the same heap typing, we can then conclude
that W v�r1,�r2 W 0.

Next, notice that H1[`1 ! used],H2[`2 ! used] : W 0 because H1,H2 : W
and the only change from W to W 0 is that W 0.⇥(`1, `2) = used, which is
satisfied by both of these new heaps.

Moreover, let Wb = (W .k,W . ,⇥0). The only di↵erence between Wb

and W 0 is that the dynamic flag store in Wb does not contain the locations
(`1, `2) whereas W 0.⇥ contains (`1, `2) 7! used. Furthermore, since for all
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i 2 {1, 2}, flags(W , i) = flags(W 0, i)]�⇤
i
, we find that flags(W 0, i)#�⇤

i
and

thus �⇤
1,�

⇤
2 : W

0. Ergo, Wb v�⇤
1,�

⇤
2
W 0.

Finally, for all i 2 {1, 2}, let �fi = �⇤
i
and let �gi = �i. We have by

assumption that (Wb, (�⇤
1, v1), (�

⇤
2, v2)) 2 VJ⌧ K·, so since Wb v�⇤

1,�
⇤
2
W 0,

by Lemma B.2.8, we have (W 0, (�⇤
1, v1), (�

⇤
2, v2)) 2 VJ⌧ K·, which su�ces to

finish the proof.

Lemma B.2.32 (Compat a ).

a : ⌧ 2 ⌦ =) �;�;�;⌦ ` a � a : ⌧

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K^(W , ;, ;, ��) 2 GJ�K⇢^(W , ;, ;, ��) 2 GJ�K·^(W ,�1,�2, �⌦) 2 GJ⌦K·

we must show

(W , (�1, �
1
�(�

1
�(�

1
⌦(a 

+)))), (�2, �
2
�(�

2
�(�

2
⌦(a 

+))))) 2 EJ⌧ K·

Notice that a + = a . Then, since a : ⌧ 2 ⌦ and (W , �⌦) 2 GJ⌦K·,
then there exist �0

1,�
0
2, v1, v2, f1, f2 such that

�⌦(a ) = (protect(v1, f1), protect(v2, f2))

where (W , (�0
1, v1), (�

0
2, v2)) 2 VJ⌧ K·, �0

1 [ {f1} ✓ �1, �0
2 [ {f2} ✓ �2,

f1 /2 �0
1, and f2 /2 �0

2. Thus, we must show

(W , (�1, protect(v1, f1)), (�2, protect(v2, f2))) 2 EJ⌧ K·

Let e1 = protect(v1, f1) and e2 = protect(v2, f2). Expanding the definition
of the expression relation, given:

8�r1,�r2,H1,H2:W , e0
1
, H0

1, j < W .k.
�r1#�1 ^ �r2#�2 ^ �r1 ] �1,�r2 ] �2 : W^

h�r1 ] flags(W , 1) ] �1,H1, e1i
j99K h�0

1,H
0
1, e

0
1
i 9

we must show that either e0
1

is fail Conv or there exist
�f1,�g1,�f2,�g2, v2,H0

2,W
0 such that:

h�r2 ] flags(W , 2) ] �2,H2, e2i
⇤99K h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H0

2, v2i 9
^ �0

1 = �r1 ] flags(W 0, 1) ] �f1 ] �g1^

^ W v�r1,�r2 W 0
^ H0

1,H
0
2 : W

0

^ (W 0, (�f1, e01), (�f2, v2)) 2 VJ⌧K⇢)
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Since f1 2 �1,

h�r1 ] flags(W , 1) ] �1,H1, protect(v1, f1)i 99K h�r1 ] flags(W , 1) ] �1 \ {f1},H1, v1i

and since f2 2 �2,

h�r2 ] flags(W , 2) ] �2,H2, protect(v2, f2)i 99K h�r2 ] flags(W , 2) ] �2 \ {f2},H2, v2i

Then, since �0
1 ✓ �1 and f1 /2 �0

1, we have �0
1 ✓ �1 \ {f1}. Similarly,

�0
2 ✓ �2\{f2}. Ergo, for all i 2 {1, 2}, let �fi = �0

i
and let �gi = �i\{fi}\�0

i
.

Then, we can re-express the above configurations as

h�r1 ] flags(W , 1) ] �1 \ {f1},H1, v1i = h�r1 ] flags(W , 1) ] �f1 ] �g1,H1, v1i

and

h�r2 ] flags(W , 2) ] �2 \ {f2},H2, v2i = h�r2 ] flags(W , 2) ] �f2 ] �g2,H2, v2i

Finally, we have (W , (�f1, v1), (�f2, v2)) 2 VJ⌧ K· because �fi = �0
i
for

all i 2 {1, 2}, which su�ces to finish the proof.

Lemma B.2.33 (Compat –# ).

�;�;�;⌦,a# : ⌧1 ` e � e : ⌧2 ^ no (⌦)
=) �;�;�;⌦ ` �a# : ⌧1.e � �a# : ⌧1.e : ⌧1–# ⌧2

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.
⇢ 2 DJ�K ^ (W , ;, ;, ��) 2 GJ�K⇢ ^ (W , ;, ;, ��) 2 GJ�K· ^ (W ,�1,�2, �⌦) 2 GJ⌦K·

we must show

(W , (�1, �1�(�
1
�(�

1
⌦(�a# : ⌧1.e

+)))), (�2, �2�(�
2
�(�

2
⌦(�a# : ⌧1.e

+))))) 2 EJ⌧ K·

Notice that both of these expressions have no free variables by Lemma
B.2.16. Moreover, notice that since no (⌦), �1 = �2 = ;.

We can push the compiler and the substitutions to refine the above to:

(W , (;,�a.�1�(�
1
�(�

1
⌦(e

+)))), (;,�a.�2�(�
2
�(�

2
⌦(e

+))))) 2 EJ⌧1 ( ⌧2K·

Since VJ⌧1 ( ⌧2K· ✓ EJ⌧1 ( ⌧2K·, it su�ces to show:

(W , (;,�a.�1�(�
1
�(�

1
⌦(e

+)))), (;,�a.�2�(�
2
�(�

2
⌦(e

+))))) 2 VJ⌧1–# ⌧2K·
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Expanding the value relation, given:

8�0
1 v1 �0

2 v2 W 0.W @;,; W
0
^ (W 0, (�0

1, v1), (�
0
2, v2)) 2 VJ⌧1K·

we must show that:

((W 0.k,W 0. ,W 0.⇥ ] (`1, `2) 7! (�0
1,�

0
2)),

(;, [a 7!guard(v1, `1)]�1�(�
1
�(�

1
⌦(e

+)))), (;, [a 7!guard(v2, `2)}]�2�(�
2
�(�

2
⌦(e

+))))) 2 EJ⌧2K·

Notice that W 00 = (W 0.k,W 0. ,W 0.⇥ ] (`1, `2) 7! (�0
1,�

0
2)) is a world

extension of W 0 because it has the same heap typing as W 0 and has all the
a�ne flags as W 0 plus one new a�ne flag which is disjoint from any a�ne
flag in W 0. Ergo, since W v;,; W 0 and W 0

v;,; W 00, we have W v W 00.
Next, notice that:

(W 00, ;, ;, �⌦[a 7! (guard(v1, `1), guard(v2, `2))]) 2 GJ⌦,a : ⌧1K·

because (`1, `2) 2 dom(W 00.⇥), (W 00, (;, v1), (;, v2)) 2 VJ⌧1K· (by Lemma
B.2.8 and (W , (;, v1), (;, v2)) 2 VJ⌧1K·), and (W 00, ;, ;, �⌦) 2 GJ⌦K· (by
Lemma B.2.8 and (W , ;, ;, �⌦) 2 GJ⌦K·). Therefore, we can instantiate the
first induction hypothesis with

W 00, ��, ��, �⌦[a 7! (guard(v1, `1), guard(v2, `2))], ⇢

to find
(W 00, (;, �1�(�

1
�(�⌦[a 7! guard(v1, `1)]1(e+)))),

(;, �2�(�
2
�(�⌦[a 7! guard(v2, `2))]2(e+)))) 2 EJ⌧2K·

which is equivalent to what was to be proven.

Lemma B.2.34 (Compat – ).

�;�;�;⌦, a : ⌧1 ` e � e : ⌧2 =) �;�;�;⌦ ` �a : ⌧1.e � �a : ⌧1.e : ⌧1– ⌧2

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.
⇢ 2 DJ�K ^ (W , ;, ;, ��) 2 GJ�K⇢ ^ (W , ;, ;, ��) 2 GJ�K· ^ (W ,�1,�2, �⌦) 2 GJ⌦K·

we must show

(W , (�1, �1�(�
1
�(�

1
⌦(�a : ⌧1

+)))), (�2, �2�(�
2
�(�

2
⌦(�a : ⌧1

+))))) 2 EJ⌧1– ⌧2K·

By pushing the compiler and substitutions through the lambda expression,
we can refine this to:

(W , (�1,�a .�1�(�
1
�(�

1
⌦(e

+)))), (�2,�a .�2�(�
2
�(�

2
⌦(e

+))))) 2 EJ⌧1– ⌧2K·
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Since VJ⌧1– ⌧2K· ✓ EJ⌧1– ⌧2K· by Lemma B.2.1, it su�ces to show:

(W , (�1,�a .�1�(�
1
�(�

1
⌦(e

+)))), (�2,�a .�2�(�
2
�(�

2
⌦(e

+))))) 2 VJ⌧1– ⌧2K·

Expanding the value relation definition, we find that we need to show
that given:

8�0
1 �0

2 f1 f2 v1 v2 W 0.W @�1,�2 W 0

^ (W 0, (�0
1, v1), (�

0
2, v2)) 2 VJ⌧1K· ^ �1 \ �0

1 = �2 \ �0
2 = ;

^ f1 /2 �1 ] �0
1 ] flags(W 0, 1) ^ f2 /2 �2 ] �0

2 ] flags(W 0, 2)

it holds that:

(W 0, (�1 ] �0
1 ] {f1}, [a 7!protect(v1, f1)]e1),

(�2 ] �0
2 ] {f2}, [a 7!protect(v2, f2)]e2)) 2 EJ⌧2K·

By Lemma B.2.8, since W v�1,�2 W 0, we have (W 0,�1,�2, �⌦) 2 GJ⌦K·.
Moreover, we have (W 0, (�0

1, v1), (�
0
2, v2)) 2 VJ⌧1K·, �1 \ �0

1 = �2 \ �0
2 = ;,

f1 /2 �1 ] �0
1, and f2 /2 �2 ] �0

2. Therefore,

(W 0,�1 ] �0
1 ] {f1},�2 ] �0

2 ] {f2},
�⌦[a 7! (protect(v1, f1), protect(v2, f2))]) 2 GJ⌦, a : ⌧1K·

Then, we can instantiate the first induction hypothesis with

W 0, ��, ��, �⌦[a 7! (protect(v1, f1), protect(v2, f2))], ⇢

to find that:

(W 0, (�1 ] �0
1 ] {f1}, �1�(�

1
�(�⌦[a 7! protect(v1, f1)]1(e+)))),

(�2 ] �0
2 ] {f2}, �2�(�

2
�(�⌦[a 7! protect(v2, f2)]2(e+))))) 2 EJ⌧2K·

We can simplify this by bringing the [a 7! protect(v1, f1)] and [a 7!

protect(v2, f2)] outside of the closings, which su�ces to finish the proof.

Lemma B.2.35 (Compat app : –# ).

�;�;�;⌦1 ` e1 � e1 : ⌧1– ⌧2 ^ �;�;�;⌦2 ` e2 � e2 : ⌧1
=) �;�;�;⌦1 ] ⌦2 ` e1 e2 � e1 e2 : ⌧2

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K ^ (W , ;, ;, ��) 2 GJ�K⇢
^(W , ;, ;, ��) 2 GJ�K· ^ (W ,�1,�2, �⌦) 2 GJ⌦1 ] ⌦2K·

we must show

(W , (�1, �
1
�(�

1
�(�

1
⌦(e1 e2

+)))), (�2, �
2
�(�

2
�(�

2
⌦(e1 e2

+))))) 2 EJ⌧2K·
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Notice that both of these expressions have no free variables by Lemma
B.2.16.

We can push the compiler and substitutions through the application to
refine this to:

(W , (�1, �1�(�
1
�(�

1
⌦(e1

+))) (let x = �1�(�
1
�(�

1
⌦(e2

+))) in once(x))),
(�2, �2�(�

2
�(�

2
⌦(e1

+))) (let x = �2�(�
2
�(�

2
⌦(e2

+))) in once(x)))) 2 EJ⌧2K·

Next, by Lemma B.2.5, we have that �⌦ = �1 ] �2, �1 = �1l ] �1r, and
�2 = �2l ] �2r where

(W ,�1l,�2l, �1) 2 GJ⌦1K·

and
(W ,�1r,�2r, �2) 2 GJ⌦2K·

and for all i 2 {1, 2},
�i⌦(e1

+) = �i1(e1
+)

and
�i⌦(e2

+) = �i1(e2
+)

Thus, we refine the statement we need to prove to:

(W , (�1l ] �1r, �1�(�
1
�(�

1
1(e1

+))) (let x = �1�(�
1
�(�

1
2(e2

+))) in once(x))),
(�2l ] �2r, �2�(�

2
�(�

2
1(e1

+))) (let x = �2�(�
2
�(�

2
2(e2

+))) in once(x)))) 2 EJ⌧2K·

Let e1 and e2 be the first and second expressions, respectively, in the
above tuple. Expanding the definition of the expression relation, given:

8�r1,�r2,H1,H2:W , e0
1
, H0

1, j < W .k.
�r1#�1l ] �1r ^ �r2#�2l ] �2r ^ �r1 ] �1l ] �1r,�r2 ] �2l ] �2r : W^

h�r1 ] flags(W , 1) ] �1l ] �1r,H1, e1i
j99K h�0

1,H
0
1, e

0
1
i 9

we must show that either e0
1

is fail Conv or there exist
�f1,�g1,�f2,�g2, v2,H0

2,W
0 such that:

h�r2 ] flags(W , 2) ] �2l ] �2r,H2, e2i
⇤99K h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H0

2, v2i 9
^ �0

1 = �r1 ] flags(W 0, 1) ] �f1 ] �g1^

^ W v�r1,�r2 W 0
^ H0

1,H
0
2 : W

0

^ (W 0, (�f1, e01), (�f2, v2)) 2 VJ⌧K⇢)

Next, we need to find e0
1
. From the operational semantic, the applica-

tion will run the first subexpression using the heap H1 until it reaches a
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target value or gets stuck. By appealing to our first induction hypothesis,
instantiated with W , ��, ��, �1, ⇢, we find that:

(W ,
(�1l, �1�(�

1
�(�

1
1(e1

+)))), (�2l, �2�(�
2
�(�

2
1(e1

+))))) 2 EJ⌧1 ( ⌧2K·

Therefore,

h�r1 ] flags(W , 1) ] �1r ] �1l,H1, �
1
�(�

1
�(�

1
1(e1

+)))i

either reduces to fail Conv, in which case the original expres-
sion steps to fail Conv, or to some irreducible configuration
h�r1 ] flags(W1, 1) ] �1r ] �f1l ] �g1l,H⇤

1, e
⇤
1
i, in which case on the other

side, the configuration

h�r2 ] flags(W , 2) ] �2r ] �2l,H2, �
2
�(�

2
�(�

2
1(e1

+)))i

reduces to some irreducible configuration
h�r2 ] flags(W1, 2) ] �2r ] �f2l ] �g2l,H⇤

2, e
†
1
i and there exists

some W1 where W v�r1]�1r,�r2]�2r W1, H⇤
1,H

⇤
2 : W1, and

(W1, (�f1l, e⇤1), (�f2l, e
†
1
)) 2 VJ⌧1 ( ⌧2K·. By expanding the value

relation, we find that �f1l = �f2l = ;.

Since terms in the value relation are target values, the original application
will continue reducing on the second subexpression according to the opera-
tional semantics. Then, we can appeal to the second induction hypothesis
instantiated with W1, ��, ��, �2, ⇢, by Lemma B.2.8 because W v�1r,�2r W1.
Ergo,

(W1, (�1r, �1�(�
1
�(�

1
2(e2

+)))), (�2r, �2�(�
2
�(�

2
2(e2

+))))) 2 EJ⌧1K·

Therefore,

h�r1 ] flags(W1, 1) ] �g1l ] �1r,H
⇤
1, �

1
�(�

1
�(�

1
2(e2

+)))i

either reduces to fail Conv, in which case the original expres-
sion steps to fail Conv, or to some irreducible configuration
h�r1 ] flags(W2, 1) ] �g1l ] �f1r ] �g1r,H⇤⇤

1 , e⇤
2
i, in which case on the other

side, the configuration

h�r2 ] flags(W1, 2) ] �g2l ] �2r,H
⇤
1, �

2
�(�

2
�(�

2
2(e2

+)))i

reduces to some irreducible configuration
h�r2 ] flags(W2, 2) ] �g2l ] �f2r ] �g2r,H⇤⇤

2 , e†
2
i and there exists

some W2 where W1 v�r1]�g1l,�r2]�g2l W2, H⇤⇤
1 ,H⇤⇤

2 : W2, and

(W2, (�f1r, e⇤2), (�f2r, e
†
2
)) 2 VJ⌧1K·.
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Then, instantiate (W1, e⇤1, e
†
1
) 2 VJ⌧1–# ⌧2K· with �f1r, e⇤2,�f2r, e

†
2
,BW2.

Because W1 v;,; W2 and W2 @;,; BW2, it follows that W1 @;,; BW2.

Moreover, (BW2, (�f1r, e⇤2), (�f2r, e
†
2
)) 2 VJ⌧1K·, because �f1r,�f2r : W2 by

Lemma B.2.8, which implies �f1r,�f2r : W2 and thus W2 v�f1r,�f2r BW2.

Ergo, there exist e⇤
b
, e†

b
such that

e⇤1 = �a.e⇤
b

and
e†
1
= �a.e†

b

and, for any (`1, `2) /2 dom(BW2. ) [ dom(BW2.⇥),

((BW2.k,BW2. ,BW2.⇥ ] (`1, `2) 7! (�f1r,�f2r)),

(;, [a 7! guard(e⇤
2
, `2)]e⇤b), (;, [a 7! guard(e†

2
, `1)]e

†
b
)) 2 EJ⌧2K·

Let W3 = (BW2.k,BW2. ,BW2.⇥ ] (`1, `2) 7! (�f1r,�f2r)).

Thus, the original configuration in H1 steps as follows:

h�r1 ] flags(W , 1) ] �1l ] �1rH1,

�1�(�
1
�(�

1
⌦(e1

+))) (let x = �1�(�
1
�(�

1
⌦(e2

+))) in once(x))i
⇤99K

h�r1 ] flags(W1, 1) ] �1r ] �g1l,H⇤
1,�a.e

⇤
b
(let x = �1�(�

1
�(�

1
⌦(e2

+))) in once(x))i
⇤99K

h�r1 ] flags(W2, 1) ] �g1l ] �f1r ] �g1r,H⇤⇤
1 ,�a.e⇤

b
(let x = e⇤

2
in once(x))i 99K

h�r1 ] flags(W2, 1) ] �g1l ] �f1r ] �g1r,H⇤⇤
1 ,�a.e⇤

b
once(e⇤

2
)i

099K
h�r1 ] flags(W2, 1) ] �g1l ] �f1r ] �g1r,H⇤⇤

1 ,
�a.e⇤

b
let rfresh = ref 1 in � .{if !rfresh {fail Conv} {rfresh := used; e⇤

2
}} 99K

h�r1 ] flags(W2, 1) ] �g1l ] �f1r ] �g1r,H⇤⇤
1 [`1 ! unused],

�a.e⇤
b
� .{if !`1 {fail Conv} {`1 := used; e⇤

2
}}

099K
h�r1 ] flags(W2, 1) ] �g1l ] �f1r ] �g1r,H⇤⇤

1 [`1 ! unused],�a.e⇤
b
guard(`1, e⇤2)i 99K

h�r1 ] flags(W2, 1) ] �g1l ] �f1r ] �g1r,H⇤⇤
1 [`1 ! unused], [a 7! guard(`1, e⇤2)]e

⇤
b
i

for some `1 /2 H⇤⇤
1 . Similarly, the original configuration in H2 steps to

h�r2 ] �(W2, 1) ] �g2l ] �f2r ] �g2r,H
⇤⇤
2 [`2 ! 1], [a 7! guard(`2, e

†
2
)]e†

b
i

for some `2 /2 H⇤⇤
2 . Since H⇤⇤

1 ,H⇤⇤
2 : W2, this implies (`1, `2) /2 dom(W2. ) [

dom(W2.⇥), and thus (`1, `2) /2 dom(BW2. ) [ dom(BW2.⇥).

Therefore, by expanding the value relation for ⌧1–# ⌧2, we find:

(W3, (;, [a 7! guard(`1, e
⇤
2)]e

⇤
b
), (;, [a 7! guard(`2, e

†
2
)]e†

b
)) 2 EJ⌧2K·

Moreover, since H⇤⇤
1 ,H⇤⇤

2 : W2, we also have H⇤⇤
1 ,H⇤⇤

2 : BW2. Therefore,
H⇤⇤
1 [`1 7! unused],H⇤⇤

2 [`2 7! unused] : W3, because the only di↵erence
between BW2 and W3 is that W3 has a new a�ne flag (`1, `2) ! (�f1l,�f1r),
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and both of the above heaps indeed have `1 and `2, respectively, set to
unused.

Finally, notice that, for all i 2 {1, 2}, flags(W3, i) = flags(W2, i) ] �fir,
because W3 has the exact same dynamic flags as W2, except for (`1, `2) 7!
(�f1r,�f2r), which has the a↵ect of adding �f1r on the left side and �f2r

on ther right side. Thus, we can rewrite the above configurations as

h�r1 ] �g1l ] �g1r ] flags(W3, 1),H
⇤⇤
1 [`1 ! unused], [a 7! guard(`1, e

⇤
2)]e

⇤
b
i

h�r2 ] �g2l ] �g2r ] flags(W3, 1),H
⇤⇤
2 [`2 ! unused], [a 7! guard(`2, e

†
2
)]e†

b
i

Ergo, we can instantiate the fact that the above expressions are in EJ⌧2K·
in the world W3 to find that either the first configuration steps to fail Conv,
in which case the original configuration with H1 steps to fail Conv, or the
first configuration steps to some irreducible configuration

h�r1 ] �g1l ] �g1r ] flags(W4, 1) ] �f1n ] �g1n,H
⇤⇤⇤
1 , e⇤

f
i

in which case the second configuration steps to

h�r2 ] �g2l ] �g2r ] flags(W4, 2) ] �f2n ] �g2n,H
⇤⇤⇤
2 , e†

f
i

and there exists some W4 such that W3 v�r1]�g1l]�g1r,�r2]�g2l]�g2r W4,

H⇤⇤⇤
1 ,H⇤⇤⇤

2 : W4, and (W4, (�f1n, e⇤f ), (�f2n, e
†
f
)) 2 VJ⌧2K·.

This su�ces to show that e0
1
= e⇤⇤⇤, so e0

1
is indeed in the value relation

at ⌧2 along with the value stepped to by the original configuration on the
right hand side. Ergo, since W v�r1,�r2 W1, W1 v�r1,�r2 W2, W2 v�r1,�r2

BW2, BW2 v�r1,�r2 W3, and W3 v�r1,�r2 W4 (note that these are weaker
statements of what we learned above, but hold – and in particular, via
transitivity, will be what hold), it follows that W v�r1,�r2 W4, which su�ces
to finish the proof.

Lemma B.2.36 (Compat app : – ).

�;�;�;⌦1 ` e1 � e1 : ⌧1– ⌧2 ^ �;�;�;⌦2 ` e2 � e2 : ⌧1
=) �1;�1;�;⌦1 ] ⌦2 ` e1 e2 � e1 e2 : ⌧2

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K ^ (W , ;, ;, ��) 2 GJ�K⇢
^(W , ;, ;, ��) 2 GJ�K· ^ (W ,�1,�2, �⌦) 2 GJ⌦1 ] ⌦2K·

we must show

(W , (�1, �
1
�(�

1
�(�

1
⌦(e1 e2

+)))), (�2, �
2
�(�

2
�(�

2
⌦(e1e2

+))))) 2 EJ⌧2K·
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By pushing the compiler and substitutions through the application, we
can refine this to:

(W , (�1, �1�(�
1
�(�

1
⌦(e1

+))) �1�(�
1
�(�

1
⌦(e2

+)))), (�2, �2�(�
2
�(�

2
⌦(e1

+))) �2�(�
2
�(�

2
⌦(e2

+))))) 2 EJ⌧2K·

Next, by Lemma B.2.5, we have that �⌦ = �1 ] �2, �1 = �1l ] �1r, and
�2 = �2l ] �2r where

(W ,�1l,�2l, �1) 2 GJ⌦K·

and
(W ,�1r,�2r, �2) 2 GJ⌦K·

and for all i 2 {1, 2},
�i⌦(e1

+) = �i1(e1
+)

and
�i⌦(e2

+) = �i1(e2
+)

Thus, we can refine the statement we need to prove as:

(W , (�1l ] �1r, �1�(�
1
�(�

1
1(e1

+))) �1�(�
1
�(�

1
2(e2

+)))),
(�2l ] �2r, �2�(�

2
�(�

2
1(e1

+))) �2�(�
2
�(�

2
2(e2

+))))) 2 EJ⌧2K·

Let e1 and e2 be the first and second expressions, respectively, in the
tuple above. Expanding the definition of the expression relation, given:

8�r1,�r2,H1,H2:W , e0
1
, H0

1, j < W .k.
�r1#�1l ] �1r ^ �r2#�2l ] �2r ^ �r1 ] �1l ] �1r,�r2 ] �2l ] �2r : W^

h�r1 ] flags(W , 1) ] �1l ] �1r,H1, e1i
j99K h�0

1,H
0
1, e

0
1
i 9

we must show that either e0
1

is fail Conv or there exist
�f1,�g1,�f2,�g2, v2,H0

2,W
0 such that:

h�r2 ] flags(W , 2) ] �2l ] �2r,H2, e2i
⇤99K h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H0

2, v2i 9
^ �0

1 = �r1 ] flags(W 0, 1) ] �f1 ] �g1^

^ W v�r1,�r2 W 0
^ H0

1,H
0
2 : W

0

^ (W 0, (�f1, e01), (�f2, v2)) 2 VJ⌧K⇢)

By instantiating the first induction hypothesis with W , ��, ��, �1, ⇢, we
find that:

(W , (�1l, �
1
�(�

1
�(�

1
1(e1

+)))), (�1r, �
2
�(�

2
�(�

2
1(e1

+))))) 2 EJ⌧1– ⌧2K·

Thus,

h�r1 ] �1r ] flags(W , 1) ] �1l,H1, �
1
�(�

1
�(�

1
1(e1

+)))i
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either steps to fail Conv, in which case the whole expression
steps to fail Conv, or steps to an irreducible configuration
h�r1 ] �1r ] flags(W1, 1) ] �f1l ] �g1l,H⇤

1, e
⇤
1
i, in which case

h�r1 ] �2r ] flags(W , 2) ] �2l,H2, �
2
�(�

2
�(�

2
1(e1

+)))i

also steps to an irreducible configuration
h�r1 ] �2r ] flags(W1, 2) ] �f2l ] �g2l,H⇤

2, e
⇤
2
i and there exists some

world W1 where W v�r1]�1r,�r2]�2r W1, H⇤
1,H

⇤
2 : W1, and

(W1, (�f1l, e⇤1), (�f2l, e⇤2)) 2 VJ⌧1– ⌧2K·. By expanding the value re-
lation, there exist expressions e⇤

b1
, e⇤

b2
such that e⇤

1
= �a .e⇤b1 and

e⇤
2
= �a .e⇤b2.

Then, by the operational semantic, the original application expression
continues reducing on the second subexpression. By instantiating the second
induction hypothesis with W1, ��, ��, �2, ⇢, we find that:

(W1, (�2l, �
1
�(�

1
�(�

1
2(e2

+)))), (�2r, �
2
�(�

2
�(�

2
2(e2

+))))) 2 EJ⌧1K·

Thus,

h�r1 ] �f1l ] �g1l ] flags(W1, 1) ] �1r,H
⇤
1, �

1
�(�

1
�(�

1
2(e2

+)))i

either steps to fail Conv, in which case the whole expression
steps to fail Conv, or steps to an irreducible configuration
h�r1 ] �f1l ] �g1l ] flags(W2, 1) ] �f1r ] �g1r,H

†
1, e

†
1
i, in which case

h�r2 ] �f2l ] �g2l ] flags(W1, 2) ] �2r,H
⇤
2, �

2
�(�

2
�(�

2
2(e2

+)))i

also steps to an irreducible configuration
h�r2 ] �f2l ] �g2l ] flags(W2, 2) ] �f2r ] �g2r,H

†
2, e

†
2
i and there ex-

ists some world W2 where W1 v�r1]�f1l]�g1l,�r2]�f2l,�g2l W2, H
†
1,H

†
2 : W2,

and
(W2, (�f1r, e

†
1
), (�f2r, e

†
2
)) 2 VJ⌧1K·

Thus, the original configuration with H1 steps to

h�r1 ] �f1l ] �g1l ] flags(W2, 1) ] �f1r ] �g1r,H
†
1,�a .e

⇤
b1

e†
1
i

which steps to

h�r1 ] �f1l ] �g1l ] flags(W2, 1) ] �f1r ] �g1r ] {f1},H
†
1, [a 7! protect(e†

1
, f1)]e

⇤
b1
i

for some f1 /2 �r1 ] �f1l ] �g1l ] flags(W2, 1) ] �f1r ] �g1r.

Similarly, the original configuration with H2 steps to

h�r2 ] �f2l ] �g2l ] flags(W2, 2) ] �f2r ] �g2r ] {f2},H
†
2, [a 7! protect(e†

2
, f2)]e

⇤
b2
i
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for some f2 /2 �r2 ] �f2l ] �g2l ] flags(W2, 2) ] �f2r ] �g2r.

We can instantiate the fact that (W1, (�f1l,�a .e⇤b1), (�f2l,�a .e⇤b2)) 2

VJ⌧1– ⌧2K· with �f1r, �f2r, f1, f2, e
†
1
, e†

2
, W2 to find that:

(W2, (�f1l ] �f1r ] {f1}, [a 7!protect(e†
1
, f1)]e⇤b1),

(�f2l ] �f2r ] {f2}, [a 7! protect(e†
2
, f2)]e⇤b2)) 2 EJ⌧2K·

Given H†
1,H

†
2 : W2, it follows that

h�r1 ] �g1l ] �g1r ] flags(W2, 1) ] �f1l ] �f1r ] {f1},H
†
1, [a 7! protect(e†

1
, f1)]e

⇤
b1
i

either steps to fail Conv, in which case the original configuration with H1

steps to fail Conv, or steps to an irreducible configuration

h�r1 ] �g1l ] �g1r ] flags(W3, 1) ] �f1f ] �g1f ,H
⇤⇤
1 , e⇤⇤1 i

in which case the configuration

h�r2 ] �g2l ] �g2r ] flags(W2, 2) ] �f2l ] �f2r ] {f2},H
†
2, [a 7! protect(e†

2
, f2)]e

⇤
b2
i

also steps to an irreducible configuration

h�r2 ] �g2l ] �g2r ] flags(W3, 2) ] �f2f ] �g2f ,H
⇤⇤
2 , e⇤⇤2 i

and there exists a world W3 such that W2 v�r1]�g1l]�g1r,�r2]�g2l]�g2r W3,
H⇤⇤
1 ,H⇤⇤

2 : W3, and (W3, (�f1f , e⇤⇤1 ), (�f2f , e⇤⇤2 )) 2 VJ⌧2K·. Finally, since
W v�r1,�r2 W1, W1 v�r1,�r2 W2, and W2 v�r1,�r2 W3, it follows that
W v�r1,�r2 W3, which su�ces to finish the proof.

Lemma B.2.37 (Compat !).

�;�;�; · ` v : ⌧ =) �;�;�; · ` !v : !⌧

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.
⇢ 2 DJ�K ^ (W , ;, ;, ��) 2 GJ�K⇢ ^ (W , ;, ;, ��) 2 GJ�K·
^(W ,�1,�2, �⌦) 2 GJ·K·

we must show

(W , (�1, �
1
�(�

1
�(�

1
⌦(!v

+)))), (�2, �
2
�(�

2
�(�

2
⌦(!v

+))))) 2 EJ!⌧ K·
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Notice that both of these expressions have no free variables by Lemma
B.2.16. Moreover, since (W ,�1,�2, �⌦) 2 GJ·K·, we have �1 = �2 = ; and
�⌦ = ·. Furthermore, !v+ = v+. Thus, we can refine the above to:

(W , (;, �1�(�
1
�(v

+))), (;, �2�(�
2
�(v

+)))) 2 EJ!⌧ K·

Let e1 and e2 be the first and second expressions, respectively, in the
above tuple. Expanding the definition of the expression relation, given:

8�r1,�r2,H1,H2:W , e0
1
, H0

1, j < W .k.
�r1#; ^ �r2#; ^ �r1 ] ;,�r2 ] ; : W^

h�r1 ] flags(W , 1) ] ;,H1, e1i
j99K h�0

1,H
0
1, e

0
1
i 9

we must show that either e0
1

is fail Conv or there exist
�f1,�g1,�f2,�g2, v2,H0

2,W
0 such that:

h�r2 ] flags(W , 2) ] ;,H2, e2i
⇤99K h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H0

2, v2i 9
^ �0

1 = �r1 ] flags(W 0, 1) ] �f1 ] �g1^

^ W v�r1,�r2 W 0
^ H0

1,H
0
2 : W

0

^ (W 0, (�f1, e01), (�f2, v2)) 2 VJ!⌧ K⇢)

Next, consider W1 = (W .k,W . ,⇥0), where dom(⇥0) = dom(W .⇥) and
for all (`1, `2) 2 dom(W .⇥), ⇥0(`1, `2) = used. Thus, since all dynamic
flags in W1 have been used flags(W1, 1) = flags(W1, 2) = ;, so we trivially
have �r1,�r2 : W1. It then follows that W v�r1,�r2 W1 because W and W1

have the exact same heap typing and all of the locations in W have been
switched to used in W1.

Thus, by Lemma B.2.8, we have (W1, ;, ;, ��) 2 GJ�K⇢ and (W1, ;, ;, ��) 2
GJ�K·. We also trivially have (W1, ;, ;, ·) 2 GJ·K·. Thus, by instantiating the
first induction hypothesis with W1, ��, ��, ·, ⇢, we find:

(W1, (;, �
1
�(�

1
�(v

+))), (;, �2�(�
2
�(v

+)))) 2 EJ⌧ K·

Thus, since flags(W1, 1) = flags(W1, 2) = ;, the configuration

h�r1 ] flags(W , 1) ] ; ] ;,H1, �
1
�(�

1
�(v

+)))i

must either step to fail Conv, in which case the proof is done, or steps
to some irreducible configuration h�r1 ] flags(W , 1) ] ; ] �f1 ] �g1,H⇤

1, e
⇤
1
i,

in which case the configuration

h�r2 ] flags(W , 2) ] ; ] ;,H2, (;, �
2
�(�

2
�(v

+)))i
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steps to an irreducible configuration h�r2 ] flags(W , 2) ] ; ] �f2 ] �g2,H⇤
1, e

⇤
2
i,

and there exists some world W2 such that W1 v�r1]flags(W ,1),�r2]flags(W ,2)

W2, H⇤
1,H

⇤
2 : W2, and (W2, (�f1, e⇤1), (�f2, e⇤2)) 2 VJ⌧ K·.

However, from Lemma B.2.4, we know both the original configurations
above are indeed irreducible and do not step. This means the set of static
flags in the original configurations equal that in the final configurations.
Thus,

�r1 ] flags(W , 1) ] ; ] ; = �r1 ] flags(W , 1) ] ; ] �f1 ] �g1

and

�r2 ] flags(W , 2) ] ; ] ; = �r2 ] flags(W , 2) ] ; ] �f2 ] �g2

This implies �f1 = �g1 = ; and �f2 = �g2 = ;. Ergo,
(W2, (;, e⇤1), (;, e

⇤
2
)) 2 VJ⌧ K·, from which it follows that (W2, (;, e⇤1), (;, e

⇤
2
)) 2

VJ!⌧ K·.
Finally, since W v�r1,�r2 W1 and W1 v�r1,�r2 W2, we have W v�r1,�r2

W2, which su�ces to finish the proof.

Lemma B.2.38 (Compat let!).

�;�;�;⌦1 ` e1 � e1 : !⌧ ^ �;�;�, x : ⌧ ;⌦2 ` e2 � e2 : ⌧ 0

=) �;�;�;⌦1 ] ⌦2 ` let !x = e1 in e2 � let !x = e1 in e2 : ⌧ 0

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.
⇢ 2 DJ�K ^ (W , ;, ;, ��) 2 GJ�K⇢ ^ (W , ;, ;, ��) 2 GJ�K·
^(W ,�1,�2, �⌦) 2 GJ⌦1 ] ⌦2K·

we must show

(W , (�1, �1�(�
1
�(�

1
⌦(let !x = e1 in e2

+)))),
(�2, �2�(�

2
�(�

2
⌦(let !x = e1 in e2

+))))) 2 EJ⌧ 0K·

Notice that both of these expressions have no free variables by Lemma
B.2.16.

We can push the compiler and substitutions through the let expression
and refine this to:

(W , (�1, let x = �1�(�
1
�(�

1
⌦(e1

+))) in �1�(�
1
�(�

1
⌦(e2

+)))),
(�2, let x = �2�(�

2
�(�

2
⌦(e1

+))) in �2�(�
2
�(�

2
⌦(e2

+))))) 2 EJ⌧ 0K·



280 value interoperability: affine functions

Next, by Lemma B.2.5, we have that �⌦ = �1 ] �2, �1 = �1l ] �1r, and
�2 = �2l ] �2r where

(W ,�1l,�2l, �1) 2 GJ⌦1K·

and
(W ,�1r,�2r, �2) 2 GJ⌦2K·

and for all i 2 {1, 2},
�i⌦(e1

+) = �i1(e1
+)

and
�i⌦(e2

+) = �i1(e2
+)

Thus, we must show

(W , (�1l ] �1r, let x = �1�(�
1
�(�

1
1(e1

+))) in �1�(�
1
�(�

1
2(e2

+)))),
(�2l ] �2r, let x = �2�(�

2
�(�

2
1(e1

+))) in �2�(�
2
�(�

2
2(e2

+))))) 2 EJ⌧ 0K·

Let e1 and e2 be the first and second expressions, respectively, in the
above tuple. Expanding the definition of the expression relation, given:

8�r1,�r2,H1,H2:W , e0
1
, H0

1, j < W .k.
�r1#�1l ] �1r ^ �r2#�2l ] �2r ^ �r1 ] �1l ] �1r,�r2 ] �2l ] �2r : W^

h�r1 ] flags(W , 1) ] �1l ] �1r,H1, e1i
j99K h�0

1,H
0
1, e

0
1
i 9

we must show that either e0
1

is fail Conv or there exist
�f1,�g1,�f2,�g2, v2,H0

2,W
0 such that:

h�r2 ] flags(W , 2) ] �2l ] �2r,H2, e2i
⇤99K h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H0

2, v2i 9
^ �0

1 = �r1 ] flags(W 0, 1) ] �f1 ] �g1^

^ W v�r1,�r2 W 0
^ H0

1,H
0
2 : W

0

^ (W 0, (�f1, e01), (�f2, v2)) 2 VJ⌧K⇢)

Next, we need to find e0
1
. From the operational semantic, the applica-

tion will run the first subexpression using the heap H1 until it reaches a
target value or gets stuck. By appealing to our first induction hypothesis,
instantiated with W , ��, ��, �1, ⇢, we find that:

(W , (�1l, �
1
�(�

1
�(�

1
1(e1

+)))), (�1r, �
2
�(�

2
�(�

2
1(e1

+))))) 2 EJ!⌧ K·

Therefore, the configuration

h�r1 ] �1r ] flags(W , 1) ] �1l,H1, �
1
�(�

1
�(�

1
1(e1

+)))i

either reduces to fail Conv, in which case the original expres-
sion steps to fail Conv, or to some irreducible configuration
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h�r1 ] �1r ] flags(W1, 1) ] �f1l ] �g1l,H⇤
1, e

⇤
1
i, in which case the configu-

ration
h�r2 ] �2r ] flags(W , 2) ] �2l,H2, �

2
�(�

2
�(�

2
1(e1

+)))i

also reduces to some irreducible configuration
h�r2 ] �2r ] flags(W1, 2) ] �f2l ] �g2l,H⇤

2, e
†
1
i and there exists

some W1 where W v�r1]�1r,�r2]�2r W1, H⇤
1,H

⇤
2 : W1, and

(W1, (�f1l, e⇤1), (�f1r, e
†
1
)) 2 VJ!⌧ K·. By expanding the value relation

definition, we find �f1l = �f1r = ; and (W1, (;, e⇤1), (;, e
†
1
)) 2 VJ⌧ K·.

Since terms in the value relation are target values, the original configura-
tion with H1 steps as follows:

h�r1 ] flags(W , 1) ] �1l ] �1r,H1,
let x = �1�(�

1
�(�

1
1(e1

+))) in
�1�(�

1
�(�

1
2(e2

+)))
i

⇤
!

h�r1 ] �1r ] flags(W1, 1) ] �g1l,H⇤
1, let x = e⇤

1
in �1�(�

1
�(�

1
2(e2

+)))i !
h�r1 ] �1r ] flags(W1, 1) ] �g1l,H⇤

1, [x 7! e⇤
1
]�1�(�

1
�(�

1
2(e2

+)))i

and similarly, the original configuration with H2 steps to:

h�r2 ] �2r ] flags(W1, 2) ] �g2l,H
⇤
2, [x 7! e†

1
]�2�(�

2
�(�

2
2(e2

+)))i

Next, notice that (W1, ;, ;, ��[x 7! (e⇤
1
, e†

1
)]) 2 GJ�, x : ⌧ K· because

(W1, (;, e⇤1), (;, e
†
1
)) 2 VJ⌧ K· and (W1, ;, ;, ��) 2 GJ�K· (which follows from

Lemma B.2.8 because W v;,; W1 and (W , ;, ;, ��) 2 GJ�K·). There-
fore, by instantiating the second induction hypothesis with W1, ��, ��[x 7!
(e⇤

1
, e†

1
)], �2, ⇢, we find that

(W1, (�1r, [x 7! e⇤
1
]�1�(�

1
�(�

1
2(e2

+)))), (�2r, [x 7! e†
1
]�2�(�

2
�(�

2
2(e2

+))))) 2 EJ⌧ 0K·

Then, since H⇤
1,H

⇤
2 : W1, we can instantiate the above fact with H⇤

1 and
H⇤
2. Ergo, the configuration

h�r1 ] �g1l ] flags(W1, 1) ] �1r,H
⇤
1, [x 7! e⇤1]�

1
�(�

1
�(�

1
2(e2

+)))i

must either step to fail Conv, in which case the origi-
nal expression steps to fail Conv, or it must step to some
h�r1 ] �g1l ] flags(W2, 1) ] �f1r ] �g1r,H

†
1, e

⇤⇤
1
i, in which case the

configuration on the other side

h�r2 ] �g2l ] flags(W1, 2) ] �2r,H
⇤
2, [x 7! e†

1
]�2�(�

2
�(�

2
2(e2

+))i)

must step to h�r2 ] �g2l ] flags(W2, 2) ] �f2r ] �g2r,H
†
2, e

††
1
i for some heap

H†
2 and world W2 where W1 v�r1]�g1l,�r2]�g2l W2, H†

1,H
†
2 : W2, and

(W2, (�f2r, e⇤⇤1 ), (�f2r, e
††
1
)) 2 VJ⌧ 0K·. Finally, since W v�r1,�r2 W1 and
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W1 v�r1,�r2 W2, we have W v�r1,�r2 W2, which su�ces to finish the
proof.

Lemma B.2.39 (Compat &).

�;�;�;⌦ ` e1 � e1 : ⌧1 ^ �;�;�;⌦ ` e2 � e2 : ⌧2
=) �;�;�;⌦ ` he1, e2i � he1, e2i : ⌧1&⌧2

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.
⇢ 2 DJ�K ^ (W , ;, ;, ��) 2 GJ�K⇢ ^ (W , ;, ;, ��) 2 GJ�K· ^ (W ,�1,�2, �⌦) 2 GJ⌦K·

we must show

(W , (�1, �1�(�
1
�(�

1
⌦(he1, e2i

+)))), (�2, �2�(�
2
�(�

2
⌦(he1, e2i

+))))) 2 EJ⌧1&⌧2K·

Note that both of these expressions are closed by Lemma B.2.16.

We can push the compiler and substitutions through the product expres-
sion and refine this to:

(W , (�1, (� .�1�(�
1
�(�

1
⌦(e1

+))),� .�1�(�
1
�(�

1
⌦(e2

+))))),
(�2, (� .�2�(�

2
�(�

2
⌦(e1

+))),� .�2�(�
2
�(�

2
⌦(e2

+)))))) 2 EJ⌧1&⌧2K·

Since VJ⌧1&⌧2K· ✓ EJ⌧1&⌧2K· by Lemma B.2.1, it su�ces to show

(W , (�1, (� .�1�(�
1
�(�

1
⌦(e1

+))),� .�1�(�
1
�(�

1
⌦(e2

+))))),
(�2, (� .�2�(�

2
�(�

2
⌦(e1

+))),� .�2�(�
2
�(�

2
⌦(e2

+)))))) 2 VJ⌧1&⌧2K·

First, we can instantiate the first induction hypothesis with
W , ��, ��, �⌦, ⇢ to show that

(W , (�1, �
1
�(�

1
�(�

1
⌦(e1

+)))), (�2, �
2
�(�

2
�(�

2
⌦(e1

+))))) 2 VJ⌧1K·

and we can instantiate the second induction hypothesis with
W , ��, ��, �⌦, ⇢ to show that

(W , (�1, �
1
�(�

1
�(�

1
⌦(e2

+)))), (�2, �
2
�(�

2
�(�

2
⌦(e2

+))))) 2 VJ⌧2K·

This su�ces to show that the pairs of lambdas are in the value relation
at ⌧1&⌧2, as was to be proven.

Lemma B.2.40 (Compat .1).

�;�;�;⌦ ` e � e : ⌧1&⌧2 =) �;�;�;⌦ ` e.1 � e.1 : ⌧1
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Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.
⇢ 2 DJ�K ^ (W , ;, ;, ��) 2 GJ�K⇢ ^ (W , ;, ;, ��) 2 GJ�K· ^ (W ,�1,�2, �⌦) 2 GJ⌦K·

we must show

(W , (�1, �
1
�(�

1
�(�

1
⌦(e.1

+)))), (�2, �
2
�(�

2
�(�

2
⌦(e.1

+))))) 2 EJ⌧1K·

Notice that both of these expressions have no free variables by Lemma
B.2.16.

We can push the compiler and substitutions through the projection to
refine this to:

(W , (�1, (fst �1�(�
1
�(�

1
⌦(e

+)))) ()), (�2, (fst �2�(�
2
�(�

2
⌦(e

+)))) ())) 2 EJ⌧1K·

Expanding the definition of the expression relation, given:

8�r1,�r2,H1,H2:W , e0
1
, H0

1, j < W .k.
�r1#�1 ^ �r2#�2 ^ �r1 ] �1,�r2 ] �2 : W^

h�r1 ] flags(W , 1) ] �1,H1, e1i
j99K h�0

1,H
0
1, e

0
1
i 9

we must show that either e0
1

is fail Conv or there exist
�f1,�g1,�f2,�g2, v2,H0

2,W
0 such that:

h�r2 ] flags(W , 2) ] �2,H2, e2i
⇤99K h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H0

2, v2i 9
^ �0

1 = �r1 ] flags(W 0, 1) ] �f1 ] �g1^

^ W v�r1,�r2 W 0
^ H0

1,H
0
2 : W

0

^ (W 0, (�f1, e01), (�f2, v2)) 2 VJ⌧K⇢)

To proceed, we must find out what e0
1
is. First, by instantiating the first

induction hypothesis with W , ��, ��, �⌦, ⇢, we find

(W , (�1, �
1
�(�

1
�(�

1
⌦(e

+)))), (�2, �
2
�(�

2
�(�

2
⌦(e

+))))) 2 EJ⌧1&⌧2K·

Therefore, the configuration

h�r1 ] flags(W , 1) ] �1,H1, �
1
�(�

1
�(�

1
⌦(e

+)))i

either steps to fail Conv, in which case the original expression
steps to fail Conv, or steps to some irreducible configuration
h�r1 ] flags(W1, 1) ] �f1 ] �g1,H⇤

1, e
⇤
i, in which case the configuration

h�r2 ] flags(W , 2) ] �2,H2, �
2
�(�

2
�(�

2
⌦(e

+)))i
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also steps to some irreducible configuration
h�r2 ] flags(W1, 2) ] �f2 ] �g2,H⇤

2, e
†
i and there exists some world

W1 where W v�r1,�r2 W1, H⇤
1,H

⇤
2 : W1, and (W1, (�f1, e⇤), (�f2, e†)) 2

VJ⌧1&⌧2K·.
Ergo, there exists some e⇤

1
, e†

1
, e⇤

2
, e†

2
such that

e⇤ = (� .e⇤1,� .e⇤2)

and
e† = (� .e†

1
,� .e†

2
)

and
(W1, (�f1, e

⇤
1), (�f2, e

†
1
)) 2 EJ⌧1K·

and
(W1, (�f1, e

⇤
2), (�f2, e

†
2
)) 2 EJ⌧2K·

Thus, the original configuration with H1 steps as follows:

h�r1 ] flags(W , 1) ] �1,H1, (fst �1�(�
1
�(�

1
⌦(e

+)))) ()i
⇤
!

h�r1 ] flags(W1, 1) ] �f1 ] �g1,H⇤
1, (fst (� .e⇤

1
,� .e⇤

2
)) ()i !

h�r1 ] flags(W1, 1) ] �f1 ] �g1,H⇤
1,� .e⇤

1
()i !

h�r1 ] flags(W1, 1) ] �f1 ] �g1,H⇤
1, e

⇤
1
i

and on the other side, the original configuration with H2 steps to:

h�r2 ] flags(W1, 2) ] �f2 ] �g2,H⇤
2, e

†
1
i

Then, since (W1, (�f1, e⇤1), (�f2, e
†
1
)) 2 EJ⌧1K·, we find that the first

configuration either steps to fail Conv, in which case the original expression
steps to fail Conv, or steps to some irreducible

h�r1 ] �g1 ] flags(W2, 1) ] �0
f1 ] �0

g1,H
†
1, e

⇤⇤
1 i

in which case the second configuration also steps to an irreducible

h�r2 ] �g2 ] flags(W2, 2) ] �0
f2 ] �0

g2,H
†
2, e

††
1
i

and there exists some world W2 where W1 v�r1]�g1,�r2]�g2 W2, H
†
1,H

†
2 : W2,

and (W1, (�f1, e⇤⇤1 ), (�f2, e
††
1
)) 2 VJ⌧1K·. Finally, since W v�r1,�r2 W1 and

W1 v�r1,�r2 W2, it follows that W1 v�r1,�r2 W2, which su�ces to finish the
proof.

Lemma B.2.41 (Compat .2).

�;�;�;⌦ ` e � e : ⌧1&⌧2 =) �;�;�;⌦ ` e.2 � e.2 : ⌧2
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Proof. This proof is essentially identical to that of .1.

Lemma B.2.42 (Compat ⌦).

�;�;�;⌦1 ` e1 � e1 : ⌧1 ^ �;�;�;⌦2 ` e2 � e2 : ⌧2
=) �;�;�;⌦1 ] ⌦2 ` (e1, e2) � (e1, e2) : ⌧1 ⌦ ⌧2

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.⇢ 2 DJ�K ^ (W , ;, ;, ��) 2 GJ�K⇢
^(W , ;, ;, ��) 2 GJ�K· ^ (W ,�1,�2, �⌦) 2 GJ⌦1 ] ⌦2K·

we must show

(W , (�1, �1�(�
1
�(�

1
⌦((e1, e2)

+)))), (�2, �2�(�
2
�(�

2
⌦((e1, e2)

+))))) 2 EJ⌧1 ⌦ ⌧2K·

Notice that both of these expressions have no free variables by Lemma
B.2.16.

We can push the compiler and substitutions through the product expres-
sion and refine this to:

(W , (�1, (�1�(�
1
�(�

1
⌦(e1

+))),�1�(�
1
�(�

1
⌦(e2

+))))),
(�2, (�2�(�

2
�(�

2
⌦(e1

+))),�2�(�
2
�(�

2
⌦(e2

+)))))) 2 EJ⌧1 ⌦ ⌧2K·

Next, by Lemma B.2.5, we have that �⌦ = �1 ] �2, �1 = �1l ] �1r, and
�2 = �2l ] �2r where

(W ,�1l,�2l, �1) 2 GJ⌦1K·

and
(W ,�1r,�2r, �2) 2 GJ⌦2K·

and for all i 2 {1, 2},
�i⌦(e1

+) = �i1(e1
+)

and
�i⌦(e2

+) = �i1(e2
+)

Thus, we must show

(W , (�1l ] �1r, (�1�(�
1
�(�

1
1(e1

+))), �1�(�
1
�(�

1
2(e2

+))))),
(�2l ] �2r, (�2�(�

2
�(�

2
1(e1

+))), �2�(�
2
�(�

2
2(e2

+)))))) 2 EJ⌧1 ⌦ ⌧2K·
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Let e1 and e2 be the first and second expressions, respectively, in the
above tuple. Expanding the definition of the expression relation, given:

8�r1,�r2,H1,H2:W , e0
1
, H0

1, j < W .k.
�r1#�1l ] �1r ^ �r2#�2l ] �2r ^ �r1 ] �1l ] �1r,�r2 ] �2l ] �2r : W^

h�r1 ] flags(W , 1) ] �1l ] �1r,H1, e1i
j99K h�0

1,H
0
1, e

0
1
i 9

we must show that either e0
1

is fail Conv or there exist
�f1,�g1,�f2,�g2, v2,H0

2,W
0 such that:

h�r2 ] flags(W , 2) ] �2l ] �2r,H2, e2i
⇤99K h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H0

2, v2i 9
^ �0

1 = �r1 ] flags(W 0, 1) ] �f1 ] �g1^

^ W v�r1,�r2 W 0
^ H0

1,H
0
2 : W

0

^ (W 0, (�f1, e01), (�f2, v2)) 2 VJ⌧1 ⌦ ⌧2K⇢)

Next, we need to find e0
1
. From the operational semantic, the tensor will

run the first subexpression using the heap H1 until it reaches a target value
or gets stuck. By appealing to our first induction hypothesis, instantiated
with W , ��, ��, �1, ⇢, we find that:

(W , (�1l, �
1
�(�

1
�(�

1
1(e1

+)))), (�2l, �
2
�(�

2
�(�

2
1(e1

+))))) 2 EJ⌧1K·

Thus, the configuration

h�r1 ] �1r ] flags(W , 1) ] �1l,H1, �
1
�(�

1
�(�

1
1(e1

+)))i

either reduces to fail Conv, in which case the original expres-
sion steps to fail Conv, or to some irreducible configuration
h�r1 ] �1r ] flags(W1, 1) ] �f1l ] �g1l,H⇤

1, e
⇤
1
i, in which case on the other

side, the configuration

h�r2 ] �2r ] flags(W , 2) ] �2l,H2, �
2
�(�

2
�(�

2
1(e1

+)))i

reduces to some irreducible configuration
h�r2 ] �2r ] flags(W1, 2) ] �f2l ] �g2l,H⇤

2, e
†
1
i and there exists

some W1 where W v�r1]�1r,�r2]�2r W1, H⇤
1,H

⇤
2 : W1, and

(W1, (�f1l, e⇤1), (�f2l, e
†
1
)) 2 VJ⌧1K·.

Since terms in the value relation are target values, the original pair will
continue reducing on the second subexpression according to the operational
semantics. Next, we can instantiate the second induction hypothesis with
W1, ��, ��, �2, ⇢, which we can do because GJ�K⇢,GJ�K·,GJ⌦K· are closed
under world extension (Lemma B.2.8). Thus:

(W , (�1r, �
1
�(�

1
�(�

1
2(e2

+)))), (�2r, �
2
�(�

2
�(�

2
2(e2

+))))) 2 EJ⌧2K·
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Ergo, the configuration

h�r1 ] �f1l ] �g1l ] flags(W1, 1) ] �1r,H
⇤
1, �

1
�(�

1
�(�

1
1(e2

+)))i

either reduces to fail Conv, in which case the original pair
steps to fail Conv, or to some irreducible configuration
h�r1 ] �f1l ] �g1l ] flags(W2, 1) ] �f1r ] �g1r,H

†
1, e

⇤
2
i, in which case

on the other side, the configuration

h�r2 ] �f2l ] �g2l ] flags(W1, 2) ] �2r,H
⇤
2, e

†
1
i

reduces to some irreducible configuration
h�r2 ] �f2l ] �g2l ] flags(W2, 2) ] �f2r ] �g2r,H

†
2, e

†
2
i and there ex-

ists some W2 where W1 v�r1]�f1l]�g1l,�r2]�f2l]�g2l W2, H†
1,H

†
2 : W2

and
(W2, (�f1r, e

⇤
2), (�f2r, e

†
2
)) 2 VJ⌧2K·

Thus, the original pair with H1 steps to
h�r1 ] flags(W2, 1) ] �f1l ] �f1r ] �g1l ] �g1r,H

†
1, (e

⇤
1
, e⇤

2
)i which is

a value and thus an irreducible configuration because both e⇤
1

and e⇤
2

are values. Similarly, the original pair with H2 steps to
h�r2 ] flags(W2, 2) ] �f2l ] �f2r ] �g2l ] �g2r,H

†
2, (e

†
1
, e†

2
)i 9. Ergo, since

(W2, (�f1l, e⇤1), (�f1r, e
†
1
)) 2 VJ⌧1K· (because (W1, (�f1l, e⇤1), (�f2l, e

†
1
)) 2

VJ⌧1K· and W1 v�f1l,�f2l W2) and (W2, (�f1r, e⇤2), (�f2r, e
†
2
)) 2 VJ⌧2K·, so

(W2, (�f1l ] �f1r, (e⇤1, e
⇤
2
)), (�f2l ] �f2r, (e

†
1
, e†

2
)) 2 VJ⌧1 ⌦ ⌧2K·. Finally,

since W v�r1,�r2 W1 and W v�r1,�r2 W2, we have W v�r1,�r2 W2, which
su�ces to finish the proof.

Lemma B.2.43 (Compat let).

�;�;�;⌦1 ` e1 � e1 : ⌧1 ⌦ ⌧2 ^ �;�;�;⌦2,a : ⌧1, a0 : ⌧2 ` e2 � e2 : ⌧
=) �;�;�;⌦1 ] ⌦2 ` let (a , a0 ) = e1 in e2 � let (a , a0 ) = e1 in e2 : ⌧

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.
⇢ 2 DJ�K ^ (W , ;, ;, ��) 2 GJ�K⇢ ^ (W , ;, ;, ��) 2 GJ�K·
^(W ,�1,�2, �⌦) 2 GJ⌦1 ] ⌦2K·

we must show

(W , (�1, �1�(�
1
�(�

1
⌦(let (a , a0 ) = e1 in e2

+)))),
(�2, �2�(�

2
�(�

2
⌦(let (a , a0 ) = e1 in e2

+))))) 2 EJ⌧ K·
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By pushing the compilers and substitutions through the let, we can refine
this to:

(W , (�1, let xfresh = �1�(�
1
�(�

1
⌦(e1

+))) in let a = fst xfresh
in let a0 = snd xfresh in �1�(�

1
�(�

1
⌦(e2

+)))),
(�2, let xfresh = �2�(�

2
�(�

2
⌦(e1

+))) in let a = fst xfresh
in let a0 = snd xfresh in �2�(�

2
�(�

2
⌦(e2

+))))) 2 EJ⌧ K·

Next, by Lemma B.2.5, we have that �⌦ = �1 ] �2, �1 = �1l ] �1r, and
�2 = �2l ] �2r where

(W ,�1l,�2l, �1) 2 GJ⌦K·

and
(W ,�1r,�2r, �2) 2 GJ⌦K·

and for all i 2 {1, 2},
�i⌦(e1

+) = �i1(e1
+)

and
�i⌦(e2

+) = �i2(e2
+)

Thus, we refine the statement we need to prove to:

(W , (�1l ] �1r, let xfresh = �1�(�
1
�(�

1
1(e1

+))) in let a = fst xfresh
in let a0 = snd xfresh in �1�(�

1
�(�

1
2(e2

+)))),
(�2l ] �2r, let xfresh = �2�(�

2
�(�

2
1(e1

+))) in let a = fst xfresh
in let a0 = snd xfresh in �2�(�

2
�(�

2
2(e2

+))))) 2 EJ⌧ K·

Let e1 and e2 be the first and second expressions, respectively, in the
tuple above. Expanding the definition of the expression relation, given:

8�r1,�r2,H1,H2:W , e0
1
, H0

1, j < W .k.
�r1#�1l ] �1r ^ �r2#�2l ] �2r ^ �r1 ] �1l ] �1r,�r2 ] �2l ] �2r : W^

h�r1 ] flags(W , 1) ] �1l ] �1r,H1, e1i
j99K h�0

1,H
0
1, e

0
1
i 9

we must show that either e0
1

is fail Conv or there exist
�f1,�g1,�f2,�g2, v2,H0

2,W
0 such that:

h�r2 ] flags(W , 2) ] �2l ] �2r,H2, e2i
⇤99K h�r2 ] flags(W 0, 2) ] �f2 ] �g2,H0

2, v2i 9
^ �0

1 = �r1 ] flags(W 0, 1) ] �f1 ] �g1^

^ W v�r1,�r2 W 0
^ H0

1,H
0
2 : W

0

^ (W 0, (�f1, e01), (�f2, v2)) 2 VJ⌧K⇢)

Therefore, we find that

h�r1 ] �1r ] flags(W , 1) ] �1l,H1, �
1
�(�

1
�(�

1
1(e1

+)))i
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either reduces to fail Conv, in which case the original expres-
sion steps to fail Conv, or to some irreducible configuration
h�r1 ] �1r ] flags(W1, 1) ] �f1l ] �g1l,H⇤

1, e
⇤
1
i, in which case

h�r2 ] �2r ] flags(W , 2) ] �2l,H2, �
2
�(�

2
�(�

2
1(e1

+)))i

also reduces to an irreducible configuration
h�r2 ] �2r ] flags(W1, 2) ] �f2l ] �g2l,H⇤

2, e
†
1
i and there exists some

world W1 where W v�r1]�1r,�r2]�2r W1, H⇤
1,H

⇤
2 : W1, and

(W1, (�f1l, e⇤1), (�f2l, e
†
1
)) 2 VJ⌧1 ⌦ ⌧2K·.

By expanding the value relation, we find that

�f1l = �f1ll ] �f1lr

e⇤1 = (v⇤1, v
⇤
2)

�f2l = �f2ll ] �f2lr

e†
1
= (v†

1
, v†

2
)

where
(W1, (�f1ll, v

⇤
1), (�f2ll, v

†
1
)) 2 VJ⌧1K·

(W1, (�f1lr, v
⇤
2), (�f2lr, v

†
2
)) 2 VJ⌧2K·

Thus, the original configuration with H1 steps as follows:

h�r1 ] flags(W , 1) ] �1l ] �1r,H1, let xfresh = �1�(�
1
�(�

1
1(e1

+))) in

let a = fst xfresh in let a0 = snd xfresh in �1�(�
1
�(�

1
2(e2

+)))i
⇤99K

h�r1 ] �1r ] flags(W1, 1) ] �f1ll ] �f1lr ] �g1l,H⇤
1, let xfresh = (v⇤

1
, v⇤

2
) in

let a = fst xfresh in let a0 = snd xfresh in �1�(�
1
�(�

1
2(e2

+)))i
⇤99K

h�r1 ] �1r ] flags(W1, 1) ] �f1ll ] �f1lr ] �g1l ] {f1l, f2l},H⇤
1,

[a 7! protect(v⇤
1
, f1l)][a0 7! protect(v⇤

2
, f2l)]�1�(�

1
�(�

1
2(e2

+)))i

where f1l 6= f2l and f1l, f2l /2 �r1 ] �1r ] �f1ll ] �f1lr ] �g1l.

By similar reasoning, the configuration on the other side with H2 steps to:

h�r2 ] �2r ] flags(W1, 2) ] �f2ll ] �f2lr ] �g2l ] {f1r, f2r},H⇤
2,

[a 7! protect(v†
1
, f1r)][a0 7! protect(v†

2
, f2r)]�2�(�

2
�(�

2
2(e2

+)))i

where f1r 6= f2r and f1r, f2r /2 �r2 ] �2r ] �f2ll ] �f2lr ] �g2l.

Next, notice that:

(W1,�1r ] �f1ll ] �f1lr ] {f1l, f2l},�2r ] �f2ll ] �f2lr ] {f1r, f2r},

�2[a 7! (protect(v⇤
1
, f1l), protect(v

†
1
, f1r))][a0 7! (protect(v⇤

2
, f2l), protect(v

†
2
, f2r))])

2 GJ⌦2, a : ⌧1, a0 : ⌧2K·
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Thus, we can instantiate the second induction hypothesis with

W1, ��, ��,

�2[a 7! (protect(v⇤
1
, f1l), protect(v

†
1
, f1r))][a0 7! (protect(v⇤

2
, f2l), protect(v

†
2
, f2r))], ⇢

to find that:

(W1,
(�1r ] �f1ll ] �f1lr ] {f1l, f2l},
[a 7! protect(v⇤

1
, f1l)][a0 7! protect(v⇤

2
, f2l)]�1�(�

1
�(�

1
2(e2

+)))),
(�2r ] �f2ll ] �f2lr ] {f1r, f2r},

[a 7! protect(v†
1
, f1r)][a0 7! protect(v†

2
, f2r)]�2�(�

2
�(�

2
2(e2

+))))) 2 EJ⌧ K·

Then, consider again the above configurations:

h�r1 ] �1r ] flags(W1, 1) ] �f1ll ] �f1lr ] �g1l ] {f1l, f2l},H⇤
1,

[a 7! protect(v⇤
1
, f1l)][a0 7! protect(v⇤

2
, f2l)]�1�(�

1
�(�

1
2(e2

+)))i

h�r2 ] �2r ] flags(W1, 2) ] �f2ll ] �f2lr ] �g2l ] {f1r, f2r},H⇤
2,

[a 7! protect(v†
1
, f1r)][a0 7! protect(v†

2
, f2r)]�2�(�

2
�(�

2
2(e2

+)))i

By applying the above fact, we find that the first configuration either steps
to fail Conv, in which case the original configuration steps to fail Conv, or
steps to some irreducible configuration

h�r1 ] �g1l ] flags(W2, 1) ] �f1r ] �g1r,H
†
1, e

⇤
2i

in which case the second configuration also steps to some irreducible config-
uration

h�r2 ] �g2l ] flags(W2, 2) ] �f2r ] �g2r,H
†
2, e

†
2
i

and there exists some world W2 such that W1 v�r1]�g1l,�r2]�g2l W2, H
†
1,H

†
2 :

W2, and
(W2, (�f1r, e

⇤
2), (�f2r, e

†
2
)) 2 VJ⌧ K·

Finally, since W v�r1,�r2 W1 and W1 v�r1,�r2 W2, we have W v�r1,�r2

W2, which su�ces to finish the proof.

Lemma B.2.44 (Compat LeM⌧ ).

�;⌦;�;� ` e � e : ⌧ ^ : ⌧ ⇠ ⌧
=) �;�;�;⌦ ` LeM⌧ � LeM⌧ : ⌧

Proof. Expanding the conclusion, given

8W .8⇢ �� �� �⌦.
⇢ 2 DJ�K ^ (W , ;, ;, ��) 2 GJ�K⇢ ^ (W , ;, ;, ��) 2 GJ�K· ^ (W ,�1,�2, �⌦) 2 GJ⌦K·
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we must show

(W , (�1, �
1
�(�

1
�(�

1
⌦(LeM⌧+)))), (�2, �

2
�(�

2
�(�

2
⌦(LeM⌧+))))) 2 EJ⌧ K·

We can push the compiler and substitutions through the pair to refine
that to:

(W , (�1, C⌧ 7!⌧ (�1�(�
1
�(�

1
⌦(e

+))))), (�2, C⌧ 7!⌧ (�2�(�
2
�(�

2
⌦(e

+)))))) 2 EJ⌧ K·

By Lemma B.2.3, it su�ces to show:

(W , (;, C⌧ 7!⌧ (�1�(�
1
�(�

1
⌦(e

+))))), (;, C⌧ 7!⌧ (�2�(�
2
�(�

2
⌦(e

+)))))) 2 EJ⌧ K·

Now, by instantiating our induction hypothesis with W , ��, ��, �⌦, ⇢, we
find that:

(W , (;, �1�(�
1
�(�

1
⌦(e

+)))), (;, �2�(�
2
�(�

2
⌦(e

+))))) 2 EJ⌧K⇢

By Lemma B.2.14, it follows that:

(W , (;, �1�(�
1
�(�

1
⌦(e

+)))), (;, �2�(�
2
�(�

2
⌦(e

+))))) 2 EJ⌧K·

Therefore, by Theorem B.2.18, we have

(W , (;, C⌧ 7!⌧ (�1�(�
1
�(�

1
⌦(e

+))))),
(;, C⌧ 7!⌧ (�2�(�

2
�(�

2
⌦(e

+)))))) 2 EJ⌧ K·

as was to be proven.



C
VALUE INTEROPERABIL ITY : MEMORY
MANAGEMENT AND POLYMORPHISM

Lemma C.0.1 (World Extension Weakening). If W vL,⌘ W 0, then for any
L0 such that L0.j ✓ L.j for all j 2 {1, 2} and for any ⌘0 ✓ ⌘, W vL0,⌘0 W 0.

Proof. Let W = (k, ) and W 0 = (j, 0). From W vL,⌘ W 0, we have j  k.
We also have L.1#dom(( 0)1) and L.2#dom(( 0)2). Since L0.1 ✓ L.1 and
L0.2 ✓ L.2, this implies L0.1#dom(( 0)1) and L0.2#dom(( 0)2). Moreover,
for all (`1, `2) 2 ⌘,  0(`1, `2) = b (`1, `2)cj . Since ⌘0 ✓ ⌘, it follows that for
all (`1, `2) 2 ⌘0,  0(`1, `2) = b (`1, `2)cj . Ergo, W vL0,⌘0 W 0, as was to be
proven.

Lemma C.0.2 (World Extension Transitive). If W1 vL1,⌘1 W2 and
W2 vL2,⌘2 W3 then

W1 v(L1.1\L2.1,L1.2\L2.2),⌘1\⌘2 W3

Proof. Let L = (L1.1\L2.1,L1.2\L2.2) and ⌘ = ⌘1 \ ⌘2. By Lemma C.0.1,
W1 vL,⌘ W2 and W2 vL,⌘ W3. We would like to show W1 vL,⌘ W3.

Let W1 = (k1, 1), W2 = (k2, 2), and W3 = (k3, 3).

We know from world extension that k1  k2 and k2  k3, so by transitivity,
k1  k3.

By W2 vL,⌘ W3, L.1#dom( 1
3) and L.2#dom( 2

3).

Finally, by both world extensions, for all (`1, `2) 2 ⌘,

 3(`1, `2) = b 2(`1, `2)ck3 = bb 1(`1, `2)ck2ck3

Then, since k2  k3, we find that  3(`1, `2) = bb 1(`1, `2)ck2ck3 =
b 1(`1, `2)ck3 . This su�ces to show that W1 vL,⌘ W3, as was to be
proven.

Lemma C.0.3 (World Extension).

1. If (W , (H1, v1), (H2, v2)) 2 VJ⌧K⇢, and W vH1,H2,v1,v2 W 0, then
(W 0, (H1, v1), (H2, v2)) 2 VJ⌧K⇢.

2. If (W ,H1,H2, �L.�) 2 GJ�K⇢ and W v
H1,H2,�L.�

1(.),�L.�
2(.) W

0, then
(W 0,H1,H2, �L.�) 2 GJ�K⇢.

3. If (W , ��) 2 GJ�K⇢ and W v;,;,�1
�(.),�

2
�(.)

W 0, then (W 0, ��) 2 GJ�K⇢.

292
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Proof. 1. By induction on ⌧ . Most cases are trivial, relying on
Lemma C.0.2 where appropriate. The only non-trivial cases are
⌧ = ref ⌧ and ⌧ = cap ⇣ ⌧ .

• ⌧ = ref ⌧ : Suppose that (W , (;, `1), (;, `2)) 2 VJref ⌧K⇢ and
W v;,;,`1,`2 W 0. We would like to show (W 0, (;, `1), (;, `2)) 2

VJref ⌧K⇢. Expanding the premise, we have that W . (`1, `2) =
bVJ⌧K⇢cW .k. This shows that (`1, `2) 2 dom(W . ), so since `1
is free in the expression `1 and `2 is free in the expression `2,
it follows that (`1, `2) 2 rchgclocs(W ,FL(`1),FL(`2)). Ergo, by
the definition of world extension,

W 0. (`1, `2) = bW . (`1, `2)cW 0.k = bbVJ⌧K⇢cW .kcW 0.k = bVJ⌧K⇢cW 0.k,

which su�ces to prove (W 0, (;, `1), (;, `2)) 2 VJref ⌧K⇢.
(Note that bbVJ⌧K⇢cW .kcW 0.k = bVJ⌧K⇢cW 0.k follows from W 0.k 

W .k, which we get from world extension.)

• ⌧ = cap ⇣ ⌧ : Suppose that (W , (H1 ] {`1 7! v1}, ()), (H2 ]

{`2 7! v2)) 2 VJcap ⇣ ⌧ K⇢ where ⇢.L3(⇣) = (`1, `2) and
W vH1]{`1 7!v1},H2]{`2 7!v2},(),() W

0. Expanding the definition of
world extension, we find

W v(dom(H1)]{`1},dom(H2)]{`2}),rchgclocs(W ,FL(cod(H1))[FL(v1),FL(cod(H2))[FL(v2)) W
0

Thus, for j 2 {1, 2}, (dom(Hj) ] {`j})#dom(W 0. j), so
(W 0, (H1 ] {`1 7! v1}, ()), (H2 ] {`2 7! v2}, ())) is still in Atom,
which is required to show this tuple is in the value relation.

Moreover, by Lemma C.0.1, we find W vH1,H2,v1,v2 W
0.

By expanding the value relation, we find (W , (H1, v1), (H2, v2)) 2
VJ⌧ K⇢. Since W vH1,H2,v1,v2 W 0, by the induction hypothesis,
we find (W 0, (H1, v1), (H2, v2)) 2 VJ⌧ K⇢, which su�ces to prove
(W 0, (H1 ] {`1 7! v1}, ()), (H2 ] {`2 7! v2}, ())) 2 VJcap ⇣ ⌧ K⇢.

2. By induction on �L.�, appealing to the previous case where appropri-
ate.

3. By induction on ��, appealing to the previous case where appropriate.

Lemma C.0.4 (World Extension and Garbage Collection). Consider
some world W and two sets of locations L1,L2. Then, consider ar-
bitrary heaps H1g,H2g : W and H1m,H2m such that H1m : MHeap,
H2m : MHeap, dom(H1m)#dom(W . 1), and dom(H2m)#dom(W . 2).
Let L0

1 = reachablelocs(H1g ] H1m, dom(H1m) ] FL(K1[·]) [ L1) and L0
2 =

reachablelocs(H2g ] H2m, dom(H2m) ] FL(K2[·]) [ L2).
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Then, if

(H1g ] H1m,K1[callgc]) !L1 (H0
1g ] H1m,K1[()])

and
(H2g ] H2m,K2[callgc]) !L2 (H0

2g ] H2m,K2[()])

where H0
1g : GCHeap, H0

2g : GCHeap, then there exists some world W 0 such
that H0

1g,H
0
2g : W 0 and

W v(dom(H1m),dom(H2m)),rchgclocs(W ,L0
1,L

0
2)

W 0 (16)

Note: Remember that for all H,L, L ✓ reachablelocs(H,L) and
FL(cod(H)) ✓ reachablelocs(H,L). Ergo, FL(cod(Him))[FL(Kj[·])[Lj ✓ L0

j

for j 2 {1, 2}, which implies

rchgclocs(W ,FL(cod(H1m)) [ FL(K1[·]) [ L1,FL(cod(H2m))
[FL(K2[·]) [ L2) ✓ rchgclocs(W ,L0

1,L
0
2)

so by Lemma C.0.1, it follows that

W v(dom(H1m),dom(H2m)),rchgclocs(W ,FL(cod(H1m))[FL(K1[·])[L1,FL(cod(H2m))[FL(K2[·])[L2) W
0

Proof. Let W 0 = (W .k, 0) where  0 is the subset of  restricted to
rchgclocs(W ,L0

1,L
0
2).

First, it is clear that W 0.k  W .k.

Second, since W 0. ✓ W . , dom(H1m)#dom(W . 1), and
dom(H2m)#dom(W . 2), we find that dom(H1m)#dom(W 0. 1) and
dom(H2m)#dom(W 0. 2).

Finally, to finish showing (16), we need to show that for all (`1, `2) 2

rchgclocs(W ,L0
1,L

0
2),

W 0. (`1, `2) = bW . (`1, `2)cW 0.k

If (`1, `2) 2 rchgclocs(W ,L0
1,L

0
2), then by the definition of  0 above,

W 0. (`1, `2) = W . (`1, `2). Thus, since W 0.k = W .k,

W 0. (`1, `2) = W . (`1, `2) = bW . (`1, `2)cW .k = bW . (`1, `2)cW 0.k

as was to be demonstrated.

Next, we must show that H0
1g,H

0
2g : W 0. First, since H0

1g ✓ H1g and
H0
2g ✓ H2g, it follows that H0

1g : GCHeap and H0
2g : GCHeap.

Next, we must show that for all (`1, `2) 2 dom(W 0. ), we must show
`1 2 dom(H0

1g), `2 2 dom(H0
2g), and

(BW 0, (;,H0
1g(`1)), (;,H

0
2g(`2))) 2 W 0. (`1, `2) (17)
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By definition, dom(W 0. ) = rchgclocs(W ,L0
1,L

0
2), so if (`1, `2) 2

dom(W 0. ), then (`1, `2) 2 dom(W . ), `1 2 L0
1 and `2 2 L0

2. Since
(`1, `2) 2 dom(W . ) and H1g,H2g : W , we find that `1 2 dom(H1g),
`2 2 dom(H2g), and (BW , (;,H1g(`1)), (;,H2g(`2))) 2 W . (`1, `2).

Then, since (`1, `2) 2 dom(W 0. ), W 0. (`1, `2) = W . (`1, `2). Moreover,
by the operational semantics of callgc, L0

1 \ dom(H1g) ✓ dom(H0
1g), so

`1 2 dom(H0
1g) and H0

1g(`1) = H1g(`1). By similar reasoning, `2 2 dom(H0
2g)

and H0
2g(`2) = H2g(`2). Thus, we deduce that

(BW , (;,H0
1g(`1)), (;,H

0
2g(`2))) 2 W 0. (`1, `2) (18)

Next, notice that, by the definition of reachablelocs, since `1 2 L0
1,

it follows that FL(H0
1g(`1)) = FL(H1g(`1)) ✓ L0

1. By similar reasoning,
FL(H0

2g(`2)) ✓ L0
2. Ergo,

rchgclocs(W ,FL(H0
1g(`1)),FL(H

0
2g(`2))) ✓ rchgclocs(W ,L0

1,L
0
2)

By Lemma C.0.1, we then have

W v(;,;),rchgclocs(W ,FL(H0
1g(`1)),FL(H

0
2g(`2)))

W 0

so it follows that

BW v(;,;),rchgclocs(W ,FL(H0
1g(`1)),FL(H

0
2g(`2)))

BW 0

In other words, BW v;,;,H0
1g(`1),H

0
2g(`2)

BW 0. Ergo, by (18) and the fact

that W 0. (`1, `2) 2 TypW .k to deduce (17), as was to be proven.

Lemma C.0.5 (Compositionality). If � ` ⌧1 and �,↵ ` ⌧2 and ⇢ 2 DJ�K,
then

VJ[↵ 7! ⌧1]⌧2K⇢ = VJ⌧2K⇢[F(↵) 7!VJ⌧1K⇢]

Proof. By induction on ⌧2. We show the interesting cases:

case ⌧2 = ↵.

VJ[↵ 7! ⌧1]↵K⇢ = VJ⌧1K⇢ (by sub)

= ⇢[F(↵) 7! VJ⌧1K⇢].F(↵) (by lookup)

= VJ↵K⇢[F(↵) 7!VJ⌧1K⇢] (by def VJ·K·)

case ⌧2 = � 6= ↵.

VJ[↵ 7! ⌧1]�K⇢ = VJ�K⇢ (by sub)

= ⇢.F(�) (by def VJ·K·)
= ⇢[F(↵) 7! VJ⌧1K⇢].F(�) (by lookup)

= VJ�K⇢[F(↵) 7!VJ⌧1K⇢] (by def VJ·K·)
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The other cases are straightforward by expanding the definitions of
VJ·K·, EJ·K· and applying the induction hypotheses.

Lemma C.0.6 (L3 Compositionality). If �, ⇣ ` ⌧ , ⇢ 2 DJ�K, and ⇢(⇣0) =
(`01, `

0
2), then

VJ[⇣ 7! ⇣0]⌧ K⇢ = VJ⌧ K⇢[L3(⇣) 7!(`0
1
,`
0
2
)]

Proof. By induction on ⌧ . We show the interesting cases:

case ⌧ = ptr ⇣ .

VJ[⇣ 7! ⇣0]ptr ⇣K⇢
= VJptr ⇣0K⇢ (by sub)

= {(W , (;, `1), (;, `2)) | ⇢.L3(⇣
0) = (`1, `2)} (by def)

= {(W , (;, `1), (;, `2)) | (`
0
1, `

0
2) = (`1, `2)} (by assumption)

= {(W , (;, `1), (;, `2)) | ⇢[L3(⇣) 7! (`0
1
, `0

2
)].L3(⇣) = (`1, `2)} (by lookup)

= VJptr ⇣K⇢[L3(⇣) 7!(`0
1
,`0

2
)](by def)

case ⌧ = ptr ⇣2 where ⇣2 6= ⇣ .

VJ[⇣ 7! ⇣0]ptr ⇣2K⇢
= VJptr ⇣2K⇢ (by sub)

= {(W , (;, `1), (;, `2)) | ⇢.L3(⇣2) = (`1, `2)} (by def)

= {(W , (;, `1), (;, `2)) | ⇢[L3(⇣) 7! (`0
1
, `0

2
)].L3(⇣2) = (`1, `2)} (by lookup)

= VJptr ⇣2K⇢[L3(⇣) 7!(`0
1
,`0

2
)] (by def)

case ⌧ = cap ⇣ ⌧2 .

VJ[⇣ 7! ⇣0]cap ⇣ ⌧2K⇢
= VJcap ⇣0 [⇣ 7! ⇣0]⌧2K⇢ (by sub)

= {(W , (H1 ] {`1 7! v1}, ()), (H2 ] {`2 7! v2}, ())) |

⇢.L3(⇣0) = (`1, `2) ^ (W , (H1, v1), (H2, v2)) 2 VJ[⇣ 7! ⇣0]⌧2K⇢} (by def)

= {(W , (H1 ] {`1 7! v1}, ()), (H2 ] {`2 7! v2}, ())) |

(`01, `
0
2) = (`1, `2) ^ (W , (H1, v1), (H2, v2)) 2 VJ[⇣ 7! ⇣0]⌧2K⇢} (by assumption)

= {(W , (H1 ] {`1 7! v1}, ()), (H2 ] {`2 7! v2}, ())) |

⇢[L3(⇣) 7! (`0
1
, `0

2
)].L3(⇣) = (`1, `2)^

(W , (H1, v1), (H2, v2)) 2 VJ[⇣ 7! ⇣0]⌧2K⇢} (by lookup)

= {(W , (H1 ] {`1 7! v1}, ()), (H2 ] {`2 7! v2}, ())) |

⇢[L3(⇣) 7! (`0
1
, `0

2
)].L3(⇣) = (`1, `2)^

(W , (H1, v1), (H2, v2)) 2 VJ⌧2K⇢[L3(⇣) 7!(`0
1
,`0

2
)]} (by induction)

= VJcap ⇣ ⌧2K⇢[L3(⇣) 7!(`0
1
,`0

2
)] (by def)
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case ⌧ = cap ⇣2 ⌧2 where ⇣2 6= ⇣ .

VJ[⇣ 7! ⇣0]cap ⇣2 ⌧2K⇢
= VJcap ⇣2 [⇣ 7! ⇣0]⌧2K⇢ (by sub)

= {(W , (H1 ] {`1 7! v1}, ()), (H2 ] {`2 7! v2}, ())) |

⇢.L3(⇣2) = (`1, `2) ^ (W , (H1, v1), (H2, v2)) 2 VJ[⇣ 7! ⇣0]⌧2K⇢} (by def)

= {(W , (H1 ] {`1 7! v1}, ()), (H2 ] {`2 7! v2}, ())) |

⇢[L3(⇣) 7! (`0
1
, `0

2
)].L3(⇣2) = (`1, `2)^

(W , (H1, v1), (H2, v2)) 2 VJ[⇣ 7! ⇣0]⌧2K⇢} (by lookup)

= {(W , (H1 ] {`1 7! v1}, ()), (H2 ] {`2 7! v2}, ())) |

⇢[L3(⇣) 7! (`0
1
, `0

2
)].L3(⇣2) = (`1, `2)^

(W , (H1, v1), (H2, v2)) 2 VJ⌧2K⇢[L3(⇣) 7!(`0
1
,`0

2
)]} (by induction)

= VJcap ⇣ ⌧2K⇢[L3(⇣) 7!(`0
1
,`0

2
)] (by def)

The other cases are straightforward by expanding the definitions of
VJ·K·, EJ·K· and applying the induction hypotheses.

Lemma C.0.7 (Irrelevant Location Variables in L3). If � ` ⌧ , ⇢ 2 DJ�K,
and ⇣ /2 �, then

VJ⌧ K⇢ = VJ⌧ K⇢[L3(⇣) 7!(`1,`2)]

Proof. Since ⇣ /2 � and � ` ⌧ , it must be that ⇣ is not free in ⌧ . Therefore,
the definition of either VJ⌧ K⇢ or VJ⌧ K⇢[L3(⇣) 7!(`1,`2)] will never require looking
up ⇢.L3(⇣), so whether ⇣ is in the domain of ⇢.L3 or not is irrelevant for
the definition of the value relation. It then trivially follows that these two
value relations are equal.

Lemma C.0.8 (Value Lifting). If (W , (H1, e1), (H2, e2)) 2 VJ⌧K⇢ and, if ⌧
is a MiniML type, H1 = H2 = ;, then

(W , (H1, e1), (H2, e2)) 2 EJ⌧K⇢

Proof. Since MiniML and L3 have di↵erent definitions of EJ·K·, we must show
the claim for the two languages separately.

MiniML language. Expanding the definition of EJ·K, we are to show
that

9W 0,H0
1g,H

0
2g.8H2+ : MHeap.9v2.

H1⇤ = H0
1g ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (;, v1), (;, v2)) 2 VJ⌧K⇢ ^

(H2g+ ] H2+, e2)
⇤
!L2 (H0

2g ] H2+, v2) 9L2

(19)
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given arbitrary L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ : MHeap,H1⇤,
such that

(H1g+ ] H1+, e1)
⇤
!L1 (H1⇤, v1) 9

But if (W , (;, e1), (;, e2)) 2 VJ⌧K⇢, then e1, e2 are values. Since con-
figurations with values as programs do not step, v1 = e1 and we can
choose W 0 = W , H0

1g = H1g, H0
2g = H2g, and v2 = e2. Then, by

assumption, we have (W , (;, e1), (;, e2)) 2 VJ⌧K⇢, which su�ces to
finish the proof.

L3 language Expanding the definition of EJ·K·, we are to show that

9H0
1,H

0
1g.8H2+ : MHeap.9H0

2,W
0,H0

2g, v2.

H1⇤ = H0
1g ] H0

1 ] H1+ ^ H0
1g,H2g0 : W

0
^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (H0
1, v1), (H

0
2, v2)) 2 VJ⌧ K⇢ ^

(H2g+ ] H2 ] H2+, e2)
⇤
!L2 (H0

2g ] H0
2 ] H2+, v2) 9

(20)

given arbitrary L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ : MHeap,H1⇤,
such that

(H1g+ ] H1 ] H1+, e1)
⇤
!L1 (H1⇤, v1) 9

But if (W , (H1, e1), (H2, e2)) 2 VJ⌧ K⇢, then e1, e2 are values. Since
configurations with values as programs do not step, v1 = e1 and we
can choose W 0 = W , H0

1g = H1g, H0
2g = H2g, and v2 = e2. Then, by

assumption, we have (W , (H1, e1), (H2, e2)) 2 VJ⌧ K⇢, which su�ces to
finish the proof.

Lemma C.0.9 (Split Substitutions). For any world W and substitution
� such that

(W ,H1,H2, �) 2 GJ�1 ] �2K⇢
there exist �1, �2,H1l,H1r,H2l,H2r such that � = �1 ] �2, H1 = H1l ] H1r,
H2 = H2l ] H2r,

(W ,H1l,H1r, �1) 2 GJ�1K⇢
and

(W ,H2l,H2r, �2) 2 GJ�2K⇢

Moreover, for any i, j 2 {1, 2}, for any �;�;�;�i ` ei : ⌧ and �� 2

GJ�K⇢,
�j(�j�(ei

+)) = �j
i
(�j�(ei

+))
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Proof. First, we need to show that there exist substitutions �1 and �2. This
follows from the inductive structure of GJ�1 ] �2K⇢, where we can separate
the parts that came from GJ�1K⇢ and GJ�2K⇢. The second follows from the
fact that the statics means that the rest of the substitution must not occur
in the term. and thus �j(e1+) = �j1(�

j

2(e1
+)) = �j1(e1

+) (for example).

Lemma C.0.10 (Bang Substitutions Own No Heap). For any
(W ,H1,H2, ��) 2 GJ!�K⇢, it must be the case that H1 = H2 = ;.

Proof. We will prove the lemma by induction on the size of !�. If !� is
empty, then the theorem is trivial. Otherwise, suppose that !� = !�2, x :!⌧ .
Then,

(W ,H1,H2, ��) = (W ,H0
1 ] H1v,H

0
2 ] H2v, �L.�

0[x 7! (v1, v2)])

where (W ,H0
1,H

0
2, �L.�) 2 GJ!�2K⇢ and (W , (H1v, v1), (H2v, v2)) 2 VJ!⌧ K⇢.

By induction, H0
1 = H0

2 = ; and by expanding the value relation, H1v =
H2v = ;. Thus, H1 = H2 = ;, as was to be proven.

Lemma C.0.11 (L3 Values Compile to LCVM values). If �;�;�;� `

v : ⌧ then given ⇢, �L, ��,W ,H1,H2 such that

⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W ,H1,H2, �L) 2 GJ�K⇢, �� 2 GJ�K⇢

it holds that �1L(�
1
�(v

+))) and �2L(�
2
�(v

+))) are both target values.

Proof. We will prove the theorem by induction over v.

case v = ().
If v = (), then v+ = (), which is a target value.

case v = b for some b 2 B.
If v = b, then v+ = n for some n 2 {0, 1}, which is a target value.

case v = �x : ⌧ .e.
If v = �x : ⌧.e, then v+ = �x.e+, which is a target value.

case v = ⇤⇣ .e.
If v = ⇤⇣.e, then v+ = �x⇣ .e+, which is a target value.

case v = p⇣ , vq.
If v = p⇣, v0q, then v+ = v0+. Ergo, for any i 2 {1, 2}, �iL(�

i

�(v
+)) =

�iL(�
i

�(v
0+)), which is a target value by induction.

case v = (v1 , v2).
If v = (v1, v2), then v+ = (v1

+,v2
+). Ergo, for any i 2 {1, 2},

�iL(�
i

�(v
+)) = (�iL(�

i

�(v1
+)), �iL(�

i

�(v2
+))) is a target value because

it is a pair of values as, by induction, �iL(�
i

�(v1
+)) and �iL(�

i

�(v2
+))

are target values.
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case v = !v 0 .
If v = !v0, then v+ = v0+. Ergo, for any i 2 {1, 2}, �iL(�

i

�(v
+)) =

�iL(�
i

�(v
0+)), which is a target value by induction.

Lemma C.0.12 (Lifting Steps Out of Evaluation Context). If (H,K[e]) !L

(H0,K[e0]) and K[e0] is not of the form fail c, then (H, e) !L[FL(K[·]) (H, e
0).

Proof. Since it is given that K[e0] is not of the form fail c, there are two
cases:

1. The given !L is the result of a callgc instruction. In this case, e
must be of the form K0[callgc] and e0 must be of the form K0[()] for
some evaluation context K0. Moreover, there exist Hgc : GCHeap,Hm :
MHeap,H0

gc such that H = Hgc ] Hm, H0 = H0
gc ] Hm, H0

gc ✓ Hgc and

reachablelocs(Hgc ] Hm,FL(K[K 0[·]]) [ L) \ dom(Hgc) ✓ dom(H0
gc)

Then, notice that FL(K[K 0[·]]) = FL(K 0[·]) [ FL(K[·]). Ergo,

(Hgc ] Hm,K0[callgc]) !L[FL(K[·]) (H
0
gc ] Hm,K0[()])

as was to be proven.

2. The given !L is the result of a Z). In this case, e must be of the form
K0[e•] and e0 must be of the form K0[e0•] for some evaluation context
K and expressions e•, e0• such that (H, e•) Z) (H0, e0•). It then follows
that (H,K0[e•]) Z) (H0,K0[e0•]), as was to be proven.

Lemma C.0.13 (Stepping Respects Evaluation Context). If
(H, e) !L[FL(K[·]) (H

0, e0) and e0 is not of the form fail c, then

1. (H,K[e]) !L (H0,K[e0])

2. for any H•, e• such that (H,K[e]) !L (H•, e•), there exists a e•• such
that e• = K[e••].

Proof. Proving (1) is trivally similar to the proof of Lemma C.0.12, so we
focus on proving (2). We do case analysis on the reduction (H, e) !L[FL(K[·])
(H0, e0):

1. The given !L[FL(K[·]) is the result of a callgc instruction. In this
case, e must be of the form K0[callgc]. Then, for any H•, e• such that
(H,K[e]) !L (H•, e•), because K[e] = K[K0[callgc]], that step must be
a callgc instruction, so e• = K[K0[()]], and thus choosing e•• = K0[()]
su�ces to finish the proof.
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2. The given !L[FL(K[·]) is the result of a Z). In this case, e must
be of the form K0[e⇤] and e0 must be of the form K0[e⇤0] for some
evaluation context K0 and expressions e⇤, e⇤0 such that (H, e⇤) Z)
(H0, e⇤0). Moreover, e⇤ 6= callgc, because (H, callgc) 6Z), and e⇤ is not of
the form fail c, because (H, fall c) 6Z).

Ergo, for any H•, e• such that (H,K[e]) !L (H•, e•), because K[e] =
K[K0[e⇤]], this step must be the result of a Z). Thus, there exists some
e⇤00 such that (H, e⇤) Z) (H•, e⇤

00) and e• = K[K0[e⇤00]], so choosing
e•• = K0[e⇤00] su�ces to finish the proof.

Lemma C.0.14 (Subterm Termination). If (H, e)
⇤
!L (H0, e0) 6!L where

e0 is not of the form fail c and (H, e)
⇤
!L (H•,K[e•]) is a prefix of the

aforementioned reduction, then (H, e)
⇤
!L (H0

•,K[e
0
•]) is also a prefix of the

original reduction for some H0
•, e•

0 such that (H•, e•)
⇤
!L[FL(K[·]) (H

0
•, e

0
•) 6!L

.

Proof. Consider the largest integer n such that there is a reduction

(H, e)
⇤
!L (H•,K[e•]) !L (H•,1,K[e•,1]) !L · · · !L (H•,n,K[e•,n]) (21)

that is a prefix of the original reduction (H, e)
⇤
!L (H0, e0) 6!L.

There exists such an integer n because we can choose n = 0. More-
over, there is an upper bound on such integers n because the origi-
nal reduction is terminating and thus has finite length. Also, since
(H•,K[e•])

⇤
!L (H•,n,K[e•,n]), by Lemma C.0.12, (H•, e•)

⇤
!L (H•,n, e•,n).

There are two cases:

1. This prefix is the entire reduction (H, e)
⇤
!L (H0, e0) 6!L, implying

that H0 = H•,n and e0 = K[e•,n]. Thus, (H•,n,K[e•,n]) 6!L, so by
Lemma C.0.13, (H•,n, e•,n) 6!L[FL(K[·]). Thus, choosing H0

• = H•,n
and e0• = e•,n su�ces to finish the proof.

2. This prefix is not the entire reduction, so (H, e)
⇤
!L (H•,n,K[e•,n]) !L

(H00, e00) is also a prefix of the original reduction. e00 can not be of
the form K[e000] because if it were, then we could choose H•,n+1 = H00

and e•,n+1 = e00 to create a longer reduction of the form (21), which
would contradict the maximality of n. Ergo, if (H•,n, e•,n) were not
irreducible under !L[FL(K[·]), that would contradict Lemma C.0.13.
Thus, (H•,n, e•,n) 6!L[FL(K[·]), so choosing H0

• = H•,n and e0• = e•,n
su�ces to finish the proof.
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Note that when applying Lemma C.0.14, we sometimes leave K implicit
and we often write “e0•” as “v”, even though it must actually be proven to
be a value.

Moreover, in the proofs of the compatibility lemma, we are often given
that (H, e)

⇤
!L (H1, v1) 9 and then we apply Lemma C.0.14, possibly

multiple times, to show a reduction (H, e)
⇤
!L (H0, v0) 9 for some other

configuration (H0, v0). We then conclude that (H1, v1) = (H0, v0) because,
even though !L is not confluent, we implicitly deduce that since we applied
Lemma C.0.14, the reduction (H, e)

⇤
!L (H0, v0) 9 is a prefix of the original

given reduction (H, e)
⇤
!L (H1, v1) 9.

Theorem C.0.15 (Convertibility Soundness). If ⌧A ⇠ ⌧B then for all ⇢,

1. 8(W , (H1, e1), (H2, e2)) 2 EJ⌧AK⇢. (W , (H1,C⌧A 7!⌧B
e1) , (H2,C⌧A 7!⌧B

e2)) 2
EJ⌧BK⇢; and

2. 8(W , (H1, e1), (H2, e2)) 2 EJ⌧BK⇢. (W , (H1,C⌧B 7!⌧A
e1) , (H2,C⌧B 7!⌧A

e2)) 2
EJ⌧AK⇢

Proof. By simultaneous induction on the structure of the convertibility
relation.
h⌧ i ⇠ ⌧

1. We are to show that

8 (W , (H1, e1), (H2, e2)) 2 EJh⌧ iK⇢.
�
W , (H1,Ch⌧ i7!⌧ e1), (H2,Ch⌧ i7!⌧ e2)

�
2 EJ⌧ K⇢

Expanding the definition of Ch⌧ i7!⌧ , EJ·K· and pushing substitutions
in the goal, we are to show that

9H0
1,H

0
1g.8H2+ : MHeap.9H0

2,W
0,H0

2g, v2.
H1⇤ = H0

1g ] H0
1 ] H1+ ^ H0

1g,H2g0 : W 0
^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (H0
1, v1), (H

0
2, v2)) 2 VJ⌧ K⇢ ^

(H2g+ ] H2 ] H2+, e2)
⇤
!L2 (H0

2g ] H0
2 ] H2+, v2) 9L2

given arbitrary W ,L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ :
MHeap,H1⇤ such that

(H1g+ ] H1 ] H1+, e1)
⇤
!L1 (H1⇤, v1) 6!L1

Because (W , (H1, e1), (H2, e2)) 2 EJh⌧ iK⇢, we find that H1⇤ = H0
1g]H1+

and
(H2g+ ] H2 ] H2+, e2)

⇤
!L2 (H0

2g ] H2+, v2) 6!L2
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where H0
1g,H

0
2g : W 0 for some world

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W 0

such that
(W 0, (;, v1), (;, v2)) 2 VJh⌧ iK⇢

From here, we can take W 0 = W 0, H0
1 = ;, H0

2 = ;, H0
1g = H0

1g, and
H0
2g = H0

2g. Then, from expanding (W 0, (;, v1), (;, v2)) 2 VJh⌧ iK⇢, we
find (W 0, (;, v1), (;, v2)) 2 VJ⌧ K⇢, which su�ces to finish the proof.

2. We are to show that

8 (W , (H1, e1), (H2, e2)) 2 EJ⌧ K⇢.
�
W , (H1,Ch⌧ i7!⌧ e1), (H2,Ch⌧ i7!⌧ e2)

�
2 EJh⌧ iK⇢

Expanding the definition of Ch⌧ i7!⌧ , EJ·K· and pushing substitutions
in the goal, we are to show that

9H0
1g.8H2+ : MHeap.9W 0,H0

2g, v2.
H1⇤ = H0

1g ] H0
1 ] H1+ ^ H0

1g,H2g0 : W 0
^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (;, v1), (;, v2)) 2 VJh⌧ iK⇢ ^

(H2g+ ] H2 ] H2+, e2)
⇤
!L2 (H0

2g ] H2+, v2) 9L2

given arbitrary W ,L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ :
MHeap,H1⇤ such that

(H1g+ ] H1 ] H1+, e1)
⇤
!L1 (H1⇤, v1) 6!L1

Because (W , (;, e1), (;, e2)) 2 EJ⌧ K⇢, we find that H1⇤ = H0
1g]H

0
1]H1+

and
(H2g+ ] H2+, e2)

⇤
!L2 (H0

2g ] H0
2 ] H2+, v1) 6!L2

where H0
1g,H

0
2g : W 0 for some world

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W 0

such that
(W 0, (H0

1, v1), (H
0
2, v2)) 2 VJ⌧ K⇢

Recall that ⌧ 2 Duplicable = {unit,bool,ptr ⇣, !⌧}. Then by in-
specting definitions of VJ⌧ K⇢ for all four of these cases, we have that
H0
1 = H0

2 = ;.

We then take W 0 = W 0, H0
1 = ;, H0

2 = ;, H0
1g = H0

1g, and
H0
2g = H0

2g. Finally, given (W 0, (;, v1), (;, v2)) 2 VJ⌧ K⇢, it follows
that (W 0, (;, v1), (;, v2)) 2 VJh⌧ iK⇢.

8↵.↵ ! (↵ ! ↵) ⇠ bool



304 value interoperability: memory management and polymorphism

1. We are to show that

8 (W , (H1, e1), (H2, e2)) 2 EJ8↵.↵ ! (↵ ! ↵)K⇢.�
W , (H1,C8↵.↵!(↵!↵) 7!bool e1), (H2,C8↵.↵!(↵!↵) 7!bool e2)

�
2 EJboolK⇢

Expanding the definition of C8↵.↵!(↵!↵) 7!bool, we are to show that

(W , (H1, let f1 = e1 in ((f1 ()) 0) 1), (H2, let f2 = e2 in ((f2 ()) 0) 1)) 2 EJboolK⇢

given arbitrary e1, e2 such that (W , (H1, e1), (H2, e2)) 2 EJ8↵.↵ ! (↵ ! ↵)K⇢.

Expanding the definition of C8↵.↵!(↵!↵) 7!bool, EJ·K· and pushing
substitutions in the goal, we are to show that

9H0
1,H

0
1g.8H2+ : MHeap.9H0

2,W
0,H0

2g, v2.
H1⇤ = H0

1g ] H0
1 ] H1+ ^ H0

1g,H2g0 : W 0
^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (H0
1, v1), (H

0
2, v2)) 2 VJboolK⇢ ^

(H2g+ ] H2 ] H2+, let f2 = e2 in ((f2 ()) 0) 1)
⇤
!L2 (H0

2g ] H0
2 ] H2+, v2) 9L2

given arbitrary W ,L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ :
MHeap,H1⇤ such that

(H1g+ ] H1 ] H1+, let f1 = e1 in ((f1 ()) 0) 1)
⇤
!L1 (H1⇤, v1) 9L1

By Lemma C.0.14, we have that
(H1g+ ] H1 ] H1+, e1)

⇤
!L1 (H1

1⇤, v
1

1
) 9L1 for some H1

1⇤, v
1

1
. Ex-

panding the definition of EJ·K⇢ in the premise and specializing where
appropriate, we have that H1

1⇤ = H0
1g ] H1+ and

(H2g+ ] H2 ] H2+, e2)
⇤
!L2 (H0

2g ] H2+, v
1

2) 9L2

where H0
1g,H

0
2g : W 0 for some

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0

such that

(W 0, (;, v11), (;, v
1

2)) 2 VJ8↵.↵ ! (↵ ! ↵)K⇢

Expanding the definition of VJ8↵.↵ ! (↵ ! ↵)K⇢, we have that

v11 = � .e11 ^ v12 = � .e12 ^

8R 2 RelT.(W 0, (;, e11), (;, e
1

2)) 2 EJ↵ ! (↵ ! ↵)K⇢[F(↵) 7!R]
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To proceed, we take R = VJhbooliK⇢. We do this because we expect
the reduction to eventually need a value in VJboolK⇢, but by using
the type hbooli instead (which has the same interpretation in our
model), we can apply Lemma C.0.5 to get that:

(W 0, (;, e11), (;, e
1

2)) 2 EJhbooli ! (hbooli ! hbooli)K⇢

By the operational semantics of LCVM, we now have that

(H1g+ ] H1+, let f1 = e1 in ((f1 ()) 0) 1)
⇤
!L1 (H0

1g ] H1+, let f1 = � .e11 in ((f1 ()) 0) 1)
⇤
! 1L1(H

0
1g ] H1+, [f1 7! � .e11] ((f1 ()) 0) 1)

= (H0
1g ] H1+,

���
� .e11

�
()
�
0
�
1)

⇤
! 1L1(H

0
1g ] H1+,

�
e11 0

�
1)

⇤
!L1 (H1⇤, v1) 9L1

By Lemma C.0.14, we have that

�
H0
1g ] H1+, e

1

1

� ⇤
!L1 (H2

1⇤, v
2

1) 6!L1

for some H2
1⇤, v

2

1
. Expanding the definition of EJ·K⇢ and specializing

where appropriate, we have that H2
1⇤ = H00

1g ] H1+ and

(H0
2g ] H2+, e

1

2)
⇤
!L2 (H00

2g ] H2+, v
2

2) 9L2

where H00
1g,H

00
2g : W 00 for some

W 0
v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W

00

such that

(W 00, (;, v21), (;, v
2

2)) 2 VJhbooli ! (hbooli ! hbooli)K⇢

Expanding the definition of VJhbooli ! (hbooli ! hbooli)K⇢, we
have that

v21 = �x21.e
2

1 ^ v22 = �x22.e
2

2 ^

8(W 00, (;, va1), (;, v
a

2)) 2 VJhbooliK⇢.
(W 00, (;, [x21 7! va1]e

2

1), (;, [x
2

2 7! va2]e
2

2)) 2 EJhbooli ! hbooliK⇢

Observe that VJhbooliK⇢ = VJboolK⇢ and
(W 00, (;, 0), (;, 0)) 2 VJboolK⇢ by definition, so
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(W 00, (;, [x2
1
7! 0]e2

1
), (;, [x2

2
7! 0]e2

2
)) 2 EJhbooli ! hbooliK⇢. By

Lemma C.0.14, we now have that

�
H00
1g ] H1+,

�
�x21.e

2

1

�
0
� ⇤
! 1L1

�
H00
1g ] H1+, [x

2

1 7! 0]e21
� ⇤
!L1 (H3

1⇤, v
3

1) 9

for some H3
1⇤, v

3

1
. Expanding the definition of EJ·K⇢, we have that

H3
1⇤ = H000

1g ] H1+ and

(H00
2g ] H2+, [x

2

2 7! 0]e22) !L2 (H000
2g ] H2+, v

3

2) 9L2

where H000
1g,H

000
2g : W 000 for some

W 00
v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+)))

W 000 such that

(W 000, (;, v31), (;, v
3

1)) 2 VJhbooli ! hbooliK⇢

Expanding the definition of VJhbooli ! hbooliK⇢, we have that

v31 = �x31.e
3

1 ^ v32 = �x32.e
3

2^

8(W 000, (;, va1), (;, v
a

2)) 2 VJhbooliK⇢.
(W 000, (;, [x31 7! va1]e

3

1), (;, [x
3

2 7! va2]e
3

2)) 2 EJhbooliK⇢

Recall that VJhbooliK⇢ = VJboolK⇢ and
(W 000, (;, 1), (;, 1)) 2 VJboolK⇢ by definition, so
(W 000, (;, [x3

1
7! 1]e3

1
), (;, [x3

2
7! 1]e3

2
)) 2 EJhbooliK⇢. We now have that

�
H000
1g ] H1+,

�
�x31.e

3

1

�
1
� ⇤
! 1L1

�
H000
1g ] H1+, [x

3

1 7! 1]e31
� ⇤
!L1 (H4

1⇤, v
4

1) 9

Expanding the definition of EJ·K⇢, we have that H4
1⇤ = H0000

1g ] H1+ and

(H000
2g ] H2+, [x

3

2 7! 1]e32)
⇤
!L2 (H0000

2g ] H2+, v
4

2) 9L2

where H0000
1g ,H

0000
2g : W 0000 for some

W 000
v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+)))

W 0000 and
(W 0000, (;, v41), (;, v

4

2)) 2 VJhbooliK⇢

It follows that H1⇤ = H0000
1g ] H1+ and v1 = v4

1
. Thus, we choose

H0
1 = ;, H0

2 = ;, H0
1g = H0000

1g , H
0
2g = H0000

2g , and W 0 = W 0000. The fact
that (W 0000, (;, v4

1
), (;, v4

2
)) 2 VJboolK⇢ follows trivially from the above

statement and that VJhbooliK⇢ = VJboolK⇢.

Finally, all that remains to show that

(H2g+ ] H2+, let f2 = e2 in ((f2 ()) 0) 1)
⇤
!L2 (H0000

2g ] H2+, v
4

2) 9L2
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given arbitrary H2+.

We have that

(H2g+ ] H2+, let f2 = e2 in ((f2 ()) 0) 1)
⇤
!L2 (H0

2g ] H2+, let f2 = � .e12 in ((f2 ()) 0) 1)
⇤
! 1L2(H

0
2g ] H2+, [f2 7! � .e12] ((f2 ()) 0) 1)

= (H0
2g ] H2+,

��
� .e12 ()

�
0
�
1)

⇤
! 1L2(H

0
2g ] H2+,

�
e12 0

�
1)

⇤
!L2 (H00

2g ] H2+,
��
�x22.e

2

2

�
0
�
1)

⇤
! 1L2(H

00
2g ] H2+, [x

2

2 7! 0]e221)
⇤
!L2 (H000

2g ] H2+,�x
3

2.e
3

21)
⇤
! 1L2(H

000
2g ] H2+, [x

3

2 7! 1]e32)
⇤
!L2 (H0000

2g ] H2+, v
4

2)

9L2

as was to be demonstrated.

2. We are to show that

8 (W , (H1, e1), (H2, e2))

2 EJboolK⇢.�
W , (H1,Cbool 7!8↵.↵!(↵!↵) e1), (H2,Cbool 7!8↵.↵!(↵!↵) e2)

�

2 EJ8↵.↵ ! (↵ ! ↵)K⇢

Expanding the definition of Cbool 7!8↵.↵!(↵!↵), we are to show that

(W , (H1, let x1 = e1 in (� .�t1.�f1.if x1 t1 f1)),

(H2, let x2 = e2 in (� .�t2.�f2.if x2 t2 f2))) 2 EJ8↵.↵ ! (↵ ! ↵)K⇢

given arbitrary e1, e2 such that (W , (H1, e1), (H2, e2)) 2 EJboolK⇢. Ex-
panding the definition of EJ·K⇢, we are to show that

9H0
1g.8H2+ : MHeap.9W 0,H0

2g, v2.
H1⇤ = H0

1g ] H1+ ^ H0
1g,H2g0 : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (;, v1), (;, v2)) 2 VJ8↵.↵ ! (↵ ! ↵)K⇢ ^

(H2g+ ] H2 ] H2+, let x1 = e1 in (� .�t1.�f1.if x1 t1 f1))
⇤
!L2 (H0

2g ] H2+, v2) 9L2
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given arbitrary W ,L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ :
MHeap,H1⇤ such that

(H1g+]H1]H1+, let x2 = e2 in (� .�t2.�f2.if x2 t2 f2))
⇤
!L1 (H1⇤, v1) 6!L1

By Lemma C.0.14, we have that
(H1g+ ] H1 ] H1+, e1)

⇤
!L1 (H1

1⇤, v
1

1
) 9L1 . Expanding the defi-

nition of EJ·K⇢ in the premise and specializing where appropriate, we
have that H1

1⇤ = H0
1g ] H0

1 ] H1+ and

(H2g+ ] H2 ] H2+, e2)
⇤
!L2 (H0

2g ] H0
2 ] H2+, v

1

2) 9L2

where H0
1g,H

0
2g : W 0 for some

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0

such that
(W 0, (H0

1, v
1

1), (H
0
2, v

1

2)) 2 VJboolK⇢

Expanding the definition of VJboolK⇢, we have that

H0
1 = ; ^ H0

2 = ; ^ v11 = v22 = b ^ b 2 {0, 1}

By Lemma C.0.14, we now have that

(H0
1g ] H1 ] H1+, let x1 = b in (� .�t1.�f1.if x1 t1 f1))

⇤
! 1L1(H

0
1g ] H1+, [x1 7! b] (� .�t1.�f1.if x1 t1 f1))

= (H0
1g ] H1+, (� .�t1.�f1.if b t1 f1))

⇤
!L1 (H1⇤, v1)

9

from which we conclude that H1⇤ = H0
1g ] H1+ and

v1 = (� .�t1.�f1.if b t1 f1) since configurations with values as
programs do not step.

Then, to prove the goal, we take W 0 = W 0, H0
1g = H0

1g, and H0
2g = H0

2g.
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To show the configuration with the heap H2g+ ] H2 ] H2+ terminates,
we have

(H2g+ ] H2 ] H2+, let x2 = e2 in (� .�t2.�f2.if x2 t2 f2))
⇤
!L2 (H0

2g ] H2+, let x2 = b in (� .�t2.�f2.if x2 t2 f2))
⇤
! 1L2(H

0
2g ] H2+, [x2 7! b] (� .�t2.�f2.if x2 t2 f2))

= (H0
2g ] H2+, (� .�t2.�f2.if b t2 f2))

9

Then take H0
2+ = H1

2+.

All that remains to show is

(W 0, (;, (� .�t1.�f1.if b t1 f1)), (;, (� .�t2.�f2.if b t2 f2))) 2 VJ8↵.↵ ! (↵ ! ↵)K⇢

Expanding the definition of VJ·K⇢ and applying Lemma C.0.8, we are
to show that

(W 00, (;, (�t1.�f1.if b t1 f1)), (;, (�t2.�f2.if b t2 f2))) 2 VJ↵ ! (↵ ! ↵)K⇢[F(↵) 7!R]

given arbitrary R 2 RelT and worlds W 00 such that
W 0

v;,;,�t1.�f1.if b t1 f1,�t2.�f2.if b t2 f2
W 00. Expanding the definition

of VJ↵ ! (↵ ! ↵)K⇢[F(↵) 7!R], pushing substitutions, and applying
Lemma C.0.8, we are to show that

(W 000, (;, (�f1.if b v1t f1)), (;, (�f2.if b v2t f2))) 2 VJ↵ ! ↵K⇢[F(↵) 7!R]

given arbitrary worlds W 000 such that
W 00

v;,;,�f1.if b v1t f1,�f2.if b v2t f2
W 000 and arbitrary v1t, v2t such

that (W 000, (;, v1t), (;, v2t)) 2 VJ↵K⇢[F(↵) 7!R]. Expanding the definition
of VJ↵ ! ↵K⇢[F(↵) 7!R] and pushing substitutions, we are to show that

(W 0000, (;, (if b v1t v1f)), (;, (if b v2t v2f))) 2 EJ↵K⇢[F(↵) 7!R]

given arbitrary worldsW 0000 such thatW 000
v;,;,if b v1t v1f ,if b v2t v2f

W 0000

and arbitrary v1f , v2f such that (;, v1f , ;, v2f) 2 VJ↵K⇢[F(↵) 7!R]. Expand-
ing the definition of EJ·K⇢, we are to show that

9H0
1g.8H2+ : MHeap.9W 0,H0

2g, v2.
H1⇤ = H0

1g ] H1+ ^ H0
1g,H2g0 : W 0

^

W 0000
v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W

0
^

(W 0, (;, v1), (;, v2)) 2 VJ8↵.↵ ! (↵ ! ↵)K⇢ ^

(H2g+ ] H2+, if b v1t v1f)
⇤
!L2 (H0

2g ] H2+, v2) 9L2
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given arbitrary L1,L2,H1g+,H2g+ : W 0000, v1,H1,H2,H1+ :
MHeap,H1⇤ such that

(H1g+ ] H1+, if b v2t v2f)
⇤
!L1 (H1⇤, v1) 6!L1

The operational semantics of LCVM o↵ers two cases depending on the
value of b. Suppose, without loss of generality, that b = 0. Then we
have

(H1g+ ] H1+, if b v1t v1)
⇤
! 1L1(H1g+ ] H1+, v1t)

⇤
!L1 (H1⇤, v1) 9L1

from which we conclude that v1 = v1t,H1⇤ = H1g+ ] H1+ since con-
figurations with values as programs do not step. Then we can take
W 0 = W 0000, H0

1g = H1g+, H0
2g = H2g+, and v2 = v2t. All that remains

is to show that

(H2g+ ] H2+, if 0 v2t v2f)
⇤
!L2 (H2g+ ] H2+, v2t) 9L2

This is actually just one step by the operational semantics of LCVM.

The case in which b = 1 is analogous, exchanging vit with vif where
appropriate.

⌧1 ! ⌧2 ⇠ !(!⌧1 ( ⌧2)

1. We are to show that

8 (W , (;, e1), (;, e2)) 2 EJ⌧1 ! ⌧2K⇢.�
W , (;,C⌧1!⌧2 7!!(!⌧1(⌧2) e1), (;,C⌧1!⌧2 7!!(!⌧1(⌧2) e2)

�
2 EJ!(!⌧1 ( ⌧2)K⇢

Expanding the definition of C⌧1!⌧2 7!!(!⌧1(⌧2) e1, we are to show that

(W , (;, let f1 = e1 in �x1. (C⌧2 7!⌧2 (. . .))),
(;, let f2 = e2 in �x2. (C⌧2 7!⌧2 (. . .)))) 2 EJ!(!⌧1 ( ⌧2)K⇢

given arbitrary e1, e2 such that (;, e1, ;, e2) 2 EJ⌧1 ! ⌧2K⇢. Expanding
the definition of EJ·K⇢, we are to show that

9H0
1,H

0
1g.8H2+ : MHeap.9H0

2,W
0,H0

2g, v2.
H1⇤ = H0

1g ] H0
1 ] H1+ ^ H0

1g,H2g0 : W 0
^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (H0
1, v1), (H

0
2, v2)) 2 VJ!(!⌧1 ( ⌧2)K⇢ ^

(H2g+ ] H2 ] H2+,

let f2 = e2 in �x2. (C⌧2 7!⌧2 (. . .)))
⇤
!L2 (H0

2g ] H0
2 ] H2+, v2) 9L2
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given arbitrary W ,L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ :
MHeap,H1⇤ such that

(H1g+]H1]H1+, let f1 = e1 in �x1. (C⌧2 7!⌧2 (. . .)))
⇤
!L1 (H1⇤, v1) 6!L1

By Lemma C.0.14, we have that
(H1g+ ] H1 ] H1+, e1)

⇤
!L1 (H1

1⇤, v
1

1
) 9L1 for some H1

1⇤, v
1

1
. Ex-

panding the definition of EJ⌧1 ! ⌧2K⇢ in the premise and specializing
where appropriate, we have that H1

1⇤ = H0
1g ] H1+ and

(H2g+ ] H2 ] H2+, e2)
⇤
!L2 (H0

2g ] H2+, v
1

2)

where H0
1g,H

0
2g : W 0 for some

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W 0

such that
(W 0, (;, v11), (;, v

1

2)) 2 VJ⌧1 ! ⌧2K⇢
Expanding the definition of VJ⌧1 ! ⌧2K⇢, we have that

v11 = �x11.e
1

1 ^ v12 = �x12.e
1

2 ^

8W 00.W 0
v;,;,e1

1
,e1

2

W 00
^ 8(W 00, (;, va1), (;, v

a

2)) 2 VJ⌧1K⇢.

(W 00, (;, [x11 7! va1]e
1

1), (;, [x
1

2 7! va2]e
1

2)) 2 EJ⌧2K⇢

(22)

By the operational semantics of LCVM, we now have that

(H1g+ ] H1 ] H1+, let f1 = e1 in �x1.(. . .))
⇤
!L1 (H0

1g ] H1+, let f1 = �x11.e
1

1 in �x1.(. . .))
⇤
! 1L1(H

0
1g ] H1+, [f1 7! �x11.e

1

1]�x1.(. . .))

=
�
H0
1g ] H1+,�x1.

�
C⌧2 7!⌧2

��
�x11.e

1

1

�
(C⌧1 7!⌧1 x1)

���

9

so H1⇤ = H0
1g ] H1+ and

v1 = �x1.
�
C⌧2 7!⌧2

��
�x11.e

1

1

�
(C⌧1 7!⌧1 x1)

��

Then we show the goal by taking W 0 = W 0, H0
1g = H0

1g, H
0
2g = H0

2g,
H0
1 = ;, H0

2 = ;, and

v2 = �x2.
�
C⌧2 7!⌧2

��
�x12.e

1

2

�
(C⌧1 7!⌧1 x2)

��
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To show the configuration with H2g+ ] H2 ] H2+ terminates, we have

(H2g+ ] H2 ] H2+, let f2 = e2 in �x2.(. . .))
⇤
!L2 (H2g+ ] H2 ] H2+, let f2 = �x12.e

1

2 in �x1.(. . .))
⇤
! 1L2(H2g+ ] H2 ] H2+, [f2 7! �x12.e

1

2]�x2.(. . .))

=
�
H2g+ ] H2+,�x2.

�
C⌧2 7!⌧2

��
�x12.e

1

2

�
(C⌧1 7!⌧1 x2)

���

9L2

Then take H0
2 = ;, H0

2+ = H1
2+.

All that remains to show is that:

(W 0,
�
;,
�
�x1.

�
C⌧2 7!⌧2

��
�x1

1
.e1
1

�
(C⌧1 7!⌧1 x1)

����
,�

;,
�
�x2.

�
C⌧2 7!⌧2

��
�x1

2
.e1
2

�
(C⌧1 7!⌧1 x2)

����
)

2 VJ!(!⌧1 ( ⌧2)K⇢

Expanding the definitions of VJ!(!⌧1 ( ⌧2)K⇢, VJ!·K⇢ (twice), and
pushing substitutions, we are to show that

(W 00,
�
;,
�
C⌧2 7!⌧2

��
�x1

1
.e1
1

�
(C⌧1 7!⌧1 va

1
)
���

,�
;,
�
C⌧2 7!⌧2

��
�x1

2
.e1
2

�
(C⌧1 7!⌧1 va

2
)
���

)
2 EJ⌧2K⇢

given arbitrary worlds W 00 such that W 0
v;,;,e1

1
,e1

2

W 00 and arbitrary
va
1
, va

2
such that

(W 00, (;, va
1
), (;, va

2
)) 2 VJ⌧1K⇢. Expanding the definition of EJ·K·, we

are to show that

9H0
1,H

0
1g.8H2+ : MHeap.9H0

2,W
0,H0

2g, v2.
H1⇤ = H0

1g ] H0
1 ] H1+ ^ H0

1g,H2g0 : W 0
^

W 00
v(dom(H1+),dom(H2+)),rchgclocs(W 00,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W

0
^

(W 0, (H0
1, v1), (H

0
2, v2)) 2 VJ⌧ K⇢ ^

(H2g+ ] H2+,
�
C⌧2 7!⌧2

��
�x1

1
.e1
1

�
(C⌧1 7!⌧1 va

1
)
��
)

⇤
!L2 (H0

2g ] H0
2 ] H2+, v2) 9L2

given arbitrary L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ : MHeap,H1⇤
such that

(H1g+ ] H1+,
�
C⌧2 7!⌧2

��
�x11.e

1

1

�
(C⌧1 7!⌧1 va1)

�� ⇤
!L1 (H1⇤, v1) 6!L1

By Lemma C.0.14, we have that
(H1g+ ] H1 ] H1+,C⌧1 7!⌧1 va

1
)

⇤
!L1[FL(e11)

�
H1
1⇤, v

1

1

�
9L1[FL(e11)

for

some H1
1⇤, v

1

1
. Recall that (W 00, (;, va

1
), (;, va

2
)) 2 VJ⌧1K⇢ by assump-

tion, so (W 00, (;, va
1
), (;, va

2
)) 2 EJ⌧1K⇢ by Lemma C.0.8. Then,

appealing to the induction hypothesis that ⌧1 ⇠ ⌧1 is sound,
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expanding the definition of EJ·K⇢, and specializing as appropriate, we
have that H1

1⇤ = H0
1g ] H1+ and

(H2g+ ] H2+,C⌧1 7!⌧1 va2)
⇤
!L2[FL(e12)

(H0
2g ] H2+, v

1

2) 9L2[FL(e12)

where H0
1g,H

0
2g : W 000 for some

W 00
v(dom(H1+),dom(H2+)),rchgclocs(W 00,L1[FL(e11)[FL(cod(H1+)),L2[FL(e12)[FL(cod(H2+)))

W 000 such that
(W 000, (;, v11), (;, v

1

2)) 2 VJ⌧1K⇢

Now, by the operational semantics of LCVM, we have that

�
H1g+ ] H1+,

�
C⌧2 7!⌧2

��
�x11.e

1

1

�
(C⌧1 7!⌧1 va1)

���

⇤
!L1

�
H0
1g ] H1+,

�
C⌧2 7!⌧2

��
�x11.e

1

1

�
v11
���

⇤
! 1L1

�
H0
1g ] H1+,

�
C⌧2 7!⌧2 [x11 7! v11]e

1

1

��

⇤
!L1 (H1⇤, v1)

9L1

Then applying Lemma C.0.14 again, we have that�
H0
1g ] H1+, [x11 7! v1

1
]e1
1

� ⇤
!L1

�
H2
1⇤, v

2

1

�
9L1 for some

H2
1⇤, v

2

1
. Since (W 000, (;, v1

1
), (;, v1

2
)) 2 VJ⌧1K⇢ and

W 0
v;,;,e1

1
,e1

2

W 000 (by Lemma C.0.2), we have

(W 000, (;, [x1
1
7! v1

1
]e1
1
), (;, [x2

2
7! v1

2
]e1
2
)) 2 EJ⌧2K⇢ by (22). Expanding

the definition of EJ·K⇢, we have that H2
1⇤ = H00

1g ] H1+ and

(H0
2g ] H2+, [x

2

2 7! v12]e
1

2)
⇤
!L2 (H00

2g ] H2+, v
2

2) 9L2

where H00
1g,H

00
2g : W 0000 for some

W 000
v(dom(H1+),dom(H2+)),rchgclocs(W 000,L1[FL(cod(H1+)),L2[FL(cod(H2+)))

W 0000 such that
(W 0000, (;, v21), (;, v

2

2)) 2 VJ⌧2K⇢

Now, by the operational semantics of LCVM, we have that

�
H0
1g ] H1+,

�
C⌧2 7!⌧2 [x11 7! v11]e

1

1

�� ⇤
!L1

�
H00
1g ] H1+,

�
C⌧2 7!⌧2 v21

��

⇤
!L1 (H1⇤, v1)

9L1

Recall that (W 0000, (;, v2
1
), (;, v2

2
)) 2 VJ⌧2K⇢, so

(W 0000, (;, v2
1
), (;, v2

2
)) 2 EJ⌧2K⇢ by Lemma C.0.8. Then, appeal-

ing to the induction hypothesis that ⌧2 ⇠ ⌧2 is sound, expanding
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the definition of EJ·K⇢, and specializing as appropriate, we have that
H1⇤ = H000

1g ] H000
1 ] H1+ and

(H00
2g ] H2+,C⌧2 7!⌧2v

2

2)
⇤
!L2 (H000

2g ] H000
2 ] H2+, v2) 9L2

where H000
1g,H

000
2g : W 00000 for some

W 0000
v(dom(H1+),dom(H2+)),rchgclocs(W 0000,L1[FL(cod(H1+)),L2[FL(cod(H2+)))

W 00000 such that

(W 00000, (H000
1 , v1), (H

000
2 , v2)) 2 VJ⌧2K⇢

Then we show the goal by taking W 0 = W 00000, H0
1 = H000

1 , H
0
2 = H000

2 ,
H0
1g = H000

1g, and H0
2g = H000

2g. Finally, to show the configuration with
H2g+ ] H2+ terminates, we have:

�
H2g+ ] H2+,

�
C⌧2 7!⌧2

��
�x12.e

1

2

�
(C⌧1 7!⌧1 va2)

���

⇤
!L2

�
H0
2g ] H2+,

�
C⌧2 7!⌧2

��
�x12.e

1

2

�
v12
���

⇤
! 1L2

�
H0
2g ] H2+,

�
C⌧2 7!⌧2 [x12 7! v12]e

1

2

��

⇤
!L2

�
H00
2g ] H2+,

�
C⌧2 7!⌧2 v22

��

⇤
!L2

�
H000
2g ] H000

2 ] H2+, v2
�

9L2

2. We are to show that

8 (W , (;, e1), (;, e2)) 2 EJ!(!⌧1 ( ⌧2)K⇢.�
W ,

�
;,C!(!⌧1(⌧2) 7!⌧1!⌧2

e1
�
,
�
;,C!(!⌧1(⌧2) 7!⌧1!⌧2

e2
��

2 EJ⌧1 ! ⌧2K⇢

Expanding the definition of C!(!⌧1(⌧2) 7!⌧1!⌧2 e1, we are to show that

(W , (;, let f1 = e1 in �x1. (C⌧2 7!⌧2 (. . .))) ,
(;, let f2 = e2 in �x2. (C⌧2 7!⌧2 (. . .)))) 2 EJ⌧1 ! ⌧2K⇢

given arbitrary e1, e2 such that (;, e1, ;, e2) 2 EJ!(!⌧1 ( ⌧2)K⇢. Ex-
panding the definition of EJ·K⇢, we are to show that

9H0
1g.8H2+ : MHeap.9W 0,H0

2g, v2.
H1⇤ = H0

1g ] H0
1 ] H1+ ^ H0

1g,H2g0 : W 0
^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (;, v1), (;, v2)) 2 VJ⌧1 ! ⌧2K⇢ ^

(H2g+ ] H2 ] H2+, let f2 = e2 in �x2. (C⌧2 7!⌧2 (. . .)))
⇤
!L2 (H0

2g ] H2+, v2) 9L2
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given arbitrary W ,L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ :
MHeap,H1⇤ such that

(H1g+]H1]H1+, let f1 = e1 in �x1. (C⌧2 7!⌧2 (. . .)))
⇤
!L1 (H1⇤, v1) 6!L1

By Lemma C.0.14, we have that
H1g+ ] H1 ] H1+, e1)

⇤
!L1 (H1

1⇤, v
1

1
) 9L1 for some H1

1⇤, v
1

1
. Ex-

panding the definition of EJ!(!⌧1 ( ⌧2)K⇢ in the premise and
specializing where appropriate, we have that H1

1⇤ = H0
1g ] H0

1H1+ and

(H2g+ ] H2 ] H2+, e2)
⇤
!L2 (H0

2g ] H0
2 ] H2+, v

1

2)

where H0
1g,H

0
2g : W 0 for some

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W 0

such that

(W 0, (H0
1, v

1

1), (H
0
2, v

1

2)) 2 VJ!(!⌧1 ( ⌧2)K⇢

Expanding the definition of VJ! ·K· (twice) and VJ·( ·K·, we have
that

v11 = �x11.e
1

1 ^ v12 = �x12.e
1

2 ^ H0
1 = ; ^ H0

2 = ;

8W 00.W 0
v;,;,e1

1
,e1

2

W 00 =)

8(W 00, (;, va1), (;, v
a

2)) 2 VJ⌧1K⇢.(;, [x11 7! va1]e
1

1, ;, [x
1

2 7! va2]e
1

2) 2 EJ⌧2K⇢
(23)

where we associate empty heaps with the va
i
because the tuple comes

from VJ!⌧1K⇢. By the operational semantics of LCVM, we now have
that

(H1g+ ] H1 ] H1+, let f1 = e1 in �x1.(. . .))
⇤
!L1 (H0

1g ] H1+, let f1 = �x11.e
1

1 in �x1.(. . .))
⇤
! 1L1(H

0
1g ] H1+, [f1 7! �x11.e

1

1]�x1.(. . .))

=
�
H0
1g ] H1+,�x1.

�
C⌧2 7!⌧2

��
�x11.e

1

1

�
(C⌧1 7!⌧1 x1)

���

9L1

so H1⇤ = H0
1g ] H1+ and

v1 = �x1.
�
C⌧2 7!⌧2

��
�x11.e

1

1

�
(C⌧1 7!⌧1 x1)

��

Then we show the goal by taking W 0 = W 0, H0
1g = H0

1g, H
0
2g = H0

2g

and
v2 = �x2.

�
C⌧2 7!⌧2

��
�x12.e

1

2

�
(C⌧1 7!⌧1 x2)

��
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To show the configuration H2g+ ] H2 ] H2+ terminates, we have

(H2g+ ] H2 ] H2+, let f2 = e2 in �x2.(. . .))
⇤
!L2 (H0

2g ] H2+, let f2 = �x12.e
1

2 in �x1.(. . .))
⇤
! 1L2(H

0
2g ] H2+, [f2 7! �x12.e

1

2]�x2.(. . .))

=
�
H0
2g ] H2+,�x2.

�
C⌧2 7!⌧2

��
�x12.e

1

2

�
(C⌧1 7!⌧1 x2)

���

9L2

All that remains to show is that

(W 0,
�
;,
�
�x1.

�
C⌧2 7!⌧2

��
�x11.e

1

1

�
(C⌧1 7!⌧1 x1)

����
,

�
;,
�
�x2.

�
C⌧2 7!⌧2

��
�x12.e

1

2

�
(C⌧1 7!⌧1 x2)

����
)

2 VJ⌧1 ! ⌧2K⇢

Expanding the definition of VJ⌧1 ! ⌧2K⇢ and pushing substitutions,
we are to show that

(W 00,
�
;,
�
C⌧2 7!⌧2

��
�x11.e

1

1

�
(C⌧1 7!⌧1 va1)

���
,

�
;,
�
C⌧2 7!⌧2

��
�x12.e

1

2

�
(C⌧1 7!⌧1 va2)

���
)

2 EJ⌧2K⇢

given arbitrary worlds W 00 such that W 0
v;,;,e1

1
,e1

2

W 00 and va
1
, va

2
such

that (W 00, (;, va
1
), (;, va

2
)) 2 VJ⌧1K⇢. Expanding the definition of EJ·K·,

we are to show that

9H0
1g.8H2+ : MHeap.9W 0,H0

2g, v2.
H1⇤ = H0

1g ] H0
1 ] H1+ ^ H0

1g,H2g0 : W 0
^

W 00
v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W

0
^

(W 0, (;, v1), (;, v2)) 2 VJ⌧2K⇢ ^

(H2g+ ] H2+,
�
C⌧2 7!⌧2

��
�x1

1
.e1
1

�
(C⌧1 7!⌧1 va

1
)
��
)

⇤
!L2 (H0

2g ] H2+, v2) 9L2

given arbitrary L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ : MHeap,H1⇤
such that

(H1g+ ] H1+,
�
C⌧2 7!⌧2

��
�x12.e

1

2

�
(C⌧1 7!⌧1 va2)

��
)

⇤
!L1 (H1⇤, v1) 6!L1

By Lemma C.0.14, we have that
(H1g+ ] H1+,C⌧1 7!⌧1 va

1
)

⇤
!L1[FL(e11)

�
H1
1⇤, v

1

1

�
9L1[FL(e11)

for some

H1
1⇤, v

1

1
. Recall that (W 00, (;, va

1
), (;, va

2
)) 2 VJ⌧1K⇢ by assumption,

so (W 00, (;, va
1
), (;, va

2
)) 2 EJ⌧1K⇢ by Lemma C.0.8. Then, appealing

to the inductive hypothesis that ⌧1 ⇠ ⌧1 is sound, expanding the
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definition of EJ·K⇢, and specializing as appropriate, we have that
H1
1⇤ = H0

1g ] H0
1 ] H1+ and

(H2g+ ] H2+,C⌧2 7!⌧2v
a

2)
⇤
!L2[FL(e12)

(H0
2g ] H0

2 ] H2+, v
1

2) 9L2[FL(e12)

where H0
1g,H

0
2g : W 000 for some

W 00
v(dom(H1+),dom(H2+)),rchgclocs(W 00,L1[FL(e11)[FL(cod(H1+)),L2[FL(e12)[FL(cod(H2+)))

W 000 such that

(W 000, (H0
1, v

1

1), (H
0
2, v

1

2)) 2 VJ⌧1K⇢

Since ⌧1 2 Duplicable, expanding the definition of Duplicable and
VJ·K· reveals that we have H0

1 = H0
2 = ;.

Now, by the operational semantics of LCVM, we have that

�
H1g+ ] H1+,

�
C⌧2 7!⌧2

��
�x11.e

1

1

�
(C⌧1 7!⌧1 va1)

���

⇤
!L1

�
H0
1g ] H1+,

�
C⌧2 7!⌧2

��
�x11.e

1

1

�
v11
���

⇤
! 1L1

�
H0
1g ] H1+,

�
C⌧2 7!⌧2 [x11 7! v11]e

1

1

��

⇤
!L1 (H1⇤, v1)

9L1

Then applying Lemma C.0.14 again, we have that�
H0
1g ] H1+, [x11 7! v1

1
]e1
1

� ⇤
!L1

�
H2
1⇤, v

2

1

�
9L1 for some

H2
1⇤, v

2

1
. Since (W 000, (;, v1

1
), (;, v1

2
)) 2 VJ⌧1K⇢ and

W 0
v;,;,e1

1
,e1

2

W 000 (by Lemma C.0.2), we have

(W 000, (;, [x1
1
7! v1

1
]e1
1
), (;, [x2

2
7! v1

2
]e1
2
)) 2 EJ⌧2K⇢ by (23). Expanding

the definition of EJ·K⇢, we have that H2
1⇤ = H00

1g ] H00
1 ] H1+ and

(H2g+ ] H2+, [x
2

2 7! v12]e
1

2)
⇤
!L2 (H00

2g ] H00
2 ] H2+, v

2

2) 9L2

where H00
1g,H

00
2g : W 0000 for some

W 000
v(dom(H1+),dom(H2+)),rchgclocs(W 000,L1[FL(cod(H1+)),L2[FL(cod(H2+)))

W 0000 such that

(W 0000, (H00
1, v

2

1), (H
00
2, v

2

2)) 2 VJ⌧2K⇢

Now, by the operational semantics of LCVM, we have that

�
H0
1g+ ] H1+,

�
C⌧2 7!⌧2 [x11 7! v11]e

1

1

�� ⇤
!

�
H0
1g ] H00

1 ] H1+,
�
C⌧2 7!⌧2 v21

��

⇤
! (H1⇤, v1)

9
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Recall that (W 0000, (H00
1, v

2

1
), (H00

2, v
2

2
)) 2 VJ⌧2K⇢ , so

(W 0000, (H00
1, v

2

1
), (H00

2, v
2

2
)) 2 EJ⌧2K⇢ by Lemma C.0.8. Then, ap-

pealing to the indcutive hypothesis that ⌧2 ⇠ ⌧2 is sound, expanding
the definition of EJ·K⇢, and specializing as appropriate, we have that
H1⇤ = H000

1g ] H1+ and

(H00
2g ] H00

2 ] H2+,C⌧2 7!⌧2v
2

2)
⇤
!L2 (H000

2g ] H2+, v2) 9L2

where H000
1g,H

000
2g : W 00000 for some

W 0000
v(dom(H1+),dom(H2+)),rchgclocs(W 0000,L1[FL(cod(H1+)),L2[FL(cod(H2+)))

W 00000 such that

(W 00000, (;, v1), (;, v2)) 2 VJ⌧2K⇢

Then we show the goal by taking W 0 = W 00000, H0
1g = H000

1g, H
0
2g = H000

2g,
and v2 = v2. For showing the configuration with H2g+]H2+ terminates,
we have

�
H2g+ ] H2+,

�
C⌧2 7!⌧2

��
�x12.e

1

2

�
(C⌧1 7!⌧1 va2)

���

⇤
!L2

�
H0
2g ] H2+,

�
C⌧2 7!⌧2

��
�x12.e

1

2

�
v12
���

⇤
! 1L2

�
H0
2g ] H2+,

�
C⌧2 7!⌧2 [x12 7! v12]e

1

2

��

⇤
!L2

�
H00
2g ] H00

2 ] H2+,
�
C⌧2 7!⌧2 v22

��

⇤
!L2

�
H000
2g ] H2+, v2

�

9L2

ref ⌧ ⇠ 9⇣.cap ⇣ ⌧ ⌦ !ptr ⇣

1. For the first direction, we show that

8 (W , (H1, e1), (H2, e2)) 2 EJref ⌧K⇢.
(W , (H1,Cref ⌧ 7!9⇣.cap ⇣ ⌧ ⌦ !ptr ⇣(e1)) ,

(H2,Cref ⌧ 7!9⇣.cap ⇣ ⌧ ⌦ !ptr ⇣(e2))) 2 EJ9⇣.cap ⇣ ⌧ ⌦ !ptr ⇣K⇢

where we have, by our induction hypothesis, that we can convert ⌧ to
⌧ .

We first expand the conversions, noting that the terms in question are:

let x` = alloc C⌧ 7!⌧ (!ei) in ((), x`)

Expanding the definition of EJ9⇣.cap ⇣ ⌧ ⌦ !ptr ⇣K⇢, we see that
what we need to show is that:
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9H0
1,H

0
1g.8H2+ : MHeap.9H0

2,W
0,H0

2g, v2.
H1⇤ = H0

1g ] H0
1 ] H1+ ^ H0

1g,H2g0 : W 0
^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (H0
1, v1), (H

0
2, v2)) 2 VJ9⇣.cap ⇣ ⌧ ⌦ !ptr ⇣K⇢ ^

(H2g+ ] H2 ] H2+, let x` = alloc C⌧ 7!⌧ (!e2) in ((), x`))
⇤
!L2 (H0

2g ] H0
2 ] H2+, v2) 9L2

given arbitrary L1,L2,H1g+,H2g+ : W , v1,H1+ : MHeap,H1⇤, such
that

(H1g+]H1]H1+, let x` = alloc C⌧ 7!⌧ (!e1) in ((), x`))
⇤
!L1 (H1⇤, v1) 9L1

By Lemma C.0.14, we have that
(H1g+ ] H1 ] H1+, e1)

⇤
!L1 (H1

1⇤, v
1

1
) 9L1 for some H1

1⇤, v
1

1
.

Our induction hypothesis, appropriately instantiated and simplified,
then tells us that

9W 1 H1
1g+.H

1
1⇤ = H1

1g+ ] H1+ ^ H1
1g+,H

1
2g+ : W 1

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
1
^

8H2+.9v
1

2,H
1
2g+.(H2g+ ] H2+, e2)

⇤
!L2 (H1

2g+ ] H2+, v
1

2) 9L2

^ (W 1, (;, v11), (;, v
1

2)) 2 VJref ⌧K⇢
(24)

This means, in particular, that v1
1
and v1

2
are locations, call them `1

and `2, and heap satisfaction means that H1
ig+(`i) are values (call

them v1 and v2) related by VJ⌧K⇢. Also, since the value relation for
MiniML doesn’t allow heap fragments, this means that the locations
in Hi have been consumed.

Thus, we can instantiate our induction hypothesis for C⌧ 7!⌧ with vi
and get reductions that we can use to again appeal to Lemma C.0.14,
with. In particular, we know that we proceed with the following
reductions thus far (with related ones on the other side):

(H1g+ ] H1 ] H1+, let x` = alloc C⌧ 7!⌧ (!e1) in ((), x`))
⇤
!L1 (H1

1g+ ] H1+, let x` = alloc C⌧ 7!⌧ (!`1) in ((), x`))
⇤
!L1 (H1

1g+ ] H1+, let x` = alloc C⌧ 7!⌧ (v1) in ((), x`))
⇤
!L1 (H2

1g+ ] H2
1 ] H1+, let x` = alloc v10 in ((), x`))

Where we know we have

W 1
v(dom(H1+),dom(H2+)),rchgclocs(W 1,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W

2
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H2
1g+,H

2
2g+ : W 2

(W 2, (H2
1, v10), (H

2
2, v20)) 2 VJ⌧ K⇢

Now, we can proceed with the remaining reductions, after which we
have to complete all our original obligations at the resulting future
world. The reductions are:

(H2
1g+ ] H2

1 ] H1+, let x` = alloc v10 in ((), x`))
⇤
!L1 (H2

1g+ ] {`10
m
7! v01} ] H2

1 ] H1+, let x` = `10 in ((), x`))
⇤
!L1 (H2

1g+ ] H2
1 ] {`10

m
7! v01} ] H1+, ((), `10))

Where the latter has clearly terminated to a value. We know, analo-
gously, that the other side will run in the same way, terminating with
the configuration:

(H2
2g+ ] H2

2 ] {`20
m
7! v02} ] H2+, ((), `20))

The world we choose is simply W 2 — our manual allocation doesn’t
change the garbage collected fragments of the heap (indicated by name
with a subscript g), and thus the same world and heap satisfaction
still holds. Since we already have the values to which both sides
terminated, our remaining obligation is to show:

(W 2, (H2
1 ] {`10

m
7! v01}, ((), `10)),

(H2
2 ] {`20

m
7! v02}, ((), `20))) 2 VJ9⇣.cap ⇣ ⌧ ⌦ !ptr ⇣K⇢

Expanding the definition of VJ9⇣.⌧ K⇢, it su�ces to show that:

(W 2, (H2
1 ] {`10

m
7! v10}, ((), `10)), (H2

2 ] {`20
m
7! v02}, ((), `20)))

2 VJcap ⇣ ⌧ ⌦ !ptr ⇣K⇢[L3(⇣) 7!(`10 ,`20 )]

Now, we turn to the definition of VJ⌧1 ⌦ ⌧2K⇢, which says we need to
split the heaps and then prove, using the split (we use empty heaps
on one side of our split), the following two obligations:

(W 2, (H2
1 ] {`10

m
7! v01}, ()), (H

2
2 ] {`20

m
7! v02}, ())) 2 VJcap ⇣ ⌧ K⇢[L3(⇣) 7!(`10 ,`20 )]

}

(W 2, (;, `10), (;, `20)) 2 VJ!ptr ⇣K⇢[L3(⇣) 7!(`10 ,`20 )]
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The second one holds trivially, since ! requires empty heaps and
the ptr type requires that the locations are mapped to by the type
environment, which they are. The first is only slightly less trivial: it
requires, first, that ⇢[L3(⇣) 7! (`10 , `2)](⇣) = (`1, `2), which it clearly
does. Then, that those locations map to values in the heap, and that,
for the rest of the heap, the following holds:

(W 2, (H2
1, v10), (H

2
2, v21)) 2 VJ⌧ K⇢[L3(⇣) 7!(`10 ,`20 )]

}

This holds by earlier assumption on v10 and v20 and weakening in the
type substitution.

2. The other direction, requires that we show

8 (W , (H1, e1), (H2, e2)) 2 EJ9⇣.cap ⇣ ⌧ ⌦ !ptr ⇣K⇢.
(W , (H1,C9⇣.cap ⇣ ⌧ ⌦ !ptr ⇣ 7!ref ⌧ (e1)), (H2,C9⇣.cap ⇣ ⌧ ⌦ !ptr ⇣ 7!ref ⌧ (e2)))

2 EJref ⌧K⇢

where we have, by our induction hypothesis, that we can convert ⌧ to
⌧ .

We first expand the conversions, noting that the terms in question are:

let x` = snd ei in let = (x` := C⌧ 7!⌧ (!x`)) in gcmov x`

As before, we expand the definition our obligation, in this case
EJref ⌧K⇢, to show that what we need is that:

9W 0,H0
1g,H

0
2g.8H2+.9v2.

H1⇤ = H0
1g ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (;, v1), (;, v2)) 2 VJref ⌧K⇢ ^

(H2g+ ] H2 ] H2+, let x` = snd e2 in let = (x` := C⌧ 7!⌧ (!x`)) in gcmov x`)
⇤
!L2 (H0

2g ] H2+, v2) 9L1

given arbitrary L1,L2,H1g+,H2g+ : W , v1,H1+,H1⇤, such that

(H1g+ ] H1 ] H1+, let x` = snd e1 in let = (x` := C⌧ 7!⌧ (!x`)) in gcmov x`)
⇤
!L1 (H1⇤, v1) 9L1

We appeal to Lemma C.0.14, which tells us that
(H1g+ ] H1 ] H1+, e1)

⇤
!L1 (H1

1⇤, v
1

1
) 9L1 for some H1

1⇤, v
1

1
.
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Our induction hypothesis, appropriately instantiated and simplified,
then tells us that

9H1
1,H

1
1g.8H2+ : MHeap.9H1

2,W
0,H1

2g, v2
1.

H1⇤ = H1
1g ] H1

1 ] H1+ ^ H1
1g,H

1
2g0 : W

1
^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
1
^

(W 1, (H1
1, v1

1), (H1
2, v2

1)) 2 VJ9⇣.cap ⇣ ⌧ ⌦ !ptr ⇣K⇢ ^

(H2g+ ] H2+, e1)
⇤
!L2 (H1

2g ] H1
2 ] H2+, v2

1) 9
(25)

In particular, that means that v1
1
and v1

2
have the form ((), `i), where

the value relation means that the heap fragments map `i to a vi. Note
that H1

i
is composed of {`1

m
7! vi} ] H10

i
. This follows from the value

relation.

If we continue evaluating our original terms, we step as follows:

(H1g+ ] H1 ] H1+,

let x` = snd e1 in let = (x` := C⌧ 7!⌧ (!x`)) in gcmov x`)
⇤
!L1

(H1
1g+ ] {`1

m
7! vi} ] H10

i
] H1+,

let x` = snd ((), `1) in let = (x` := C⌧ 7!⌧ (!x`)) in gcmov x`) !L1

(H1
1g+ ] {`1

m
7! vi} ] H10

i
] H1+,

let x` = `1 in let = (x` := C⌧ 7!⌧ (!x`)) in gcmov x`) !L1

(H1
1g+ ] {`1

m
7! v1} ] H10

i
] H1+, let = (`1 := C⌧ 7!⌧ (!`1)) in gcmov `1) !L1

(H1
1g+ ] {`1

m
7! v1} ] H10

i
] H1+, let = (`1 := C⌧ 7!⌧ (v1)) in gcmov `1)

Since we know that v1 was in the value relation at type ⌧ , we can
appeal to our induction hypothesis with the heap fragment H10

i
to get

that C⌧ 7!⌧ (v1) (and, correspondingly C⌧ 7!⌧ (v2)) are in the expression
relation at EJ⌧K⇢. That expression relation will tell us that once the
term runs to a value, that heap fragment will be consumed.

This means, in particular, that we can combine Lemma C.0.14 with
the definition of the expression relation to get that

(H1
1g+ ] {`1

m
7! v1} ] H10

i
] H1+, C⌧ 7!⌧ (v1))

⇤
!L1 (H2

1g+ ] {`1
m
7! v1} ] H1+, v21) 9L1

for some H2
1g+, v

2

1
, where v2

1
is related to a corresponding v2

2
in VJ⌧K⇢

at a world W 2 that is an extension of W 1 (note that all the other
steps did not change the garbage collected portion of the heap, so the
only changes happened during the conversion, and are thus guided by
the expression relation that our induction hypothesis produces).

This means our final sequence of steps are:



value interoperability: memory management and polymorphism 323

(H1
1g+ ] {`1

m
7! v1} ] H10

i
] H1+, let = (`1 := C⌧ 7!⌧ (v1)) in gcmov `1)

⇤
!L1

(H2
1g+ ] {`1

m
7! v1} ] H1+, let = (`1 := v2

1
) in gcmov `1) !L1

(H2
1g+ ] {`1

m
7! v2

1
} ] H1+, let = () in gcmov `1) !L1

(H2
1g+ ] {`1

m
7! v2

1
} ] H1+, gcmov `1) !L1

(H2
1g+ ] {`1

gc
7! v2

1
} ] H1+, `1)

And in particular, we can relate our final values, `1 and `2, at VJref ⌧K⇢
at a world W 3, which is W 2 extended with the mapping from (`1, `2)
to VJ⌧K⇢. We note, critically, that the owned portion of the heap
is now empty, a requirement of VJ⌧K⇢, having been moved into the
garbage collected portion of the heap.

Lemma C.0.16 (Compat x).

�; !�;�;�, x : ⌧ ` x � x : ⌧

Proof. Expanding the definition of�, ·+, and EJ·K· (noting via Lemma C.0.10
that H1 = H2 = ;), we are to show that

9W 0 H0
1g H0

2g v2.H1⇤ = H0
1g ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0

^ (W 0, (;, v1), (;, v2)) 2 VJ⌧K⇢ ^

(H2g+ ] H2+, �
2
L(�

2
�,x:⌧ (x)))

⇤
!L2 (H0

2g+ ] H2+, v2) 9L2

(26)

given arbitrary ⇢, �L, ��,x:⌧ ,W ,H1g+,H2g+,H1+,H1⇤,H2+, v1,L1,L2 such
that ⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W , ;, ;, �L) 2 GJ!�K⇢,
��,x:⌧ 2 GJ�, x : ⌧K⇢,
H1g+,H2g+ : W and

(H1g+ ] H1+, �
1
L(�

1
�,x:⌧ (x)))

⇤
!L1 (H1⇤, v1) 9L1

Expanding the definition of GJ·K·, we have that

��,x:⌧ = �[x 7! (v1, v2)] ^ � 2 GJ�K⇢ ^ (W , (;, v1), (;, v2)) 2 VJ⌧K⇢

so �iL(�
i

�,x:⌧ (x)) = vi. Then we have (26) by taking W 0 = W , H0
1g = H1g+

and H0
2g = H2g+ noting that configurations with values as programs do not

step.
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Lemma C.0.17 (Compat ()).

�; !�;�;� ` () � () : unit

Proof. Expanding the definition of�, ·+, and EJ·K· (noting via Lemma C.0.10
that H1 = H2 = ;), we are to show that

9W 0 H0
1g H0

2g v2.H1⇤ = H0
1g ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0

^ (W 0, (;, v1), (;, v2)) 2 VJ⌧K⇢ ^

(H2g+ ] H2+, �
2
L(�

2
�(())))

⇤
!L2 (H0

2g+ ] H2+, v2) 9L2

(27)

given arbitrary ⇢, �L, ��,W ,H1g+,H2g+,H1+,H1⇤,H2+, v1,L1,L2 such that
⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W , ;, ;, �L) 2 GJ!�K⇢,
�� 2 GJ�K⇢,

H1g+,H2g+ : W and

(H1g+ ] H1+, �
1
L(�

1
�(())))

⇤
!L1 (H1⇤, v1) 9L1

We can simplify the substitutions away, and note that the configuration
(H1g+ ] H1+, ()) does not step because () is a value. Thus, we have (27) by
taking W 0 = W , H0

1g = H1g+ and H0
2g = H2g+.

Lemma C.0.18 (Compat �x : ⌧.e). If �; !�;�;�, x : ⌧1 ` e � e : ⌧2, then

�; !�;�;�, x : ⌧1 ` �x : ⌧1.e � �x : ⌧1.e : ⌧1 ! ⌧2

Proof. Expanding the definition of�, ·+, and EJ·K· (noting via Lemma C.0.10
that H1 = H2 = ;), we are to show that

9W 0 H0
1g H0

2g v2.H1⇤ = H0
1g ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (;, v1), (;, v2)) 2 VJ⌧K⇢ ^ (H2g+ ] H2+,�x.�
2
L(�

2
�(e

+)))
⇤
! (H0

2g+ ] H2+, v2) 9
(28)

given arbitrary ⇢, �L, ��,W ,H1g+,H2g+,H1+,H1⇤,H2+, v1,L1,L2 such that
⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W , ;, ;, �L) 2 GJ!�K⇢,
�� 2 GJ�K⇢,

H1g+,H2g+ : W and

(H1g+ ] H1+,�x.�
1
L(�

1
�(e1

+)))
⇤
!L1 (H1⇤, v1) 9
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We show (28) by taking W 0 = W , H0
1g = H1g+ and H0

2g = H2g+, noting
that configurations with values as programs do not step. It thus su�ces to
show:

(W , (;,�x.�1L(�
1
�(e

+))), (;,�x.�2L(�
2
�(e

+)))) 2 VJ⌧1 ! ⌧2K⇢

Expanding the definition of VJ⌧1 ! ⌧2K⇢ and pushing substitutions inside
��, we are to show that

(W ⇤, (;, �1L(�
1
�,x:⌧ [x 7! (v1a, v2a)](e

+))), (;, �2L(�
2
�,x:⌧ [x 7! (v1a, v2a)](e

+)))) 2 EJ⌧2K⇢

given arbitrary v1a, v2a such that W v;,;,�1
L(�

1
�(e

+)),�2
L(�

2
�(e

+)) W ⇤ and
(W ⇤, (;, v1a), (;, v2a)) 2 VJ⌧1K⇢ We have this by expanding the definition of
� in the premise and specializing where appropriate.

Lemma C.0.19 (Compat e1 e2). If �; !�;�;� ` e1 � e1 : ⌧1 ! ⌧2 and
�; !�;�;� ` e2 � e2 : ⌧1, then

�; !�;�;� ` e1 e2 � e1 e2 : ⌧2

Proof. Expanding the definition of�, ·+, and EJ·K· (noting via Lemma C.0.10
that H1 = H2 = ;), we are to show that

9W 0 H0
1g H0

2g v2.H1⇤ = H0
1g ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0

^ (W 0, (;, v1), (;, v2)) 2 VJ⌧2K⇢ ^

(H2g+ ] H2+,
�
�2L

�
�2�

�
e1

+
��

�2L
�
�2�

�
e2

+
���

)
⇤
!L2 (H0

2g+ ] H2+, v2) 9
(29)

given arbitrary ⇢, �L, ��,W ,H1g+,H2g+,H1+,H1⇤,H2+, v1,L1,L2 such that
⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W , ;, ;, �L) 2 GJ!�K⇢,
�� 2 GJ�K⇢,

H1g+,H2g+ : W and

(H1g+ ] H1+,
�
�1L

�
�1�

�
e1

+
��

�1L
�
�1�

�
e2

+
���

)
⇤
!L1 (H1⇤, v1) 9

By Lemma C.0.14, we have that

�
H1g+ ] H1+, �

1
L

�
�1�

�
e1

+
��� ⇤

!L1[FL(�1
L(�1

�(e2
+))) (H

1
1⇤, v

1

1) 9
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for some H1
1⇤, v

1

1
. Then expanding the definition of � and EJ·K· in the first

premise and specializing where appropriate, we have that

9W 1 H1
1g H1

2g v2
1.H1

1⇤ = H1
1g ] H1+ ^ H1

1g,H
1
2g : W 1

^

W v
(dom(H1+), dom(H2+)),
rchgclocs(W ,FL(cod(H1+)) [ FL(�1

L(�
1
�(e2

+))) [ L1,

FL(cod(H2+)) [ FL(�2
L(�

2
�(e2

+))) [ L2)

W 1

^ (W 1, (;, v11), (;, v
1

2)) 2 VJ⌧1 ! ⌧2K⇢ ^

8H2+.
�
H2g+ ] H2+, �

2
L

�
�2�

�
e1

+
��� ⇤

!L2[FL(�2
L(�2

�(e2
+))) (H

1
2g ] H2+, v

1

2) 9
(30)

Expanding the definition of VJ⌧1 ! ⌧2K⇢, we have that

v11 = �x1.e1b ^ v12 = �x2.e2b^

8(W 1⇤, (;, v1a), (;, v2a)) 2 VJ⌧1K⇢.W 1
v;,;,e1b,e2b W

1⇤

^ (W 1⇤, (;, [x1 7! v1a]e1b, ;, [x2 7! v2a]e2b) 2 EJ⌧2K⇢
(31)

Proceeding to work on our second premise, by Lemma C.0.14, we have:

�
H1
1g ] H1+, �

1
L

�
�1�

�
e2

+
��� ⇤

!L1[FL(e1b) (H
2
1⇤, v

2

1) 9

for some H2
1⇤, v

2

1
.

Then expanding the definition of � and EJ·K· in the second premise,
noting due to Lemma C.0.3 that we can use W 1, and specializing where
appropriate, we have that

9W 2 H2
1g H2

2g v2
2.H2

1⇤ = H2
1g ] H1+ ^ H2

1g,H
2
2g : W 2

^

W 1
v(dom(H1+),dom(H2+)),rchgclocs(W 1,L1[FL(e1b)[FL(cod(H1+)),L2[FL(e2b)[FL(cod(H2+))) W

2

^ (W 2, (;, v21), (;, v
2

2)) 2 VJ⌧1K⇢ ^

8H2+.
�
H1
2g ] H2+, �

2
L

�
�2�

�
e2

+
��� ⇤

!L2[FL(e2b) (H
2
2g ] H2+, v

2

2) 9
(32)

Now, we want to start putting things together. We appeal to (31),
instantiating it with the values found in (30), taking W 1⇤ to be W 2. Thus
we have (W 2, (;, [x1 7! v2

1
]e1b), (;, [x2 7! v2

2
]e2b)) 2 EJ⌧2K⇢.
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Then, expanding the definition of EJ·K and specializing where appropriate,
we have that

9W 3H3
1g H3

2g v2
3.H3

1⇤ = H3
1g ] H1+ ^ H3

1g,H
3
2g : W 3

^

W 2
v(dom(H1+),dom(H2+)),rchgclocs(W 2,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W

3

^ (W 3, (;, v31), (;, v
3

2)) 2 VJ⌧2K⇢ ^

8H2+.
�
H2
2g ] H2+, [x2 7! v22]e2b

� ⇤
!L2 (H2

2g ] H2+, v2) 9
(33)

Then we show (29) by taking H1⇤ = H3
1g]H1+ and v2 = v2. All that remains

is to show that

9H0
2g.

�
H0
2g ] H2+,

�
�2L

�
�2�

�
e1

+
��

�2L
�
�2�

�
e2

+
���� ⇤

!L2 (H0
2g ] H2+, v2) 9

Specializing where appropriate, we have that

�
H2g+ ] H2+,

�
�2L

�
�2� (e1

+)
�
�2L

�
�2� (e2

+)
���

⇤
!L2[FL(�2

L(�2
�(e2

+)))
�
H2
2g ] H2+, (�x2.e2b) �2L

�
�2� (e2

+)
��

(by 30)
⇤
!L2[FL(e2b)

�
H3
2g ] H2+, (�x2.e2b) v2

2

�
(by 32)

⇤
! 1L2

�
H2
2g ] H2+, [x2 7! v2

2
]e2b

�
(by LCVM)

⇤
!L2

�
H3
2g ] H2+, v2

�
(by 33)

9 (values don’t step)

Lemma C.0.20 (Compat ⇤↵.e). If �; !�;�,↵;� ` e � e : ⌧ , then

�; !�;�;� ` ⇤↵.e � ⇤↵.e : 8↵.⌧

Proof. Expanding the definition of �, ·+, EJ·K· and pushing substitutions in
the goal (noting via Lemma C.0.10 that H1 = H2 = ;), we are to show that

9W 0,H0
1g,H

0
2g.8H2+.9v2.

H1⇤ = H0
1g ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (;, v1), (;, v2)) 2 VJ8↵. ⌧K⇢ ^

(H2g+ ] H2+,� . �2L(�
2
�(e

+)))
⇤
!L2 (H0

2g ] H2+, v2) 9

given arbitrary ⇢, �L, ��,W ,L1,L2,H1g+,H2g+ : W , v1,H1+,H1⇤, such that

⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W , ;, ;, �L) 2 GJ!�K⇢, (W , ��) 2 GJ�K⇢

and
(H1g+ ] H1+,� . �1L(�

1
�(e

+)))
⇤
!L1 (H1⇤, v1) 9
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We show the goal by taking W 0 = W , H0
1g = H1g+, and H0

2g = H2g+,
noting that configurations with values as programs do not step. Thus, it
su�ces to show that

(W , (;,� .�1L(�
1
�(e

+))), (;,� .�2L(�
2
�(e

+)))) 2 VJ8↵.⌧K⇢
Expanding the definition of VJ8↵.⌧K⇢, we are to show that

(W 0, (;, �1L(�
1
�(e

+))), (;, �2L(�
2
�(e

+)))) 2 EJ⌧2K⇢[F(↵) 7!R]

given arbitrary R 2 RelT and W 0 such that W @;,;,�1
L(�

1
�(e

+)),�2
L(�

2
�(e

+)) W
0.

We have this by expanding the definition of � and then DJ·K in the
premise and specializing where appropriate.

Lemma C.0.21 (Compat e [⌧ ]). If �; !�;�;� ` e � e : 8↵.⌧2, then

�; !�;�;� ` e [⌧1] � e [⌧1] : [↵ 7! ⌧1]⌧2

Proof. Expanding the definition of �, ·+, EJ·K· and pushing substitutions
in the goal, we are to show that

9W 0,H0
1g,H

0
2g.8H2+.9v2.

H1⇤ = H0
1g ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (;, v1), (;, v2)) 2 VJ[↵ 7! ⌧1]⌧2K⇢ ^

(H2g+ ] H2+, �2L(�
2
�(e

+)) ()
⇤
!L2 (H0

2g ] H2+, v2) 9

given arbitrary ⇢, �L, ��,W ,L1,L2,H1g+,H2g+ : W , v1,H1+,H1⇤, such that

⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W , ;, ;, �L) 2 GJ�1 ] �2K⇢, (W , ��) 2 GJ�K⇢

and
(H1g+ ] H1+, �

1
L(�

1
�(e

+)) ())
⇤
!L1 (H1⇤, v1) 9

By Lemma C.0.14, we have that
�
H1g+ ] H1+, �1L

�
�1� (e

+)
�� ⇤

!L1 (H1
1⇤, v

1

1
) 9

for some H1
1⇤, v

1

1
. Then expanding the definition of � and EJ·K· in the

premise and specializing where appropriate, we have that

9W 0,H0
1g,H

0
2g.8H2+.9v2.

H1
1⇤ = H0

1g ] H1+ ^ H0
1g,H

0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (;, v1
1
), (;, v1

2
)) 2 VJ8↵.⌧2K⇢ ^

(H2g+ ] H2+, �2L(�
2
�(e

+)))
⇤
!L2 (H0

2g ] H2+, v21) 9
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Expanding the definition of VJ8↵.⌧2K⇢, we have that

v11 = � .e1b ^ v12 = � .e2b^

8R 2 RelT.(W 0, (;, e1b), (;, e2b)) 2 EJ⌧2K⇢[F(↵) 7!R]

By Lemma C.0.14, we now have that

�
H0
1g ] H1+, (� .e1b) ()

� ⇤
! 1L1

�
H0
1g ] H1+, e1b

�

⇤
!L1 (H1⇤, v1)

9

Recall that (W 0, (;, e1b), (;, e2b)) 2 EJ⌧2K⇢[F(↵) 7!R] given arbitrary R 2

RelT . Then take R = VJ⌧1K⇢. Expanding the definition of EJ·K, specializing
where appropriate, and applying Lemma C.0.5, we have that

9W 00,H00
1g,H

00
2g.8H2+.9v2.

H1
1⇤ = H00

1g ] H1+ ^ H00
1g,H

00
2g : W 00

^

W 0
v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W

00
^

(W 00, (;, v1), (;, v2)) 2 VJ[↵ 7! ⌧ ]⌧2K⇢ ^

(H2g+ ] H2+, e2b)
⇤
!L2 (H00

2g ] H2+, v2) 9

Then all that remains is to show that

�
H2g+ ] H2+,

�
�2L

�
�2�

�
e+

��
()
�� ⇤

!L2 (H2g00 ] H2+, v2) 9

Specializing where appropriate, the above gives us that

�
H2g+ ] H2+,

�
�2L

�
�2�

�
e+

��
()
�� ⇤

!L2

�
H0
2g ] H2+, (� .e2b) ()

�

⇤
! 1L2

�
H0
2g ] H2+, e2b

�
(by MiniML)

⇤
!L2

�
H00
2g ] H2+, v2

�

9 (values don’t step)

Lemma C.0.22 (Compat ref e). If �; !�;�;� ` e � e : ⌧ , then

�; !�;�;� ` ref e � ref e : ref ⌧
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Proof. Expanding the definition of � and ·
+ and pushing substitutions in

the goal, we are to show that

9W 0,H0
1g,H

0
2g.8H2+.9v2.

H1⇤ = H0
1g ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (;, v1), (;, v2)) 2 VJref ⌧K⇢ ^

(H2g+ ] H2+, let = callgc in ref �2L(�
2
�(e

+)))
⇤
!L2 (H0

2g ] H2+, v2) 9

given arbitrary ⇢, �L, ��,W ,L1,L2,H1g+,H2g+ : W , v1,H1+,H1⇤, such that

⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W , ;, ;, �L) 2 GJ!�K⇢, (W , ��) 2 GJ�K⇢

and

(H1g+ ] H1+, let = callgc in ref �1L(�
1
�(e

+)))
⇤
!L1 (H1⇤, v1) 9

First, notice that

(H1g+ ] H1+, let = callgc in ref �1L(�
1
�(e

+))) !L1

(H1ga ] H1+, let = () in ref �1L(�
1
�(e

+))) !L1

(H1ga ] H1+, ref �1L(�
1
�(e

+)))

and
(H2g+ ] H2+, let = callgc in ref �2L(�

2
�(e

+)))
⇤
!L2

(H2ga ] H2+, ref �2L(�
2
�(e

+)))

for some heaps H1ga : GCHeap,H2ga : GCHeap. By Lemma C.0.4, there
exists a world

W v (dom(H1+), dom(H2+)), rchgclocs(W ,FL(cod(H1+)) [ FL(�1
L(�

1
�(e

+))) [ L1,
FL(cod(H2+)) [ FL(�2

L(�
2
�(e

+))) [ L2)

Wa

such that H1ga,H2ga : Wa.

Then, since GJ�K⇢, GJ!�K⇢ are closed under world extension by
Lemma C.0.3, we can instantiate the induction hypothesis with ⇢, ��, �L,Wa

and then expanding the expression relation, so we find that:

(Wa, (;, �
1
L(�

1
�(e

+))), (;, �2L(�
2
�(e

+)))) 2 EJ⌧K⇢

Then, by applying Lemma 2.1 and expanding the expression relation, we
find that

(H1ga ] H1+, �
1
L(�

1
�(e

+)))
⇤
!L1 (H0

1g ] H1+, v
⇤
1) 9

and
(H2ga ] H2+, �

2
L(�

2
�(e

+)))
⇤
!L2 (H0

2g ] H2+, v
⇤
2) 9



value interoperability: memory management and polymorphism 331

where H0
1g,H

0
2g : W 0 for some

Wa v(dom(H1+),dom(H2+)),rchgclocs(W ,FL(cod(H1+))[L1,FL(cod(H2+))[L2) W
0

where
(W 0, (;, v⇤1), (;, v

⇤
2)) 2 VJ⌧K⇢

Thus, we find that

(H1g+ ] H1+, let = callgc in ref �1L(�
1
�(e

+)))
⇤
!L1

(H1ga ] H1+, ref �1L(�
1
�(e

+)))
⇤
!L1

(H0
1g ] H1+, ref v⇤1)

⇤
!L1

(H0
1g[`1

gc
7!v⇤

1
] ] H1+, `1)

and
(H2g+ ] H1+, let = callgc in ref �1L(�

1
�(e

+)))
⇤
!L2

(H2ga ] H2+, ref �2L(�
2
�(e

+)))
⇤
!L2

(H0
2g ] H2+, ref v⇤2)

⇤
!L2

(H0
2g[`2

gc
7!v⇤

2
] ] H2+, `2)

for some `1 /2 dom(H0
1g+ ] H1+) and `2 /2 dom(H0

2g+ ] H2+).

Since H0
1g+,H

0
2g+ : W 0, `1 /2 dom(H0

1g+), and `2 /2 dom(H0
2g+), it follows

that (`1, `2) /2 dom(W 0. ). Then, let

W 00 = (W 0.k, bW 0. cW 0.k[(`1, `2) 7! bVJ⌧K⇢cW 0.k])

Notice that W 00.k  W 0.k. Moreover, since 0W v(dom(H1+),dom(H2+)),·
W 0, we have dom(H1+)#W 0. and dom(H2+)#W 0. . Since `1 /2
dom(H1+) and `2 /2 dom(H2+), it follows that dom(H1+)#W 00. and
dom(H2+)#W 00. . Finally, for all (`01, `

0
2) 2 dom(W 0. ), W 00. (`01, `

0
2) =

bW 0. cW 0.k(`01, `
0
2) = bW 0. (`1, `2)cW 00.k. This su�ces to show

that W 0
v(dom(H1+),dom(H2+),dom(W 0. ) W 00. Then, by Lemma C.0.2,

W v(dom(H1+),dom(H2+)),rchgclocs(W ,FL(cod(H1+))[L1,FL(cod(H2+))[L2) W
00.

Then, choose H0
1g = H0

1g+[`1
gc
7!v⇤

1
], H0

2g = H0
2g+[`1

gc
7!v⇤

2
], and W 0 = W 00.

One can see that

(W 00, (;, `1), (;, `2)) 2 VJref ⌧K⇢

because by definition of W 00, W 00(`1, `2) = bVJ⌧K⇢cW 00.k. To finish the proof,
we must show

H0
1g+[`1

gc
7!v⇤1],H

0
2g+[`1

gc
7!v⇤2] : W

00

For any (`01, `
0
2) 7! R 2 W 00. , there are two cases: (1)

(`1, `2) = (`01, `
0
2), in which case W 00. (`1, `2) = bVJ⌧K⇢cW 0.k.

Then, since (W 0, (;, v⇤
1
), (;, v⇤

2
)) 2 VJ⌧K⇢, by Lemma C.0.2, we

have (W 00, (;, v⇤
1
), (;, v⇤

2
)) 2 VJ⌧K⇢ and thus (BW 00, (;, v⇤

1
), (;, v⇤

2
)) 2



332 value interoperability: memory management and polymorphism

bVJ⌧K⇢cW 0.k (2) (`01, `
0
2) 2 dom(W 0. ), in which case we must show

(BW 00, (;,H0
1(`

0
1)), (;,H

0
2(`

0
2))) 2 W 00. (`01, `

0
2) = bW 0. (`01, `

0
2)cW 0.k. First,

since H0
1,H

0
2 : W 0, we have (BW 0, (;,H0

1(`
0
1)), (;,H

0
2(`

0
2))) 2 W 0. (`01, `

0
2).

Then, since BW 0.k < W 0.k, it follows that (BW 0, (;,H0
1(`

0
1)), (;,H

0
2(`

0
2))) 2

bW 0. (`01, `
0
2)cW 0.k. Finally, since W 0

v(dom(H1+),dom(H2+)),dom(W 0. ) W
00, it

follows that BW 0
v(dom(H1+),dom(H2+)),dom(W 0. ) BW 00, so by Lemma C.0.3,

we have

(BW 00, (;,H0
1(`

0
1)), (;,H

0
2(`

0
2))) 2 bW 0. (`01, `

0
2)cW 0.k

as was to be proven.

Lemma C.0.23 (Compat !e). If �; !�;�;� ` e � e : ref ⌧ then

�; !�;�;� ` !e � !e : ⌧

Proof. Expanding the definition of � and ·
+ and pushing substitutions in

the goal, we are to show that

9W 0,H0
1g,H

0
2g.8H2+.9v2.

H1⇤ = H0
1g ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,FL(cod(H1+))[L1,FL(cod(H2+))[L2) W
0
^

(W 0, (;, v1), (;, v2)) 2 VJ⌧K⇢ ^

(H2g+ ] H2+, !�2L(�
2
�(e

+)))
⇤
!L2 (H0

2g ] H2+, v2) 9

given arbitrary ⇢, �L, ��,W ,L1,L2,H1g+,H2g+ : W , v1,H1+,H1⇤, such that

⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W , ;, ;, �L) 2 GJ!�K⇢, (W , ��) 2 GJ�K⇢

and
(H1g+ ] H1+, !�

1
L(�

1
�(e

+)))
⇤
!L1 (H1⇤, v1) 9

By Lemma C.0.14, we have that
�
H1g+ ] H1+, �1L

�
�1� (e

+)
�� ⇤

!L1 (H1
1⇤, v

1

1
) 9

for some H1
1⇤, v

1

1
. Then expanding the definition of � and EJ·K· in the first

premise and specializing where appropriate, we have that

9W 1 H1
1g H1

2g v2
1.H1

1⇤ = H1
1g ] H1+ ^ H1

1g,H
1
2g : W 1

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,FL(cod(H1+))[L1,FL(cod(H2+))[L2) W
1

^ (W 1, (;, v11), (;, v
1

2)) 2 VJref ⌧K⇢ ^

8H2+.
�
H2g+ ] H2+, �

2
L

�
�2�

�
e+

��� ⇤
!L2 (H1

2g ] H2+, v
1

2) 9
(34)

From the definition of VJref ⌧K⇢, we know that v1
1
and v1

2
are both

locations (call them `1 and `2) and that W 1. (`1, `2) = bVJ⌧K⇢cW 1.k. Since
H1
1g,H

1
2g : W 1, this means that
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(H1
1g ] H1+, !`1)

⇤
!L1 (H1

1g ] H1+, v1)

and

(H1
2g ] H2+, !`2)

⇤
!L2 (H1

2g ] H2+, v2)

Further, we know that (BW 1, (;, v1), (;, v2)) 2 VJ⌧K⇢.
By Lemma C.0.3, we know that

W vdom(H1+),dom(H2+),rchgclocs(W ,FL(cod(H1+))[L1,FL(cod(H2+))[L2) W
1

vdom(H1+),dom(H2+),rchgclocs(W ,FL(cod(H1+))[L1,FL(cod(H2+))[L2) BW 1

which, with H1⇤ = H1
1g ] H1+ and H2g+ = H1

2g, is enough to prove our goal.

Lemma C.0.24 (Compat e := e). If �; !�;�;� ` e1 � e1 : ref ⌧ and
�; !�;�;� ` e2 � e2 : ⌧ then

�; !�;�;� ` e1 := e2 � e1 := e2 : unit

Proof. Expanding the definition of � and ·
+ and pushing substitutions in

the goal, we are to show that

9W 0,H0
1g,H

0
2g.8H2+.9v2.

H1⇤ = H0
1g ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,FL(cod(H1+))[L1,FL(cod(H2+))[L2) W
0
^

(W 0, (;, v1), (;, v2)) 2 VJunitK⇢ ^

(H2g+ ] H2+, �2L(�
2
�(e1

+)) := �2L(�
2
�(e2

+)))
⇤
!L2 (H0

2g ] H2+, v2) 9

given arbitrary ⇢, �L, ��,W ,L1,L2,H1g+,H2g+ : W , v1,H1+,H1⇤, such that

⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W , ;, ;, �L) 2 GJ!�K⇢, (W , ��) 2 GJ�K⇢

and

(H1g+ ] H1+, �
1
L(�

1
�(e1

+)) := �1L(�
1
�(e2

+)))
⇤
!L1 (H1⇤, v1) 9

By Lemma C.0.14, we have that

�
H1g+ ] H1+, �

1
L

�
�1�

�
e1

+
��� ⇤

!L1[FL�2
L(�

2
�(e2

+)) (H
1
1⇤, v

1

1) 9

for some H1
1⇤, v

1

1
.
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Then expanding the definition of � and EJ·K· in the first premise and
specializing where appropriate, we have that

9W 1 H1
1g H1

2g v2
1.H1

1⇤ = H1
1g ] H1+ ^ H1

1g,H
1
2g : W 1

^

W v
(dom(H1+), dom(H2+)),
rchgclocs(W ,FL(cod(H1+)) [ FL(�1

L(�
1
�(e2

+))) [ L1,

FL(cod(H2+)) [ FL(�2
L(�

2
�(e2

+))) [ L2)

W 1^

(W 1, (;, v11), (;, v
1

2)) 2 VJref ⌧K⇢ ^

8H2+.
�
H2g+ ] H2+, �

2
L

�
�2�

�
e1

+
��� ⇤

!L2[FL�1
L(�

1
�(e2

+)) (H
1
2g ] H2+, v

1

2) 9
(35)

From the definition of VJref ⌧K⇢, we know that v1
1
and v1

2
are both

locations (call them `1 and `2) and that W 1. (`1, `2) = bVJ⌧K⇢cW 1.k.

Now, we again appeal to Lemma C.0.14, this time with the context
`i := [·]. This means, in particular, that we have that:�

H1
1g ] H1+, �1L

�
�1� (e2

+)
�� ⇤

!L1[FL(`1) (H
2
1⇤, v

2

1
) 9 for some H2

1⇤, v
2

1
.

Now we expand the definition of � and EJ·K· in the second premise and
specialize where appropriate to get that

9W 2 H2
1g H2

2g v2
2.H2

1⇤ = H2
1g ] H1+ ^ H2

1g,H
2
2g : W 2

^

W 1
v(dom(H1+),dom(H2+)),rchgclocs(W 1,FL(`1)[FL(cod(H1+))[L1,FL(`2)[FL(cod(H2+))[L2) W

2

^ (W 2, (;, v21), (;, v
2

2)) 2 VJunitK⇢ ^

8H2+.
�
H1
2g ] H2+, �

2
L

�
�2�

�
e2

+
��� ⇤

!L2[FL(`2) (H
2
2g ] H2+, v

2

2) 9
(36)

Now we can assemble the pieces that we need to complete the proof. First,
we stitch together our reductions (we reduced analogously on the left side):

(H2g+ ] H2+, �2L(�
2
�(e1

+)) := �2L(�
2
�(e2

+)))
⇤
!L2[FL(�1

L(�
1
�(e2

+))) (H
1
2g ] H2+, `2 := �2L(�

2
�(e2

+)))
⇤
!L2[FL(`1) (H

2
2g ] H2+, `2 := v2

2
)

!L2[FL(`1) (H
2
2g[`2 := v2

2
] ] H2+, ())

Next, we need to show a W 0 such that
W vdom(H1+),dom(H2+),rchgclocs(W ,FL(cod(H1+))[L1,FL(cod(H2+))[L2) W 0 and
H2
1g[`1 := v2

1
],H2

2g[`2 := v2
2
] : W 0. We can choose W 2, as we know that

at W 1, `1, `2 mapped to VJ⌧K⇢, and W 2 is an extension of W 2 that
protected those locations, and thus the above worlds satisfy this world.
Since otherwise, membership in VJunitK⇢ is trivial, this su�ces to finish
the proof.
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Lemma C.0.25 (Compat LeM⌧ ). If �;�;�; !� ` e � e : ⌧ and ⌧ ⇠ ⌧ , then

�; !�;�;� ` LeM⌧ � LeM⌧ : ⌧

Proof. Expanding the definition of � and ·
+ and pushing substitutions in

the goal, we are to show that

(W ,
�
H1,C⌧ 7!⌧

�
�1�

�
�1L

�
e+

���
,
�
,
�
H2,C⌧ 7!⌧

�
�2�

�
�2L

�
e+

����
) 2 EJ⌧K⇢

(37)
given arbitrary ⇢, ��, �L such that ⇢.L3 2 DJ�K, ⇢.F 2 DJ�K,
(W ,H1,H2, �L) 2 GJ�K⇢, �� 2 GJ�K⇢ . Expanding the definition of
⇡ in the premise, specializing where appropriate, and commuting
substitutions, we have that

(W ,
�
H1, �

1
�

�
�1L

�
e+

���
,
�
H2, �

2
�

�
�2L

�
e+

���
) 2 EJ⌧ K⇢

Then since ⌧ ⇠ ⌧ , we have (37) by Lemma C.0.15.

Lemma C.0.26 (Compat x).

�;�;�;x : ⌧ ` x � x : ⌧

Proof. Expanding the conclusion, we must show that given

8⇢, ��, �L,W ,H1,H2.
⇢.F 2 DJ�K ^ ⇢.L3 2 DJ�K ^ (W , ��) 2 GJ�K⇢ ^ (W ,H1,H2, �L) 2 GJx : ⌧ K⇢

it holds that:

(W , (H1, �
1
L(�

1
�(x

+))), (H2, �
2
L(�

2
�(x

+)))) 2 EJ⌧ K⇢

By Lemma C.0.8, it su�ces to show that:

(W , (H1, �
1
L(�

1
�(x

+))), (H2, �
2
L(�

2
�(x

+)))) 2 VJ⌧ K⇢

Because (W ,H1,H2, �L) 2 GJx : ⌧ K⇢, we must have �L(x) = (v1, v2) and
(W , (H1, v1), (H2, v2)) 2 VJ⌧ K⇢. Thus,

�1L(�
1
�(x

+)) = �1L(�
1
�(x)) = �1L(x) = v1

�2L(�
2
�(x

+)) = �2L(�
2
�(x)) = �2L(x) = v2

Finally, noting that (W , (H1, v1), (H2, v2)) 2 VJ⌧ K⇢ by assumption su�ces
to finish the proof.

Lemma C.0.27 (Compat �x : ⌧.e). If �;�;�;�,x : ⌧1 ` e � e : ⌧2, then

�;�;�;� ` �x : ⌧.e � �x : ⌧.e : ⌧1 ( ⌧2
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Proof. Expanding the conclusion, we must show that given

8⇢, ��, �L,W ,H1,H2.
⇢.F 2 DJ�K ^ ⇢.L3 2 DJ�K ^ (W , ��) 2 GJ�K⇢ ^ (W ,H1,H2, �L) 2 GJ�K⇢

it holds that:

(W , (H1,�x.�
1
L(�

1
�(e

+))), (H2,�x.�
2
L(�

2
�(e

+)))) 2 EJ⌧1 ( ⌧2K⇢

By Lemma C.0.8, it su�ces to show that:

(W , (H1,�x.�
1
L(�

1
�(e

+))), (H2,�x.�
2
L(�

2
�(e

+)))) 2 VJ⌧1 ( ⌧2K⇢

Thus, consider some arbitrary W 0,H1v, v1,H2v, v2 such that
W v

H1,H2,�
1
L(�

1
�(e

+)),�2
L(�

2
�(e

+)) W 0 and (W 0, (H1v, v1), (H2v, v2)) 2 VJ⌧1K⇢.
We must show

(W 0, (H1]H1v, [x 7! v1]�
1
L(�

1
�(e

+))), (H2]H2v, [x 7! v2]�
2
L(�

2
�(e

+)))) 2 EJ⌧2K⇢

Let �0L = �L[x 7! (v1, v2)]. Next, notice that (W 0,H1]H1v,H2]H2v, �0L) 2
GJ�, x : ⌧1K⇢ because (W 0,H1,H2, �L) 2 GJ�K⇢ (by Lemma C.0.3) and
(W 0, (H1v, v1), (H2v, v2)) 2 VJ⌧1K⇢. Thus, we can instantiate the first induc-
tion hypothesis with ⇢, ��, �0L,W

0,H1]H1v,H2]H2v, which su�ces to prove
the above statement.

Lemma C.0.28 (Compat e1 e2). If �;�;�;�1 ` e1 � e1 : ⌧1 ( ⌧2 and
�;�;�;�2 ` e2 � e2 : ⌧1 , then

�;�;�;�1 ] �2 ` e1 e2 � e1 e2 : ⌧2

Proof. Expanding the definition of �, ·+, EJ·K· and pushing substitutions
in the goal, we are to show that

9H0
1,H

0
1g.8H2+ : MHeap.9H0

2,W
0,H0

2g, v2.
H1⇤ = H0

1g ] H0
1 ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (H0
1, v1), (H

0
2, v2)) 2 VJ⌧2K⇢ ^

(H2g+ ] H2 ] H2+, �2L(�
2
�(e1

+)) �2L(�
2
�(e2

+)))
⇤
!L2 (H0

2g ] H0
2 ] H2+, v2) 9

given arbitrary ⇢, �L, ��,W ,L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ :
MHeap,H1⇤, such that

⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W , ��) 2 GJ�K⇢, (W ,H1,H2, �L) 2 GJ�K⇢



value interoperability: memory management and polymorphism 337

and

(H1g+ ] H1 ] H1+, �
1
L(�

1
�(e1

+)) �1L(�
1
�(e2

+)))
⇤
!L1 (H1⇤, v1) 9

Then, by Lemma C.0.9, there exist �L1, �L2,H1l,H1r,H2l,H2r such that
�L = �L1 ] �L2, H1 = H1l ] H1r, H2 = H2l ] H2r,

(W ,H1l,H2l, �L1) 2 GJ�1K⇢

(W ,H1r,H2r, �L2) 2 GJ�2K⇢
and for all j 2 {1, 2},

�jL(�
j

�(e1
+)) = �L

j

1(�
j

�(e1
+))

�jL(�
j

�(e2
+)) = �L

j

2(�
j

�(e2
+))

Then, by instantiating the first induction hypothesis with
⇢, ��, �L1,W ,H1l,H2l, we find

(W , (H1l, �L
1
1(�

1
�(e1

+))), (H2l, �L
2
1(�

2
�(e1

+)))) 2 EJ⌧1 ( ⌧2K⇢

Thus, by Lemma C.0.14, we have

(H1g+]H1l]H1r]H1+, �L
1
1(�

1
�(e1

+)))
⇤
!L1[FL(�L1

2(�
1
�(e2

+))) (H
0
1g]H1r]H1+]H

⇤
1l, v1l) 9

and, for any H2+,

(H2g+]H2l]H2r]H2+, �L
2
1(�

2
�(e1

+)))
⇤
!L2[FL(�L2

2(�
2
�(e2

+))) (H
0
2g]H2r]H2+]H

⇤
2l, v2l) 9

where H0
1g,H

0
2g : W 0 for some

W v
(dom(H1r ] H1+), dom(H2r ] H2+)),
rchgclocs(W ,FL(cod(H1r)) [ FL(cod(H1+)) [ FL(�L

1
2(�

1
�(e2

+))) [ L1,

FL(cod(H2r)) [ FL(cod(H2+)) [ FL(�L
2
2(�

2
�(e2

+))) [ L2)

W 0

and
(W 0, (H⇤

1l, v1l), (H
⇤
2l, v2l)) 2 VJ⌧1 ( ⌧2K⇢

By expanding the value relation, we find that there exist expressions e1l, e2l
such that v1l = �x.e1l and v2l = �x.e2l.

Then, since GJ�K⇢,GJ�1 ] �2K⇢ are closed under world extension by
Lemma C.0.3, we can instantiate the second induction hypothesis with
⇢, ��, �L2,W

0,H1r,H2r to find

(W 0, (H1r, �L
1
2(�

1
�(e2

+))), (H2r, �L
2
2(�

2
�(e2

+)))) 2 EJ⌧1K⇢
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Thus, by Lemma C.0.14, we have

(H0
1g]H1r]H1+]H⇤

1l, �L
1
2(�

1
�(e2

+)))
⇤
!L1[FL(e1l) (H

00
1g]H1+]H⇤

1l]H⇤
1r, v1r)

and

(H0
2g]H1r]H2+]H⇤

2l, �L
2
2(�

2
�(e2

+)))
⇤
!L2[FL(e2l) (H

00
2g]H2+]H⇤

2l]H⇤
2r, v2r)

where H00
1g,H

00
2g : W 00 for some

W 0
v

(dom(H⇤
1l ] H1+), dom(H⇤

2l ] H2+)), rchgclocs(W 0,
FL(cod(H⇤

1l)) [ FL(cod(H1+)) [ FL(e1l) [ L1,
FL(cod(H⇤

2l)) [ FL(cod(H2+)) [ FL(e2l) [ L2)

W 00

and
(W 00, (H⇤

1r, v1r), (H
⇤
2r, v2r)) 2 VJ⌧2K⇢

Thus, the original configurations step as follows:

(H1g ] H1 ] H1+, �L1
1(�

1
�(e1

+)) �L1
2(�

1
�(e2

+)))
⇤
!L1

(H0
1g ] H1r ] H1+ ] H⇤

1l,�x.e1l �L
1
2(�

1
�(e2

+)))
⇤
!L1

(H00
1g ] H1+ ] H⇤

1l ] H⇤
1r,�x.e1l v1r)

⇤
!L1

(H00
1g ] H1+ ] H⇤

1l ] H⇤
1r, [x 7! v1r]e1l)

and similarly on the other side, the configuration steps to

(H00
2g ] H2+ ] H⇤

2l ] H⇤
2r, [x 7! v2r]e2l)

Since (W 0, (H⇤
1l,�x.e1l), (H

⇤
2l,�x.e2l)) 2 VJ⌧1 ( ⌧2K⇢, W 0

vH⇤
1l,H

⇤
2l,e1l,e2l

W 00 (by Lemma C.0.1), and (W 00, (H⇤
1r, v1r), (H

⇤
2r, v2r)) 2 VJ⌧2K⇢, we have

(W 00, (H⇤
1l ] H⇤

1r, [x 7! v1r]e1l), (H
⇤
2l ] H⇤

2r, [x 7! v2r]e2l)) 2 EJ⌧2K⇢ (38)

Next, by the assumption that the configuration on the left-hand side termi-
nates, we have

(H00
1g ] H1+ ] H⇤

1l ] H⇤
1r, [x 7! v1r]e1l)

⇤
!L1 (H1⇤, v1) 9L1

Then, by applying (38), we find

(H1⇤, v1) = (H000
1g ] H1+ ] H1f , v1f)

and

(H00
2g ] H2+ ] H⇤

2l ] H⇤
2r, [x 7! v2r]e2l)

⇤
!L2 (H000

2g ] H2+ ] H2f , v2f)
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where H000
1g,H

000
2g : W 000 for someW 00

v(dom(H1+),dom(H2+)),rchgclocs(W 00,L1[FL(cod(H1+)),L2[FL(cod(H2+)))

W 000 and
(W 000, (H1f , v1f), (H2f , v2f)) 2 VJ⌧2K⇢

Then, choose H0
1 = H1f , H0

2 = H2f , W 0 =
W 000, H0

1g = H000
1g, and H0

2g = H000
2g. Notice that

W v(dom(H1+),dom(H2+)),rchgclocs(W 00,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W 000

by Lemma C.0.2. This su�ces to finish the proof.

Lemma C.0.29 (Compat ()).

�;�;�;; ` () � () : Unit

Proof. Expanding the conclusion, we must show that given

8⇢, ��, �L,W ,H1,H2.
⇢.F 2 DJ�K ^ ⇢.L3 2 DJ�K ^ (W , ��) 2 GJ�K⇢ ^ (W ,H1,H2, �L.�) 2 GJ;K⇢
^ �L.� = �locs(⇢.L3)

it holds that:
(W , (H1, ()), (H2, ())) 2 EJUnitK⇢

By Lemma C.0.8, it su�ces to show that:

(W , (H1, ()), (H2, ())) 2 VJUnitK⇢

Notice that, since (W ,H1,H2, �L.�) 2 GJ;K⇢, it must be the case that H1 =
H2 = ;. Thus, one can easily see by definition that (W , (;, ()), (;, ())) 2
VJUnitK⇢, which su�ces to finish the proof.

Lemma C.0.30 (Compat B). If b 2 B, then

�;�;�;; ` b � b : Bool

Proof. By a simple case analysis, one can see that, for all b 2 B, there exists
a b 2 {0, 1} such that b+ = b. Expanding the conclusion, we must show
that given

8⇢, ��, �L,W ,H1,H2.
⇢.F 2 DJ�K ^ ⇢.L3 2 DJ�K ^ (W , ��) 2 GJ�K⇢ ^ (W ,H1,H2, �L.�) 2 GJ;K⇢
^ �L.� = �locs(⇢.L3)

it holds that:
(W , (H1, b), (H2, b)) 2 EJBoolK⇢

By Lemma C.0.8, it su�ces to show that:

(W , (H1, b), (H2, b)) 2 VJBoolK⇢
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Notice that, since (W ,H1,H2, �L.�) 2 GJ;K⇢, it must be the case that H1 =
H2 = ;. Thus, since b 2 {0, 1}, one can easily see by definition that
(W , (;, b), (;, b)) 2 VJBoolK⇢, which su�ces to finish the proof.

Lemma C.0.31 (Compat let ()). If �;�;�;�1 ` e1 � e1 : Unit and
�;�;�;�2 ` e2 � e2 : ⌧ , then

�;�;�;�1 ] �2 ` let () = e1 in e2 � let () = e1 in e2 : ⌧

Proof. Expanding the definition of �, ·+, EJ·K· and pushing substitutions
in the goal, we are to show that

9H0
1,H

0
1g.8H2+ : MHeap.9H0

2,W
0,H0

2g, v2.
H1⇤ = H0

1g ] H0
1 ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W 00,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (H0
1, v1), (H

0
2, v2)) 2 VJ⌧ K⇢ ^

(H2g+ ] H2 ] H2+, let = �2L(�
2
�(e1

+)) in �2L(�
2
�(e2

+)))
⇤
!L2 (H0

2g ] H0
2 ] H2+, v2) 9

given arbitrary ⇢, �L, ��,W ,L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ :
MHeap,H1⇤, such that

⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W , ��) 2 GJ�K⇢, (W ,H1,H2, �L) 2 GJ�1 ] �2K⇢

and

(H1g+ ] H1 ] H1+, let = �1L(�
1
�(e1

+)) in �1L(�
1
�(e2

+)))
⇤
!L1 (H1⇤, v1) 9

Then, by Lemma C.0.9, there exist �L1, �L2,H1l,H1r,H2l,H2r such that
�L = �L1 ] �L2, H1 = H1l ] H1r, H2 = H2l ] H2r,

(W ,H1l,H2l, �L1) 2 GJ�1K⇢

(W ,H1r,H2r, �L2) 2 GJ�2K⇢
and for all j 2 {1, 2},

�jL(�
j

�(e1
+)) = �L

j

1(�
j

�(e1
+))

�jL(�
j

�(e2
+)) = �L

j

2(�
j

�(e2
+))

Then, by instantiating the first induction hypothesis with
⇢, ��, �L1,W ,H1l,H2l, we find

(W , (H1l, �L
1
1(�

1
�(e1

+))), (H2l, �L
2
1(�

2
�(e1

+)))) 2 EJUnitK⇢
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Thus, by Lemma C.0.14, we have

(H1g+]H1l]H1r]H1+, �L
1
1(�

1
�(e1

+)))
⇤
!L1[FL(�L1

2(�
1
�(e2

+))) (H
0
1g]H1r]H1+]H

⇤
1l, v1l) 9

and, for any H2+,

(H2g+]H2l]H2r]H2+, �L
2
1(�

2
�(e1

+)))
⇤
!L2[FL(�L2

2(�
2
�(e2

+))) (H
0
2g]H2r]H2+]H

⇤
2l, v2l) 9

where H0
1g,H

0
2g : W 0 for some

W v
(dom(H1r ] H1+), dom(H2r ] H2+)),
rchgclocs(W ,FL(cod(H1r)) [ FL(cod(H1+)) [ FL(�L

1
2(�

1
�(e2

+))) [ L1,

FL(cod(H2r)) [ FL(cod(H2+)) [ FL(�L
2
2(�

2
�(e2

+))) [ L2)

W 0

and
(W 0, (H⇤

1l, v1l), (H
⇤
2l, v2l)) 2 VJUnitK⇢

By expanding the value relation, we find H⇤
1l = H⇤

2l = ; and v1 = v2 = ().

Thus, the original configuration steps as follows:

(H1g+ ] H1 ] H1+, let = �L1
1(�

1
�(e1

+)) in �L1
2(�

1
�(e2

+)))
⇤
! ⇤

(H0
1g ] H1r ] H1+, let = () in �L1

2(�
1
�(e2

+))) !
(H0

1g ] H1r ] H1+, �L1
2(�

1
�(e2

+)))

and

(H2g+ ] H2 ] H2+, let = �L2
1(�

2
�(e1

+)) in �L2
2(�

2
�(e2

+)))
⇤
! ⇤

(H0
2g ] H2r ] H2+, let = () in �L2

2(�
2
�(e2

+))) !
(H0

2g ] H2t ] H2+, �L2
2(�

2
�(e2

+)))

Then, since GJ�K⇢,GJ�1 ] �2K⇢ are closed under world extension by
Lemma C.0.3, we can instantiate the second induction hypothesis with
⇢, ��, �L2,W

0,H1r,H2r:

(W 0, (H1r, �L
1
2(�

1
�(e2

+))), (H2r, �L
2
2(�

2
�(e2

+)))) 2 EJ⌧ K⇢ (39)

Next, by the assumption that the configuration on the left-hand side termi-
nates, we have

(H0
1g ] H1r ] H1+, �L

1
2(�

1
�(e2

+)))
⇤
!L1 (H1⇤, v1) 9L1

Then, by applying (39), we find

(H1⇤, v1) = (H00
1g ] H⇤

1r ] H1+, v
0
1)
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and

(H0
2g ] H2r ] H2+, �L

2
2(�

2
�(e2

+)))
⇤
!L2 (H00

2g ] H⇤
2r ] H2+, v

0
2)

where H00
1g,H

00
2g : W 00, W 0

v(dom(H1+),dom(H2+)),rchgclocs(W 0,L1[FL(cod(H1+)),L2[FL(cod(H2+)))

W 00, and
(W 00, (H⇤

1r, v
0
1
), (H⇤

2r, v2
0)) 2 VJ⌧ K⇢. By Lemma C.0.3, we find that

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W 00. Fi-
nally, we can take H0

1g = H00
1g, H

0
1 = H⇤

1r, H
0
2g = H00

2g, and H0
2 = H⇤

2r, which
su�ces to finish the proof.

Lemma C.0.32 (Compat if). If �;�;�;�1 ` e1 � e1 : Bool and
�;�;�;�2 ` e2 � e2 : ⌧ and �;�;�;�2 ` e3 � e3 : ⌧ , then

�;�;�;�1 ] �2 ` if e1 e2 e3 � if e1 e2 e3 : ⌧

Proof. Expanding the definition of �, ·+, EJ·K· and pushing substitutions
in the goal, we are to show that

9H0
1,H

0
1g.8H2+ : MHeap.9H0

2,W
0,H0

2g, v2.
H1⇤ = H0

1g ] H0
1 ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (H0
1, v1), (H

0
2, v2)) 2 VJ⌧ K⇢ ^

(H2g+ ] H2 ] H2+, if �2L(�
2
�(e1

+)) �2L(�
2
�(e2

+)) �2L(�
2
�(e3

+)))
⇤
!L2 (H0

2g ] H0
2 ] H2+, v2) 9

given arbitrary ⇢, �L, ��,W ,L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ :
MHeap,H1⇤, such that

⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W , ��) 2 GJ�K⇢, (W ,H1,H2, �L) 2 GJ�1 ] �2K⇢

and

(H1g+]H1]H1+, if �
1
L(�

1
�(e1

+)) �1L(�
1
�(e2

+)) �1L(�
1
�(e3

+)))
⇤
!L1 (H1⇤, v1) 9

Then, by Lemma C.0.9, there exist �L1, �L2,H1l,H1r,H2l,H2r such that
�L = �L1 ] �L2, H1 = H1l ] H1r, H2 = H2l ] H2r,

(W ,H1l,H2l, �L1) 2 GJ�1K⇢

(W ,H1r,H2r, �L2) 2 GJ�2K⇢
and for all j 2 {1, 2},

�jL(�
j

�(e1
+)) = �L

j

1(�
j

�(e1
+))

�jL(�
j

�(e2
+)) = �L

j

2(�
j

�(e2
+))
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Then, by instantiating the first induction hypothesis with
⇢, ��, �L1,W ,H1l,H2l, we find

(W , (H1l, �L
1
1(�

1
�(e1

+))), (H2l, �L
2
1(�

2
�(e1

+)))) 2 EJBoolK⇢

Thus, by Lemma C.0.14, we have

(H1g+]H1l]H1r]H1+, �L
1
1(�

1
�(e1

+)))
⇤
!L1[FL(�L1

2(�
1
�(e2

+)))[FL(�L1
2(�

1
�(e3

+))) (H
0
1g]H1r]H1+]H

⇤
1l, v1l) 9

and, for any H2+,

(H2g+]H2l]H2r]H2+, �L
2
1(�

2
�(e1

+)))
⇤
!L2[FL(�L2

2(�
2
�(e2

+)))[FL(�L1
2(�

1
�(e3

+))) (H
0
2g]H2r]H2+]H

⇤
2l, v2l) 9

where H0
1g,H

0
2g : W 0 for some

W v
(dom(H1r ] H1+), dom(H2r ] H2+)),
rchgclocs(W ,FL(cod(H1r)) [ FL(cod(H1+)) [ FL(�L

1
2(�

1
�(e2

+))) [ FL(�L
1
2(�

1
�(e3

+))) [ L1,

FL(cod(H2r)) [ FL(cod(H2+)) [ FL(�L
2
2(�

2
�(e2

+))) [ FL(�L
2
2(�

2
�(e3

+))) [ L2)

W 0

and
(W 0, (H⇤

1l, v1l), (H
⇤
2l, v2l)) 2 VJBoolK⇢

By expanding the value relation, we find H⇤
1l = H⇤

2l = ; and either v1l =
v2l = 0 or v1 = v2 = 1. Both cases are trivially similar to each other, so we
only prove the case where v1l = v2l = 0.

Then, the original configuration steps as follows:

(H1g+ ] H1 ] H1+, if �L1
1(�

1
�(e1

+)) �L1
2(�

1
�(e2

+)) �12(�
1
�(e3

+)))
⇤
! ⇤L1

(H0
1g ] H1r ] H1+, if 0 �L1

2(�
1
�(e2

+)) �L1
2(�

1
�(e3

+)))
⇤
! ⇤L1

(H0
1g ] H1r ] H1+, �L1

2(�
1
�(e2

+)))

and

(H2g+ ] H2 ] H2+, if �L2
1(�

2
�(e1

+)) �L2
2(�

2
�(e2

+)) �L2
2(�

2
�(e3

+)))
⇤
! ⇤L2

(H0
2g ] H2r ] H2+, if 0 �L2

2(�
2
�(e2

+)) �L2
2(�

2
�(e3

+)))
⇤
! ⇤L2

(H0
2g ] H2r ] H2+, �L2

2(�
2
�(e2

+)))

Then, since GJ�K⇢,GJ�1 ] �2K⇢ are closed under world extension by
Lemma C.0.3, we can instantiate the second induction hypothesis with
⇢, ��, �L2,W

0,H1r,H2r:

(W 0, (H1r, �L
1
2(�

1
�(e2

+))), (H2r, �L
2
2(�

2
�(e2

+)))) 2 EJ⌧ K⇢ (40)
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Next, by the assumption that the configuration on the left-hand side termi-
nates, we have

(H0
1g ] H1r ] H1+, �L

1
2(�

1
�(e2

+)))
⇤
!L1 (H1⇤, v1)

Then, by applying (40), we find

(H1⇤, v1) = (H00
1g ] H⇤

1r ] H1+, v
0
1)

and

(H0
2g ] H2r ] H2+, �L

2
2(�

2
�(e2

+)))
⇤
!L2 (H00

2g ] H⇤
2r ] H2+, v

0
2)

where H00
1g,H

00
2g : W 00, W 0

v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+)))

W 00, and
(W 00, (H⇤

1r, v
0
1
), (H⇤

2r, v2
0)) 2 VJ⌧ K⇢. By Lemma C.0.3, we find that

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W 00. Fi-
nally, we can take H0

1g = H00
1g, H

0
1 = H⇤

1r, H
0
2g = H00

2g, and H0
2 = H⇤

2r, which
su�ces to finish the proof.

Lemma C.0.33 (Compat (e1, e2)). If �;�;�;�1 ` e1 � e1 : ⌧1 and
�;�;�;�2 ` e2 � e2 : ⌧2 , then

�;�;�;�1 ] �2 ` (e1, e2) � (e1, e2) : ⌧1 ⌦ ⌧2

Proof. Expanding the definition of �, ·+, EJ·K· and pushing substitutions
in the goal, we are to show that

9H0
1,H

0
1g.8H2+ : MHeap.9H0

2,W
0,H0

2g, v2.
H1⇤ = H0

1g ] H0
1 ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (H0
1, v1), (H

0
2, v2)) 2 VJ⌧1 ⌦ ⌧2K⇢ ^

(H2g+ ] H2 ] H2+, (�2L(�
2
�(e1

+)), �2L(�
2
�(e2

+))))
⇤
!L2 (H0

2g ] H0
2 ] H2+, v2) 9

given arbitrary ⇢, �L, ��,W ,L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ :
MHeap,H1⇤, such that

⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W , ��) 2 GJ�K⇢, (W ,H1,H2, �L) 2 GJ�1 ] �2K⇢

and

(H1g+ ] H1 ] H1+, (�
1
L(�

1
�(e1

+)), �1L(�
1
�(e2

+))))
⇤
!L1 (H1⇤, v1) 9
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Then, by Lemma C.0.9, there exist �L1, �L2,H1l,H1r,H2l,H2r such that
�L = �L1 ] �L2, H1 = H1l ] H1r, H2 = H2l ] H2r,

(W ,H1l,H2l, �L1) 2 GJ�1K⇢

(W ,H1r,H2r, �L2) 2 GJ�2K⇢
and for all j 2 {1, 2},

�jL(�
j

�(e1
+)) = �L

j

1(�
j

�(e1
+))

�jL(�
j

�(e2
+)) = �L

j

2(�
j

�(e2
+))

Then, by instantiating the first induction hypothesis with
⇢, ��, �L1,W ,H1l,H2l, we find

(W , (H1l, �L
1
1(�

1
�(e1

+))), (H2l, �L
2
1(�

2
�(e1

+)))) 2 EJ⌧1K⇢

Thus, by Lemma C.0.14, we have

(H1g+]H1l]H1r]H1+, �L
1
1(�

1
�(e1

+)))
⇤
!L1[FL(�L1

2(�
1
�(e2

+))) (H
0
1g]H1r]H1+]H

⇤
1l, v1l) 9

and, for any H2+,

(H2g+]H2l]H2r]H2+, �L
2
1(�

2
�(e1

+)))
⇤
!L2[FL(�L2

2(�
2
�(e2

+))) (H
0
2g]H2r]H2+]H

⇤
2l, v2l) 9

where H0
1g,H

0
2g : W 0 for some

W v
(dom(H1r ] H1+), dom(H2r ] H2+)),
rchgclocs(W ,FL(cod(H1r)) [ FL(cod(H1+)) [ FL(�L

1
2(�

1
�(e2

+))) [ L1,

FL(cod(H2r)) [ FL(cod(H2+)) [ FL(�L
2
2(�

2
�(e2

+))) [ L2)

W 0

and
(W 0, (H⇤

1l, v1l), (H
⇤
2l, v2l)) 2 VJ⌧1K⇢

Thus, since v1l, v2l are values as they are in the value relation, the orig-
inal configuration will continue reducing on the second component of the
pair. Then, since GJ�K⇢,GJ�1 ] �2K⇢ are closed under world extension by
Lemma C.0.3, we can instantiate the second induction hypothesis with
⇢, ��, �L2,W

0,H1r,H2r to find

(W 0, (H1r, �L
1
2(�

1
�(e2

+))), (H2r, �L
2
2(�

2
�(e2

+)))) 2 EJ⌧2K⇢

Thus, by Lemma C.0.14, we have

(H0
1g]H1r]H1+]H

⇤
1l, �L

1
2(�

1
�(e2

+)))
⇤
!L1[FL(v1l) (H

00
1g]H1+]H

⇤
1l]H

⇤
1r, v1r) 9
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and

(H0
2g]H1r]H2+]H

⇤
2l, �L

2
2(�

2
�(e2

+)))
⇤
!L2[FL(v2l) (H

00
2g]H2+]H

⇤
2l]H

⇤
2r, v2r) 9

where H00
1g,H

00
2g : W 00 for some

W 0
v

(dom(H⇤
1l ] H1+), dom(H⇤

2l ] H2+)),
rchgclocs(W 0,FL(cod(H⇤

1l)) [ FL(cod(H1+)) [ FL(v1l) [ L1,
FL(cod(H⇤

2l)) [ FL(cod(H2+)) [ FL(v2l) [ L2)

W 00

and
(W 00, (H⇤

1r, v1r), (H
⇤
2r, v2r)) 2 VJ⌧2K⇢

Thus, the original configurations step as follows:

(H1g ] H1 ] H1+, (�L1
1(�

1
�(e1

+)), �L1
2(�

1
�(e2

+))))
⇤
!L1

(H0
1g ] H1r ] H1+ ] H⇤

1l, (v1l, �L1
2(�

1
�(e2

+))))
⇤
!L1

(H00
1g ] H1+ ] H⇤

1l ] H⇤
1r, (v1l, v2l)) 9

and similarly on the other side, the configuration steps to

(H00
2g ] H2+ ] H⇤

2l ] H⇤
2r, (v1r, v2r))

Then, choose H0
1 = H⇤

1l ] H⇤
1r, H

0
2 = H⇤

2l ] H⇤
2r, W

0 = W 00, H0
1g = H00

1g, and
H0
2g = H00

2g. First, notice that

W v(dom(H1+),dom(H2+)),rchgclocs(W ,FL(cod(H1+))[L1,FL(cod(H2+))[L2) W
00

by Lemma C.0.2. One can see

(W 00, (H⇤
1l ] H⇤

1r, (v1l, v1r)), (H
⇤
2l ] H⇤

2r, (v2l, v2r))) 2 VJ⌧1 ⌦ ⌧2K⇢

because we have (W 00, (H⇤
1l, v1l), (H

⇤
2l, v2l)) 2 VJ⌧1K⇢ (by Lemma C.0.3) and

(W 00, (H⇤
1r, v1r), (H

⇤
2r, v2r)) 2 VJ⌧2K⇢. This su�ces to finish the proof.

Lemma C.0.34 (Compat let (x1, x2)). If �;�;�;�1 ` e1 � e1 :
⌧1 ⌦ ⌧2
and �;�;�;�2,x1 : ⌧1,x2 : ⌧2 ` e2 � e2 : ⌧ , then

�;�;�;�1 ] �2 ` let (x1, x2) = e1 in e2 � let (x1, x2) = e1 in e2 : ⌧
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Proof. Expanding the definition of �, ·+, EJ·K· and pushing substitutions
in the goal, we are to show that

9H0
1,H

0
1g.8H2+ : MHeap.9H0

2,W
0,H0

2g, v2.
H1⇤ = H0

1g ] H0
1 ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,FL(cod(H1+))[L1,FL(cod(H2+))[L2) W
0
^

(W 0, (H0
1, v1), (H

0
2, v2)) 2 VJ⌧ K⇢ ^

(H2g+ ] H2 ] H2+, let p = �2L(�
2
�(e1

+)) in let x1 = fst p in let x2 = snd p in �2L(�
2
�(e2

+)))
⇤
!L2

(H0
2g ] H0

2 ] H2+, v2) 9

given arbitrary ⇢, �L, ��,W ,L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ :
MHeap,H1⇤, such that

⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W , ��) 2 GJ�K⇢, (W ,H1,H2, �L) 2 GJ�1 ] �2K⇢

and

(H1g+]H1]H1+, let p = �1L(�
1
�(e1

+)) in let x1 = fst p in let x2 = snd p in �1L(�
1
�(e2

+)))
⇤
!L1 (H1⇤, v1) 9

Then, by Lemma C.0.9, there exist �L1, �L2,H1l,H1r,H2l,H2r such that
�L = �L1 ] �L2, H1 = H1l ] H1r, H2 = H2l ] H2r,

(W ,H1l,H2l, �L1) 2 GJ�1K⇢

(W ,H1r,H2r, �L2) 2 GJ�2K⇢
and for all j 2 {1, 2},

�jL(�
j

�(e1
+)) = �L

j

1(�
j

�(e1
+))

�jL(�
j

�(e2
+)) = �L

j

2(�
j

�(e2
+))

Then, by instantiating the first induction hypothesis with
⇢, ��, �L1,W ,H1l,H2l, we find

(W , (H1l, �L
1
1(�

1
�(e1

+))), (H2l, �L
2
1(�

2
�(e1

+)))) 2 EJ⌧1 ⌦ ⌧2K⇢

Thus, by Lemma C.0.14, we have

(H1g]H1l]H1r]H1+, �L
1
1(�

1
�(e1

+)))
⇤
!L1[FL(�L1

2(�
1
�(e2

+))) (H
0
1g]H1r]H1+]H

⇤
1l, v1) 9

and, for any H2+,

(H2g]H2l]H2r]H2+, �L
2
1(�

2
�(e1

+)))
⇤
!L2[FL(�L2

2(�
2
�(e2

+))) (H
0
2g]H2r]H2+]H

⇤
2l, v2) 9
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where H0
1g,H

0
2g : W 0 for some

W v
(dom(H1+ ] H1r), dom(H2+ ] H2r)),
rchgclocs(W ,FL(cod(H1r)) [ FL(cod(H1+)) [ FL(�L

1
2(�

1
�(e2

+))) [ L1,

FL(cod(H2r)) [ FL(cod(H2+)) [ FL(�L
2
2(�

2
�(e2

+))) [ L2)

W 0

and
(W 0, (H⇤

1l, v1), (H
⇤
2l, v2)) 2 VJ⌧1 ⌦ ⌧2K⇢

By expanding the value relation, we find H⇤
1l = H1ll ]H1lr, H⇤

2l = H2ll ]H2lr,
v1 = (v1l, v1r), and v2 = (v2l, v2r) where (W 0, (H1ll, v1l), (H2ll, v2l)) 2 VJ⌧1K⇢
and (W 0, (H1lr, v1r), (H2lr, v2r)) 2 VJ⌧2K⇢.

Thus, the original configuration steps as follows:

(H1g ] H1l ] H1r ] H1+, let p = �L1
1(�

1
�(e1

+)) in let x1 = fst p

in let x2 = snd p in �L1
2(�

1
�(e2

+)))
⇤
! ⇤L1

(H0
1g ] H1r ] H1+ ] H1ll ] H1lr, let p = (v1l, v1r) in let x1 = fst p

in let x2 = snd p in �L1
2(�

1
�(e2

+)))
⇤
! ⇤L1

(H0
1g ] H1r ] H1+ ] H1ll ] H1lr, [x1 7! v1l, x2 7! v1r]�L1

2(�
1
�(e2

+)))

and the original configuration on the other side steps to:

(H0
2g ] H2r ] H2+ ] H2ll ] H2lr, [x1 7! v2l, x2 7! v2r]�L

2
2(�

2
�(e2

+)))

Next, notice that

(W 0,H1ll ] H1lr ] H1r,H2ll ] H2lr ] H2r, �L2[x1 7! (v1l, v2l), x2 7! (v1r, v2r)])
2 GJ�2, x1 : ⌧1, x2 : ⌧2K⇢

because (W 0, (H1ll, v1l), (H2ll, v2l)) 2 VJ⌧1K⇢, (W 0, (H1lr, v1r), (H2lr, v2r)) 2

VJ⌧2K⇢, and (W 0,H1r,H2r, �L2) 2 GJ�2K⇢ (by Lemma C.0.3).

Let �L0
2 = �L2[x1 7! (v1l, v2l), x2 7! (v1r, v2r)].

Thus, we can instantiate the second induction hypothesis with
⇢, ��, �L0

2,H1ll ] H1lr ] H1r,H2ll ] H2lr ] H2r to find that

(W 0, (H1ll ] H1lr ] H1r, [x1 7! v1l, x2 7! v1r]�L1
2(�

1
�(e2

+))),
(H2ll ] H2lr ] H2r, [x1 7! v2l, x2 7! v2r]�L2

2(�
2
�(e2

+)))) 2 EJ⌧ K⇢
(41)

Next, by the assumption that the configuration on the left-hand side
terminates, we have

(H0
1g]H1+]H1r]H1ll]H1lr, [x1 7! v1l, x2 7! v1r]�L

1
2(�

1
�(e2

+)))
⇤
!L1 (H1⇤, v1)

Then, by applying (41), we find

(H1⇤, v1) = (H00
1g ] H1+ ] H⇤

1f , v1f)
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and

(H0
2g]H2+]H2r]H2ll]H2lr, [x1 7! v2l, x2 7! v2r]�L

2
2(�

2
�(e2

+)))
⇤
!L2 (H00

2g]H2+]H
⇤
2f , v2f)

where H00
1g,H

00
2g : W 00 for some

W 0
v(dom(H1+),dom(H2+)),rchgclocs(W ,FL(cod(H1+))[L1,FL(cod(H2+))[L2) W

00

and
(W 00, (H⇤

1f , v1f), (H
⇤
2f , v2f)) 2 VJ⌧ K⇢

Then, choose H0
1 = H⇤

1f , H
0
2 = H⇤

2f , W
0 = W 00, H0

1g = H00
1g, and H0

2g = H00
2g.

Notice that

W v(dom(H1+),dom(H2+)),rchgclocs(W ,FL(cod(H1+))[L1,FL(cod(H2+))[L2) W
00

by Lemma C.0.2. This su�ces to finish the proof.

Lemma C.0.35 (Compat !v). If �;�;�; !� ` v � v : ⌧ , then

�;�;�; !� ` !v � !v : !⌧

Proof. Expanding the definition of �, ·+, EJ·K· and pushing substitutions
in the goal, we are to show that

9H0
1,H

0
1g.8H2+ : MHeap.9H0

2,W
0,H0

2g, v2.
H1⇤ = H0

1g ] H0
1 ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (H0
1, v1), (H

0
2, v2)) 2 VJ!⌧ K⇢ ^

(H2g+ ] H2 ] H2+, �2L(�
2
�(v

+)))
⇤
!L2 (H0

2g ] H0
2 ] H2+, v2) 9

given arbitrary ⇢, �L, ��,W ,L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ :
MHeap,H1⇤, such that

⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W , ��) 2 GJ�K⇢, (W ,H1,H2, �L) 2 GJ!�K⇢

and
(H1g+ ] H1 ] H1+, �

1
L(�

1
�(v

+)))
⇤
!L1 (H1⇤, v1) 9

By Lemma C.0.10, (W ,H1,H2, �L) 2 GJ!�K⇢ implies H1 = H2 = ;. Then,
by instantiating the first induction hypothesis with ⇢, ��, �L,W , ;, ;, we
find

(W , (;, �1L(�
1
�(v

+))), (;, �2L(�
2
�(v

+)))) 2 EJ⌧ K⇢

Therefore,
(H1⇤, v1) = (H0

1g ] H1f ] H1+, v1)
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and
(H2g+ ] H2+, �

2
L(�

2
�(v

+)))
⇤
!L2 (H0

2g ] H2f ] H2+, v2) 9L2

where H0
1g,H

0
2g : W 0 for some

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0

and
(W 0, (H1f , v1), (H2f , v2)) 2 VJ⌧ K⇢

However, by Lemma C.0.11, �1L(�
1
�(v

+)) and �2L(�
2
�(v

+)) are target val-
ues, so the original configurations (H1g+ ] H1+, �1L(�

1
�(v

+))) and (H2g+ ]

H2+, �2L(�
2
�(v

+))) must be irreducible. Ergo, the heaps that these configura-
tions step to must be the initial configurations, so H1g+ = H0

1g ] H1f and
H2g+ = H0

2g ] H2f .

Now, notice that, by the definition of Atomn, H1f : MHeap and H2f :
MHeap. However, since H1g+,H2g+ : W , we also have H1g+ : GCHeap and
H2g+ : GCHeap. Thus, H1f and H2f has only manually mapped locations
while H1g+ and H2g+ have only garbage collectable locations. However, the
observation above implies H1f ✓ H1g+ and H2f ✓ H2g+, so this must imply
H1f = H2f = ;.

Ergo, (W 0, (;, v1), (;, v2)) 2 VJ⌧ K⇢. From here, it follows that
(W 0, (;, v1), (;, v2)) 2 VJ!⌧ K⇢, which su�ces to finish the proof.

Lemma C.0.36 (Compat let !x). If �;�;�;�1 ` e1 � e1 : !⌧1 and
�;�;�;�2,x : ⌧1 ` e2 � e2 : ⌧2 , then

�;�;�;�1 ] �2 ` let !x = e1 in e2 � let !x = e1 in e2 : ⌧2

Proof. Expanding the definition of �, ·+, EJ·K· and pushing substitutions
in the goal, we are to show that

9H0
1,H

0
1g.8H2+ : MHeap.9H0

2,W
0,H0

2g, v2.
H1⇤ = H0

1g ] H0
1 ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (H0
1, v1), (H

0
2, v2)) 2 VJ⌧2K⇢ ^

(H2g+ ] H2 ] H2+, let x = �2L(�
2
�(e1

+)) in �2L(�
2
�(e2

+)))
⇤
!L2

(H0
2g ] H0

2 ] H2+, v2) 9

given arbitrary ⇢, �L, ��,W ,L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ :
MHeap,H1⇤, such that

⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W , ��) 2 GJ�K⇢,
(W ,H1,H2, �L.�) 2 GJ�1 ] �2K⇢, �L.� = �locs(⇢.L3)
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and

(H1g+ ] H1 ] H1+, let x = �1L(�
1
�(e1

+)) in �1L(�
1
�(e2

+)))
⇤
!L1 (H1⇤, v1) 9

Then, by Lemma C.0.9, there exist �L1, �L2,H1l,H1r,H2l,H2r such that
�L = �L1 ] �L2, H1 = H1l ] H1r, H2 = H2l ] H2r,

(W ,H1l,H2l, �L1) 2 GJ�1K⇢

(W ,H1r,H2r, �L2) 2 GJ�2K⇢
and for all j 2 {1, 2},

�jL(�
j

�(e1
+)) = �L

j

1(�
j

�(e1
+))

�jL(�
j

�(e2
+)) = �L

j

2(�
j

�(e2
+))

Then, by instantiating the first induction hypothesis with
⇢, ��, �L1,W ,H1l,H2l, we find

(W , (H1l, �L
1
1(�

1
�(e1

+))), (H2l, �L
2
1(�

2
�(e1

+)))) 2 EJ!⌧1K⇢

Thus, by Lemma C.0.14, we have

(H1g+]H1l]H1r]H1+, �L
1
1(�

1
�(e1

+)))
⇤
!L1[FL(�L1

2(�
1
�(e2

+))) (H
0
1g]H1r]H1+]H

⇤
1l, v1l) 9

and, for any H2+,

(H2g+]H2l]H2r]H2+, �L
2
1(�

2
�(e1

+)))
⇤
!L2[FL(�L2

2(�
2
�(e2

+))) (H
0
2g]H2r]H2+]H

⇤
2l, v2l) 9

where H0
1g,H

0
2g : W 0 for some

W v
(dom(H1r ] H1+), dom(H2r ] H2+)),
rchgclocs(W ,FL(cod(H1r)) [ FL(cod(H1+)) [ FL(�L

1
2(�

1
�(e2

+))) [ L1,

FL(cod(H2r)) [ FL(cod(H2+)) [ FL(�L
2
2(�

2
�(e2

+))) [ L2)

W 0

and
(W 0, (H⇤

1l, v1l), (H
⇤
2l, v2l)) 2 VJ!⌧1K⇢

By expanding the value relation, we find H⇤
1l = H⇤

2l = ; and
(W 0, (;, v⇤

1
), (;, v⇤

2
)) 2 VJ⌧1K⇢.

Thus, the original configuration steps as follows:

(H1g+ ] H1l ] H1r ] H1+, let x = �L1
1(�

1
�(e1

+)) in �L1
2(�

1
�(e2

+)))
⇤
! ⇤L1

(H0
1g ] H1r ] H1+, let x = v⇤

1
in �L1

2(�
1
�(e2

+))) !L1

(H0
1g ] H1r ] H1+, [x 7! v⇤

1
]�L1

2(�
1
�(e2

+)))
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and

(H2g+ ] H2l ] H2r ] H2+, let x = �L2
1(�

2
�(e1

+)) in �L2
2(�

2
�(e2

+)))
⇤
! ⇤L2

(H0
2g ] H2r ] H2+, let x = v⇤

2
in �L2

2(�
2
�(e2

+))) !L2

(H0
2g ] H2r ] H2+, [x 7! v⇤

2
]�L2

2(�
2
�(e2

+)))

Then, notice that

(W 0,H1r,H2r, �L2[x 7! (v⇤1, v
⇤
2)]) 2 GJ�, x : ⌧1K⇢

because, by Lemma C.0.3, (W 0,H1r,H2r, �L2) 2 GJ�, x : ⌧1K⇢ and
(W 0, (;, v⇤

1
), (;, v⇤

2
)) 2 VJ⌧1K⇢.

Let �L0
2 = �L2[x 7! (v⇤

1
, v⇤

2
)].

Ergo, we instantiate the second induction hypothesis with
⇢, ��, �L0

2,H1r,H2r to find that:

(W 0, (H1r, [x 7! v⇤1]�L
1
2(�

1
�(e2

+))), (H2r, [x 7! v⇤2]�L
2
2(�

2
�(e2

+)))) 2 EJ⌧2K⇢
(42)

Next, by the assumption that the configuration on the left-hand side
terminates, we have

(H0
1g ] H1r ] H1+, [x 7! v⇤1]�L

1
2(�

1
�(e2

+)))
⇤
!L1 (H1⇤, v1) 9L1

Then, by applying (42), we find

(H1⇤, v1) = (H00
1g ] H1+ ] H⇤

1f , v1f)

and

(H0
2g ] H2r ] H2+, [x 7! v⇤2]�L

2
2(�

2
�(e2

+)))
⇤
!L2 (H00

2g ] H2+ ] H⇤
2f , v2f)

where H00
1g,H

00
2g : W 00 for some

W 0
v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W

00

and
(W 00, (H⇤

1f , v1f), (H
⇤
2f , v2f)) 2 VJ⌧2K⇢

Then, choose H0
1 = H⇤

1f , H
0
2 = H⇤

2f , W
0 = W 00, H0

1g = H00
1g, and H0

2g = H00
2g.

Notice that
W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W 00 by
Lemma C.0.2. This su�ces to finish the proof.

Lemma C.0.37 (Compat dupl e). If �;�;�;� ` e � e : !⌧ , then

�;�;�;� ` dupl e � dupl e : !⌧⌦!⌧
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Proof. Expanding the definition of �, ·+, EJ·K· and pushing substitutions
in the goal, we are to show that

9H0
1,H

0
1g.8H2+ : MHeap.9H0

2,W
0,H0

2g, v2.
H1⇤ = H0

1g ] H0
1 ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (H0
1, v1), (H

0
2, v2)) 2 VJ!⌧⌦!⌧ K⇢ ^

(H2g+ ] H2 ] H2+, let x = �2L(�
2
�(e

+)) in (x, x))
⇤
!L2

(H0
2g ] H0

2 ] H2+, v2) 9

given arbitrary ⇢, �L, ��,W ,L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ :
MHeap,H1⇤, such that

⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W , ��) 2 GJ�K⇢, (W ,H1,H2, �L) 2 GJ�K⇢

and

(H1g+ ] H1 ] H1+, let x = �1L(�
1
�(e1

+)) in (x, x))
⇤
!L1 (H1⇤, v1) 9

We can instantiate the first induction hypothesis with ⇢, ��, �L,H1,H2 to
find

(W , (H1, �
1
L(�

1
�(e

+))), (H2, �
2
L(�

2
�(e

+)))) 2 EJ!⌧ K⇢
Thus, we find

(H1g+ ] H1 ] H1+, �
1
L(�

1
�(e

+)))
⇤
!L1 (H0

1g ] H⇤
1 ] H1+, v

⇤
1) 9L1

and

(H2g+ ] H2 ] H2+, �
2
L(�

2
�(e

+)))
⇤
!L2 (H0

2g ] H⇤
2 ] H2+, v

⇤
2) 9L2

where H0
1g,H

0
2g : W 0 for some

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0

and
(W 0, (H⇤

1, v
⇤
1), (H

⇤
2, v

⇤
2)) 2 VJ!⌧ K⇢

By expanding the value relation, we find H⇤
1 = H⇤

2 = ;.

Thus, the original configuration steps as follows:

(H1g+ ] H1 ] H1+, let x = �1L(�
1
�(e

+)) in (x, x))
⇤
! ⇤L1

(H0
1g ] H1+, let x = v⇤

1
in (x, x))

⇤
! ⇤L1

(H0
1g ] H1+, (v⇤1, v⇤

1
))
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and
(H2g+ ] H2 ] H2+, let x = �2L(�

2
�(e

+)) in (x, x))
⇤
! ⇤L2

(H0
2g ] H2+, let x = v⇤

2
in (x, x))

⇤
! ⇤L2

(H0
2g ] H2+, (v⇤2, v⇤

2
))

Notice that both of these configurations are irreducible because (v⇤
1
, v⇤

1
)

and (v⇤
2
, v⇤

2
) are both values. Next, choose H0

1 = ;, H0
1g = H0

1g, H
0
2 = ;,

and H0
2g = H0

2g. Finally, we find (W 0, (;, (v⇤
1
, v⇤

1
)), (;, (v⇤

2
, v⇤

2
))) 2 VJ!⌧⌦!⌧ K⇢

because (W 0, (;, v⇤
1
), (;, v⇤

2
)) 2 VJ!⌧ K⇢, which su�ces to finish the proof.

Lemma C.0.38 (Compat drop e). If �;�;�;� ` e � e : !⌧ , then

�;�;�;� ` drop e � drop e : Unit

Proof. Expanding the definition of �, ·+, EJ·K· and pushing substitutions
in the goal, we are to show that

9H0
1,H

0
1g.8H2+ : MHeap.9H0

2,W
0,H0

2g, v2.
H1⇤ = H0

1g ] H0
1 ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (H0
1, v1), (H

0
2, v2)) 2 VJUnitK⇢ ^

(H2g+ ] H2 ] H2+, let = �2L(�
2
�(e

+)) in ())
⇤
!L2

(H0
2g ] H0

2 ] H2+, v2) 9

given arbitrary ⇢, �L, ��,W ,L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ :
MHeap,H1⇤, such that

⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W , ��) 2 GJ�K⇢,
(W ,H1,H2, �L.�) 2 GJ�K⇢, �L.� = �locs(⇢.L3)

and

(H1g+ ] H1 ] H1+, let = �1L(�
1
�(e

+)) in ())
⇤
!L1 (H1⇤, v1) 9L1

We can instantiate the first induction hypothesis with ⇢, ��, �L,H1,H2 to
find

(W , (H1, �
1
L(�

1
�(e

+))), (H2, �
2
L(�

2
�(e

+)))) 2 EJ!⌧ K⇢
Thus, we find

(H1g+ ] H1 ] H1+, �
1
L(�

1
�(e

+)))
⇤
!L1 (H0

1g ] H1+ ] H⇤
1, v

⇤
1) 9L1

and

(H2g+ ] H2 ] H2+, �
2
L(�

2
�(e

+)))
⇤
!L2 (H0

2g ] H2+ ] H⇤
2, v

⇤
2) 9L2
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where H0
1g,H

0
2g : W 0 for some

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0

and
(W 0, (H⇤

1, v
⇤
1), (H

⇤
2, v

⇤
2)) 2 VJ!⌧ K⇢

By expanding the value relation, we find H⇤
1 = H⇤

2 = ;.

Thus, the original configuration steps as follows:

(H1g+ ] H1 ] H1+, let = �1L(�
1
�(e

+)) in ())
⇤
! ⇤L1

(H0
1g ] H1+, let = v⇤

1
in ())

⇤
! ⇤L1

(H0
1g ] H1+, ())

and
(H2g+ ] H2 ] H2+, let = �2L(�

2
�(e

+)) in ())
⇤
! ⇤L2

(H0
2g ] H2+ ] H⇤

2+, let = v⇤
2
in ())

⇤
! ⇤L2

(H0
2g ] H2+ ] H⇤

2+, ())

Next, choose H0
1 = ;, H0

1g = H0
1g, H

0
2 = ;, and H0

2g = H0
2g. Then, we find

(W 0.(;, ()), (;, ())) 2 VJUnitK⇢ by definition, which su�ces to finish the
proof.

Lemma C.0.39 (Compat new e). If �;�;�;� ` e � e : ⌧ , then

�;�;�;� ` new e � new e : 9⇣.cap ⇣ ⌧ ⌦ !ptr ⇣

Proof. Expanding the definition of �, ·+, EJ·K· and pushing substitutions
in the goal, we are to show that

9H0
1,H

0
1g.8H2+ : MHeap.9H0

2,W
0,H0

2g, v2.
H1⇤ = H0

1g ] H0
1 ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (H0
1, v1), (H

0
2, v2)) 2 VJ9⇣.cap ⇣ ⌧ ⌦ !ptr ⇣K⇢ ^

(H2g+ ] H2 ] H2+, let = callgc in let x` = ref �2L(�
2
�(e

+)) in ((), x`))
⇤
!L2

(H0
2g ] H0

2 ] H2+, v2) 9

given arbitrary ⇢, �L, ��,W ,L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ :
MHeap,H1⇤, such that

⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W , ��) 2 GJ�K⇢, (W ,H1,H2, �L) 2 GJ�K⇢

and

(H1g+]H1]H1+, let = callgc in let x` = ref �1L(�
1
�(e

+)) in ((), x`))
⇤
!L1 (H1⇤, v1) 9L1
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First, notice that

(H1g+ ] H1 ] H1+, let = callgc in let x` = ref �1L(�
1
�(e

+)) in ((), x`)) !L1

(H1ga ] H1 ] H1+, let = () in let x` = ref �1L(�
1
�(e

+)) in ((), x`)) !L1

(H1ga ] H1 ] H1+, let x` = ref �1L(�
1
�(e

+)) in ((), x`))

and similarly,

(H2g+ ] H2 ] H2+, let = callgc in let x` = ref �2L(�
2
�(e

+)) in ((), x`))
⇤
!L2

(H2ga ] H2 ] H2+, let x` = ref �2L(�
2
�(e

+)) in ((), x`))

for some heaps H1ga : GCHeap,H2ga : GCHeap. By Lemma C.0.4, there
exists a world

W v
(dom(H1) ] dom(H1+), dom(H2) ] dom(H2+)),
rchgclocs(W ,FL(cod(H1+)) [ FL(�1

L(�
1
�(e))) [ L1,

FL(cod(H2+)) [ FL(�2
L(�

2
�(e))) [ L2)

Wa

such that H1ga,H2ga : Wa.

Then, since GJ�K⇢, GJ�K⇢ are closed under world extension by
Lemma C.0.3, we can instantiate the first induction hypothesis with
⇢, ��, �L,Wa,H1,H2, so we find

(Wa, (H1, �
1
L(�

1
�(e

+))), (H2, �
2
L(�

2
�(e

+)))) 2 EJ⌧ K⇢

Ergo,

(H1ga ] H1 ] H1+, �
1
L(�

1
�(e

+)))
⇤
!L1 (H0

1g ] H⇤
1 ] H1+, v1)

and
(H2ga ] H2 ] H2+, �

2
L(�

2
�(e

+)))
⇤
!L2 (H0

2g ] H⇤
2 ] H2+, v2)

where H0
1g,H

0
2g : W 0 for some

Wa v(dom(H1+),dom(H2+)),rchgclocs(W ,FL(cod(H1+))[L1,FL(cod(H2+))[L2) W
0

and
(W 0, (H⇤

1, v1), (H
⇤
2, v2)) 2 VJ⌧ K⇢
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Thus, the original configuration steps as follows:

(H1g+ ] H1 ] H1+, let = callgc in let x` = ref �1L(�
1
�(e

+)) in ((), x`))
⇤
!L1

(H1ga ] H1 ] H1+, let x` = ref �1L(�
1
�(e

+)) in ((), x`))
⇤
! ⇤L1

(H0
1g ] H⇤

1 ] H1+, let x` = ref v1 in ((), x`))
⇤
! ⇤L1

(H0
1g ] H⇤

1[`1
m
7! v1] ] H1+, let x` = `1 in ((), x`))

⇤
! ⇤L1

(H0
1g ] H⇤

1[`1
m
7! v1] ] H1+, ((), `1))

and, by similar logic,

(H2g+]H2]H2+, let x` = ref �2L(�
2
�(e

+)) in ((), x`))
⇤
! ⇤L2(H

0
2g]H

⇤
2[`2 7! v2]]H2+, ((), `2))

for some locations `1 /2 dom(H0
1g]H⇤

1]H1+) and `2 /2 dom(H0
2g]H⇤

2]H2+).

Now, we can choose H0
1 = H⇤

1[`1 7! v1], H0
2 = H⇤

2[`2 7! v2], W 0 = W 0,
H0
1g = H0

1g, and H0
2g = H0

2g. Thus, it su�ces to show:

(W 0, (H⇤
1[`1 7! v1], ((), `1)), (H

⇤
2[`2 7! v2], ((), `2))) 2 VJ9⇣.cap ⇣ ⌧ ⌦ !ptr ⇣K⇢

By expanding the value relation, it su�ces to show:

(W 0, (H⇤
1[`1 7! v1], ((), `1)), (H

⇤
2[`2 7! v2], ((), `2))) 2 VJcap ⇣ ⌧ ⌦ !ptr ⇣K⇢[L3(⇣) 7!(`1,`2)]

By expanding the value relation and splitting the heaps appropriately, it
su�ces to show

(W 0, (H⇤
1[`1 7! v1], ()), (H

⇤
2[`2 7! v2], ())) 2 VJcap ⇣ ⌧ K⇢[L3(⇣) 7!(`1,`2)] (43)

and
(W 0, (;, `1), (;, `2)) 2 VJ!ptr ⇣K⇢[L3(⇣) 7!(`1,`2)] (44)

We first prove (44). By expanding the value relation, it su�ces to show:

(W 0, (;, `1), (;, `2)) 2 VJptr ⇣K⇢[L3(⇣) 7!(`1,`2)]

Then, since ⇣ clearly maps to (`1, `2) in the environment in the above value
relation, we are done.

Next, we prove (43). By expanding the value relation, since ⇣ clearly
maps to (`1, `2) in the environment in the value relation, it su�ces to show

(W 0, (H⇤
1, v1), (H2, v2)) 2 VJ⌧ K⇢[L3(⇣) 7!(`1,`2)]

However, we have (W 0, (H⇤
1, v1), (H

⇤
2, v2)) 2 VJ⌧ K⇢, and extending ⇢ does

not remove any atoms from the value relation, so this su�ces to finish the
proof.
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Lemma C.0.40 (Compat free e). If �;�;�;� ` e � e :
9⇣.cap ⇣ ⌧ ⌦ !ptr ⇣ , then

�;�;�;� ` free e � free e : 9⇣.⌧

Proof. Expanding the definition of �, ·+, EJ·K· and pushing substitutions
in the goal, we are to show that

9H0
1,H

0
1g.8H2+ : MHeap.9H0

2,W
0,H0

2g, v2.
H1⇤ = H0

1g ] H0
1 ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,FL(cod(H1+))[L1,FL(cod(H2+))[L2) W
0
^

(W 0, (H0
1, v1), (H

0
2, v2)) 2 VJ9⇣.⌧ K⇢ ^

(H2g+ ] H2 ] H2+,

let x = �2L(�
2

�
(e+)) in let xr =!(snd x) in let = free (snd x) in xr)

⇤
!L2

(H0
2g ] H0

2 ] H2+, v2) 9

given arbitrary ⇢, �L, ��,W ,L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ :
MHeap,H1⇤, such that

⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W , ��) 2 GJ�K⇢, (W ,H1,H2, �L) 2 GJ�K⇢

and

(H1g+ ] H1 ] H1+,

let x = �1L(�
1

�
(e+)) in let xr =!(snd x) in let = free (snd x) in xr)

⇤
!L1

(H1⇤, v1) 9L1

By instantiating the first induction hypothesis with ⇢, ��, �L,H1,H2, we
find

(W , (H1, �
1
L(�

1
�(e

+))), (H2, �
2
L(�

2
�(e

+)))) 2 EJ9⇣.cap ⇣ ⌧ ⌦ !ptr ⇣K⇢

Ergo, by Lemma C.0.14,

(H1g+ ] H1 ] H1+, �
1
L(�

1
�(e

+)))
⇤
!L1 (H0

1g ] H⇤
1 ] H1+, v1) 9L1

and

(H2g+ ] H2 ] H2+, �
2
L(�

2
�(e

+)))
⇤
!L2 (H0

2g ] H⇤
2 ] H2+, v2) 9L2

where H0
1g,H

0
2g : W 0 for some

W v(dom(H1+),dom(H2+)),rchgclocs(W ,FL(cod(H1+))[L1,FL(cod(H2+))[L2) W
0

and
(W 0, (H⇤

1, v1), (H
⇤
2, v2)) 2 VJ9⇣.cap ⇣ ⌧ ⌦ !ptr ⇣K⇢
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By expanding the value relation, there exist some locations `1, `2 and, for
any i 2 {1, 2},

vi = ((), `i)

and
H⇤
i = Hv

i ] {`i 7! vhi}

where
(W 0, (Hv

1, vh1), (H
v

2, vh2)) 2 VJ⌧ K⇢[L3(⇣) 7!(`1,`2)]

Thus, the original configuration steps as follows:

(H1g+ ] H1 ] H1+, let x = �1L(�
1

�
(e+)) in let xr =!(snd x) in let = free (snd x) in xr)

⇤
! ⇤L1

(H0
1g ] Hv

1 ] {`1 7! vh1} ] H1+,

let x = ((), `1) in let xr =!(snd x) in let = free (snd x) in xr)
⇤
! ⇤L1

(H0
1g ] Hv

1 ] {`1 7! vh1} ] H1+, let xr =!`1 in let = free `1 in xr)
⇤
! ⇤L1

(H0
1g ] Hv

1 ] {`1 7! vh1} ] H1+, let xr = vh1 in let = free `1 in xr)
⇤
! ⇤L1

(H0
1g ] Hv

1 ] {`1 7! vh1} ] H1+, let = free `1 in vh1)
⇤
! ⇤L1

(H0
1g ] Hv

1 ] H1+, vh1)

and by similar logic,

(H2g+ ] H2 ] H2+, let x = �2L(�
2

�
(e+)) in let xr =!(snd x) in let = free (snd x) in xr)

⇤
! ⇤L2

(H0
2g ] Hv

2 ] H2+, vh2)

Then, we can take W 0 = W 0, H0
1 = Hv

1, H0
2 = Hv

2, H0
1g = H0

1g, and
H0
2+ = H0

2g. Thus, it su�ces to show

(W 0, (Hv

1, vh1), (H
v

2, vh2)) 2 VJ9⇣.⌧ K⇢

Because we have (W 0, (Hv

1, vh1), (H
v

2, vh2)) 2 VJ⌧ K⇢[L3(⇣) 7!(`1,`2)], the above
statement clearly follows, which su�ces to finish the proof.

Lemma C.0.41 (Compat swap). If �;�;�;�1 ` e1 � e1 : cap ⇣ ⌧1,
�;�;�;�2 ` e2 � e2 : ptr ⇣, and �;�;�;�3 ` e3 � e3 : ⌧3 , then

�;�;�;� ` swap e1 e2 e3 � swap e1 e2 e3 : cap ⇣ ⌧3 ⌦ ⌧1
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Proof. Expanding the definition of �, ·+, EJ·K· and pushing substitutions
in the goal, we are to show that

9H0
1,H

0
1g.8H2+ : MHeap.9H0

2,W
0,H0

2g, v2.
H1⇤ = H0

1g ] H0
1 ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (H0
1, v1), (H

0
2, v2)) 2 VJcap ⇣ ⌧3 ⌦ ⌧1K⇢ ^

(H2g+ ] H2 ] H2+,
let xp = �2L(�

2

�
(e2+)) in let = �2L(�

2

�
(e1)) in let xv0 = !xp in

let = (xp := �2L(�
2

�
(e3+))) in ((), xv0))

⇤
!L2

(H0
2g ] H0

2 ] H2+, v2) 9

given arbitrary ⇢, �L, ��,W ,L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ :
MHeap,H1⇤, such that

⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W , ��) 2 GJ�K⇢, (W ,H1,H2, �L) 2 GJ�1 ] �2 ] �3K⇢

and

(H1g+ ] H1 ] H1+,
let xp = �1L(�

1

�
(e2+)) in let = �1L(�

1

�
(e1)) in let xv0 = !xp in

let = (xp := �1L(�
1

�
(e3+))) in ((), xv0))

⇤
!L1

(H1⇤, v1) 9L1

Then, by applying Lemma C.0.9 twice, there exist
�L1, �L2, �L3,H1a,H1b,H1c,H2a,H2b,H2c such that �L.� = �L1 ] �L2 ] �L3,
H1 = H1a ] H1b ] H1c, H2 = H2a ] H2b ] H2c,

(W ,H1a,H2a, �L1) 2 GJ�1K⇢

(W ,H1b,H2b, �L2) 2 GJ�2K⇢
(W ,H1c,H2c, �L3) 2 GJ�3K⇢

and for all j 2 {1, 2},

�jL(�
j

�(e1
+)) = �L

j

1(�
j

�(e1
+))

�jL(�
j

�(e2
+)) = �L

j

2(�
j

�(e2
+))

�jL(�
j

�(e3
+)) = �L

j

3(�
j

�(e3
+))

Then, by instantiating the second induction hypothesis with
⇢, ��, �L2,W ,H1b,H2b, we find

(W , (H1b, �L
1
2(�

1
�(e2

+))), (H2b, �L
2
2(�

2
�(e2

+)))) 2 EJptr ⇣K⇢
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Thus, by Lemma C.0.14, we have

(H1g+ ] H1a ] H1b ] H1c ] H1+, �L1
2(�

1
�(e2

+)))
⇤
!L1[FL(�L1

1(�
1
�(e1

+)))[FL(�L1
3(�

1
�(e3

+))

(H0
1g ] H1a ] H1c ] H1+ ] H⇤

1b, v1b) 9

and, for any H2+,

(H2g+ ] H2a ] H2b ] H2c ] H2+, �L2
2(�

2
�(e2

+)))
⇤
!L2[FL(�L2

1(�
2
�(e1

+)))[FL(�L2
3(�

2
�(e3

+)))

(H0
2g ] H2a ] H2c ] H2+ ] H⇤

2b, v2b) 9

where H0
1g,H

0
2g : W 0 for some

W v(dom(H1a]H1c]H1+),dom(H2a]H2c]H2+)),

rchgclocs(W ,FL(cod(H1a))[FL(cod(H1c))[FL(cod(H1+))[FL(�L1
1(�

1
�(e1

+)))[FL(�L1
3(�

1
�(e3

+)))[L1,

FL(cod(H2a))[FL(cod(H2c))[FL(cod(H2+))[FL(�L2
1(�

2
�(e1

+)))[FL(�L2
3(�

2
�(e3

+)))[L2) W
0

and
(W 0, (H⇤

1b, v1b), (H
⇤
2b, v2b)) 2 VJptr ⇣K⇢

Expanding the value relation, we find that H⇤
1b = H⇤

2b = ; and there exist
locations `1, `2 such that ⇢.L3(⇣) = (`1, `2) = (v1b, v2b).

Then, since GJ�K⇢,GJ�1 ] �2 ] �3K⇢ are closed under world extension
by Lemma C.0.3, we can instantiate the first induction hypothesis with
⇢, ��, �L1,W

0,H1a,H2a:

(W 0, (H1a, �L
1
1(�

1
�(e1

+))), (H2a, �L
2
1(�

2
�(e1

+)))) 2 EJcap ⇣ ⌧1K⇢

Thus, by Lemma C.0.14, we have

(H0
1g ] H1a ] H1c ] H1+, �L1

1(�
1
�(e1

+)))
⇤
!L1[FL(�L1

3(�
1
�(e3

+))

(H00
1g ] H1c ] H1+ ] H⇤

1a, v1a) 9

and, for any H2+,

(H0
2g ] H2a ] H2c ] H2+, �L2

1(�
2
�(e1

+)))
⇤
!L2[FL(�L2

3(�
2
�(e3

+)))

(H00
2g ] H2c ] H2+ ] H⇤

2a, v2a) 9

where H00
1g,H

00
2g : W 00 for some

W 0 v
(dom(H1c ] H1+), dom(H2c ] H2+)),
rchgclocs(W ,FL(cod(H1c)) [ FL(cod(H1+)) [ FL(�L

1
3(�

1
�(e3

+))) [ L1,

FL(cod(H2c)) [ FL(cod(H2+)) [ FL(�L
2
3(�

2
�(e3

+))) [ L2)

W 00

and
(W 00, (H⇤

1a, v1a), (H
⇤
2a, v2a)) 2 VJcap ⇣ ⌧1K⇢
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Expanding the value relation, we find that v1a = v2a = () and there exist
values v1, v2 such that H⇤

1a = H1av ]{`1
m
7! v1}, H⇤

2a = H2av ]{`2
m
7! v2}, and

(W 00, (H1av, v1), (H2av, v2)) 2 VJ⌧1K⇢

Then, since GJ�K⇢,GJ�1 ] �2 ] �3K⇢ are closed under world extension
by Lemma C.0.3, we can instantiate the third induction hypothesis with
⇢, ��, �L3,W

00,H1c,H2c:

(W 0, (H1c, �L
1
3(�

1
�(e3

+))), (H2c, �L
2
3(�

2
�(e3

+)))) 2 EJ⌧3K⇢

Thus, by Lemma C.0.14, we have

(H00
1g ] H1av ] {`1

m
7! v1} ] H1c ] H1+, �L1

3(�
1
�(e3

+)))
⇤
!L1

(H000
1g ] H1av ] {`1

m
7! v1} ] H1+ ] H⇤

1c, v1c) 9

and, for any H2+,

(H00
2g ] H2av ] {`2

m
7! v2} ] H2c ] H2+, �L2

3(�
2
�(e3

+)))
⇤
!L2

(H000
2g ] H2av ] {`2

m
7! v2} ] H2+ ] H⇤

2c, v2c) 9

where H000
1g,H

000
2g : W 000 for some

W 00
v

(dom(H1av ] H1+), dom(H2av ] H2+)),
rchgclocs(W 00,L1 [ FL(cod(H1+)) [ FL(cod(H1av)) [ FL(v1),
L2 [ FL(cod(H2+)) [ FL(cod(H2av)) [ FL(v2))

W 000

and
(W 000, (H⇤

1c, v1c), (H
⇤
2c, v2c)) 2 VJ⌧3K⇢
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Thus, the original configuration steps as follows:

(H1g+ ] H1a ] H1b ] H1c ] H1+,
let xp = �1L(�

1

�
(e2+)) in let = �1L(�

1

�
(e1)) in let xv0 = !xp in

let = (xp := �1L(�
1

�
(e3+))) in ((), xv0))

⇤
!L1

(H0
1g ] H1a ] H1c ] H1+,

let xp = `1 in let = �1L(�
1

�
(e1)) in let xv0 = !xp in let = (xp := �1L(�

1

�
(e3+))) in ((), xv0))

⇤
!L1

(H0
1g ] H1a ] H1c ] H1+,

let = �1L(�
1

�
(e1)) in let xv0 = !`1 in let = (`1 := �1L(�

1

�
(e3+))) in ((), xv0))

⇤
!L1

(H00
1g ] H1av ] {`1

m
7! v1} ] H1c ] H1+,

let = () in let xv0 = !`1 in let = (`1 := �1L(�
1

�
(e3+))) in ((), xv0))

⇤
!L1

(H00
1g ] H1av ] {`1

m
7! v1} ] H1c ] H1+,

let xv0 = !`1 in let = (`1 := �1L(�
1

�
(e3+))) in ((), xv0))

⇤
!L1

(H00
1g ] H1av ] {`1

m
7! v1} ] H1c ] H1+,

let xv0 = v1 in let = (`1 := �1L(�
1

�
(e3+))) in ((), xv0))

⇤
!L1

(H00
1g ] H1av ] {`1

m
7! v1} ] H1c ] H1+, let = (`1 := �1L(�

1

�
(e3+))) in ((), v1))

⇤
!L1

(H000
1g ] H1av ] {`1

m
7! v1} ] H⇤

1c ] H1+, let = (`1 := v1c) in ((), v1))
⇤
!L1

(H000
1g ] H1av ] {`1

m
7! v1c} ] H⇤

1c ] H1+, let = () in ((), v1))
⇤
!L1

(H000
1g ] H1av ] {`1

m
7! v1c} ] H⇤

1c ] H1+, ((), v1)) 9

and similarly, on the other side, the configuration steps to:

(H000
2g ] H2av ] {`2

m
7! v2c} ] H⇤

2c ] H2+, ((), v2))

Then, choose H10 = H1av ] {`1
m
7! v1c} ] H⇤

1c, H20 = H2av ] {`2
m
7!

v2c} ] H⇤
2c, W 0 = W 000, H0

1g = H000
1g, and H0

2g = H000
2g. First, notice

that W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W 000

by Lemma C.0.2. Then, to finish the proof, we must show that

(W 000, (H1av]{`1
m
7! v1c}]H

⇤
1c, ((), v1)), (H2av]{`2

m
7! v2c}]H

⇤
2c, ((), v2))) 2 VJcap ⇣ ⌧3 ⌦ ⌧1K⇢

First, we have (W 000, (H1av, v1), (H2av, v2)) 2 VJ⌧1K⇢ by Lemma C.0.3. Thus,
it su�ces to show:

(W 000, ({`1
m
7! v1c} ] H⇤

1c, ()), ({`2
m
7! v2c} ] H⇤

2c, v2)) 2 VJcap ⇣ ⌧3K⇢

This follows from the fact that ⇢.L3(⇣) = (`1, `2) and that
(W 000, (H⇤

1c, v1c), (H
⇤
2c, v2c)) 2 VJ⌧3K⇢, which su�ces to finish the proof.

Lemma C.0.42 (Compat ⇤⇣.e). If �;�;�, ⇣;� ` e � e : ⌧ , then

�;�;�;� ` ⇤⇣.e � ⇤⇣.e : 8⇣.⌧
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Proof. Expanding the conclusion, we must show that given

8⇢, ��, �L,W ,H1,H2.
⇢.F 2 DJ�K ^ ⇢.L3 2 DJ�K ^ (W , ��) 2 GJ�K⇢ ^ (W ,H1,H2, �L.�) 2 GJ�K⇢
^ �L.� = �locs(⇢.L3)

it holds that:

(W , (H1,�x⇣ .�
1
L(�

1
�(e

+))), (H2,�x⇣ .�
2
L(�

2
�(e

+)))) 2 EJ8⇣.⌧ K⇢

By Lemma C.0.8, it su�ces to show that:

(W , (H1,�x⇣ .�
1
L(�

1
�(e

+))), (H2,�x⇣ .�
2
L(�

2
�(e

+)))) 2 VJ8⇣.⌧ K⇢

By expanding the value relation, for any locations `1, `2, we must show

(W , (H1, �
1
L(�

1
�(e

+))), (H2, �
2
L(�

2
�(e

+)))) 2 EJ⌧ K⇢[L3(⇣) 7!(`1,`2)]

Let ⇢0 be a record such that ⇢0.F = ⇢.F and ⇢0.L3 = ⇢.L3[⇣ 7! (`1, `2)]. It
is easy to see ⇢0.L3 2 DJ�, ⇣K, given that ⇢.L3 2 DJ�K. Thus, we can
instantiate the first induction hypothesis with ⇢0, ��, �L,W ,H1,H2, which
su�ces to show the above statement.

Lemma C.0.43 (Compat e [⇣0]). If �;�;�;� ` e � e : 8⇣.⌧ and ⇣0 2 �,
then

�;�;�;� ` e [⇣0] � e [⇣0] : [⇣ 7! ⇣0]⌧

Proof. Expanding the definition of �, ·+, EJ·K· and pushing substitutions
in the goal, we are to show that

9H0
1,H

0
1g.8H2+ : MHeap.9H0

2,W
0,H0

2g, v2.
H1⇤ = H0

1g ] H0
1 ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (H0
1, v1), (H

0
2, v2)) 2 VJ[⇣ 7! ⇣0]⌧ K⇢ ^

(H2g+ ] H2 ] H2+, �1L(�
1
�(e

+)) ())
⇤
!L2

(H0
2g ] H0

2 ] H2+, v2) 9

given arbitrary ⇢, �L, ��,W ,L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ :
MHeap,H1⇤, such that

⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W , ��) 2 GJ�K⇢,
(W ,H1,H2, �L.�) 2 GJ�K⇢, �L.� = �locs(⇢.L3)

and
(H1g+ ] H1 ] H1+, �

1
L(�

1
�(e

+)) ())
⇤
!L1 (H1⇤, v1) 9L1
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First, we can instantiate the first induction hypothesis with
⇢, ��, �L,H1,H2 to find that:

(W , (H1, �
1
L(�

1
�(e

+))), (H2, �
2
L(�

2
�(e

+)))) 2 EJ8⇣.⌧ K⇢

Thus, we find

(H1g+ ] H1 ] H1+, �
1
L(�

1
�(e

+)))
⇤
!L1 (H0

1g ] H⇤
1 ] H1+, v

⇤
1) 9L1

and

(H2g+ ] H2 ] H2+, �
2
L(�

2
�(e

+)))
⇤
!L2 (H0

2g ] H⇤
2 ] H2+, v

⇤
2) 9L2

where H0
1g,H

0
2g : W 0 for some

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0

and
(W 0, (H⇤

1, v
⇤
1), (H

⇤
2, v

⇤
2)) 2 VJ8⇣.⌧ K⇢

By expanding the value relation, we find v⇤
1
= � .e⇤

b
and v⇤

2
= � .e†

b
where

(W 0, (H⇤
1, e

⇤
b
), (H⇤

2, e
†
b
)) 2 EJ⌧ K⇢[L3(⇣) 7!(`1,`2)] (45)

Ergo, the original configuration steps as follows:

(H1g+ ] H1 ] H1+, �1L(�
1
�(e

+)) ())
⇤
! ⇤L1

(H0
1g ] H⇤

1 ] H1+,� .e⇤
b
())

⇤
! ⇤L1

(H0
1g ] H⇤

1 ] H1+, e⇤b)

and
(H2g+ ] H2 ] H2+, �2L(�

2
�(e

+)) ())
⇤
! ⇤L2

(H0
2g ] H⇤

2 ] H2+, e
†
b
)

Next, by the fact that the configuration on the left-hand side terminates,
we have

(H0
1g ] H⇤

1 ] H1+, e
⇤
b
)

⇤
!L1 (H1⇤, v1) 9L1

Then, by applying (45), we find that

(H1⇤, v1) = (H00
1g ] H⇤⇤

1 ] H1+, v
f

1)

and
(H0

2g ] H⇤
2 ] H2+, e

†
b
)

⇤
!L2 (H00

2g ] H⇤⇤
2 ] H2+, v

f

2) 9L2

where H00
1g,H

00
2g : W 00 for some
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W 0
v(dom(H1+),dom(H2+)),rchgclocs(W 0,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W

00

and
(W 00, (H⇤⇤

1 , vf1), (H
⇤⇤
2 , vf2)) 2 VJ⌧ K⇢[L3(⇣) 7!(`1,`2)]

Then, by Lemma C.0.6, we find

(W 00, (H⇤⇤
1 , vf1), (H

⇤⇤
2 , vf2)) 2 VJ[⇣ 7! ⇣0]⌧ K⇢

Finally, we can take H0
1 = H⇤⇤

1 , H0
2 = H⇤⇤

2 , W 0 =
W 00, H0

1g = H00
1g, and H0

2g = H00
2g. Notice that

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W 00

by Lemma C.0.2. This su�ces to finish the proof.

Lemma C.0.44 (Compat p⇣, eq). If �;�;�;� ` e � e : [⇣ 7! ⇣0]⌧ , then

�;�;�;� ` p⇣0, eq � p⇣0, eq : 9⇣.⌧

Proof. Expanding the definition of �, ·+, EJ·K· and pushing substitutions
in the goal, we are to show that

9H0
1,H

0
1g.8H2+ : MHeap.9H0

2,W
0,H0

2g, v2.
H1⇤ = H0

1g ] H0
1 ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (H0
1, v1), (H

0
2, v2)) 2 VJ[⇣ 7! ⇣0]⌧ K⇢ ^

(H2g+ ] H2 ] H2+, �1L(�
1
�(e

+)))
⇤
!L2

(H0
2g ] H0

2 ] H2+, v2) 9

given arbitrary ⇢, �L, ��,W ,L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ :
MHeap,H1⇤, such that

⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W , ��) 2 GJ�K⇢, (W ,H1,H2, �L) 2 GJ�K⇢

and
(H1g+ ] H1 ] H1+, �

1
L(�

1
�(e

+)))
⇤
!L1 (H1⇤, v1) 9L1

First, we can instantiate the first induction hypothesis with
⇢, ��, �L,W ,H1,H2 to find that:

(W , (H1, �
1
L(�

1
�(e

+))), (H2, �
2
L(�

2
�(e

+)))) 2 EJ[⇣ 7! ⇣0]⌧ K⇢

Thus, by Lemma C.0.14, we find

(H1g+ ] H1 ] H1+, �
1
L(�

1
�(e

+)))
⇤
!L1 (H0

1g ] H⇤
1 ] H1+, v

⇤
1) 9L1
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and

(H2g+ ] H2 ] H2+, �
2
L(�

2
�(e

+)))
⇤
!L2 (H0

2g ] H⇤
2 ] H2+, v

⇤
2) 9L2

where H0
1g,H

0
2g : W 0 for someW v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+)))

W 0 and
(W 0, (H⇤

1, v
⇤
1), (H

⇤
2, v

⇤
2)) 2 VJ[⇣ 7! ⇣0]⌧ K⇢

Then, we can take H0
1 = H⇤

1, H0
2 = H⇤

2, W 0 = W 0, H0
1g = H0

1g, and
H0
2g = H0

2g. Thus, it su�ces to show:

(W 0, (H⇤
1, v

⇤
1), (H

⇤
2, v

⇤
2)) 2 VJ9⇣.⌧ K⇢

By expanding the value relation, it su�ces to show:

(W 0, (H⇤
1, v

⇤
1), (H

⇤
2, v

⇤
2)) 2 VJ⌧ K⇢[L3(⇣) 7!(`1,`2)]

The above statement must hold by Lemma C.0.6 because we have that
(W 0, (H⇤

1, v
⇤
1
), (H⇤

2, v
⇤
2
)) 2 VJ[⇣ 7! ⇣0]⌧ K⇢ from earlier, which su�ces to finish

the proof.

Lemma C.0.45 (Compat let p⇣, xq). If �;�;�;�1 ` e1 � e1 : 9⇣.⌧1,
�;�;�, ⇣;�2,x : ⌧1 ` e2 � e2 : ⌧2 and FLV (⌧2) ✓ �, then

�;�;�;�1 ] �2 ` let p⇣, xq = e1 in e2 � let p⇣, xq = e1 in e2 : ⌧2

Proof. Expanding the definition of �, ·+, EJ·K· and pushing substitutions
in the goal, we are to show that

9H0
1,H

0
1g.8H2+ : MHeap.9H0

2,W
0,H0

2g, v2.
H1⇤ = H0

1g ] H0
1 ] H1+ ^ H0

1g,H
0
2g : W 0

^

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W
0
^

(W 0, (H0
1, v1), (H

0
2, v2)) 2 VJ⌧2K⇢ ^

(H2g+ ] H2 ] H2+, let x = �2L(�
2

�
(e1+)) in �2L(�

2

�
(e2+)))

⇤
!L2

(H0
2g ] H0

2 ] H2+, v2) 9

given arbitrary ⇢, �L, ��,W ,L1,L2,H1g+,H2g+ : W , v1,H1,H2,H1+ :
MHeap,H1⇤, such that

⇢.L3 2 DJ�K, ⇢.F 2 DJ�K, (W , ��) 2 GJ�K⇢, (W ,H1,H2, �L) 2 GJ�1 ] �2K⇢

and

(H1g+ ] H1 ] H1+, let x = �1L(�
1

�
(e1

+)) in �1L(�
1

�
(e2

+)))
⇤
!L1 (H1⇤, v1) 9L1



368 value interoperability: memory management and polymorphism

Then, by Lemma C.0.9, there exist �L1, �L2,H1l,H1r,H2l,H2r such that
�L = �L1 ] �L2, H1 = H1l ] H1r, H2 = H2l ] H2r,

(W ,H1l,H2l, �L1) 2 GJ�1K⇢

(W ,H1r,H2r, �L2) 2 GJ�2K⇢
and for all j 2 {1, 2},

�jL(�
j

�(e1
+)) = �L

j

1(�
j

�(e1
+))

�jL(�
j

�(e2
+)) = �L

j

2(�
j

�(e2
+))

Then, by instantiating the first induction hypothesis with
⇢, ��, �L1,W ,H1l,H2l, we find

(W , (H1l, �L
1
1(�

1
�(e1

+))), (H2l, �L
2
1(�

2
�(e1

+)))) 2 EJ9⇣.⌧1K⇢

Thus, by Lemma C.0.14, we have

(H1g+]H1l]H1r]H1+, �L
1
1(�

1
�(e1

+)))
⇤
!L1[FL(�L1

2(�
1
�(e2

+))) (H
0
1g]H1r]H

⇤
1l]H1+, v

⇤
1) 9

and, for any H2+,

(H1g+]H2l]H2r]H2+, �L
2
1(�

2
�(e1

+)))
⇤
!L2[FL(�L2

2(�
2
�(e2

+))) (H
0
1g]H2r]H

⇤
2l]H2+, v

⇤
2) 9

where H0
1g,H

0
2g : W 0 for some

W v(dom(H1r]H1+),dom(H2r]H2+)),rchgclocs(W ,FL(cod(H1r))[FL(cod(H1+))[FL(�L1
2(�

1
�(e2

+)))[L1,

FL(cod(H2r))[FL(cod(H2+))[FL(�L2
2(�

2
�(e2

+)))[L2) W
0

and
(W 0, (H⇤

1l, v
⇤
1), (H

⇤
2l, v

⇤
2)) 2 VJ9⇣.⌧1K⇢

By expanding the value relation, we find there exist locations `1, `2 such
that, for any i 2 {1, 2},

(W 0, (H⇤
1l, v

⇤
1), (H

⇤
2l, v

⇤
2)) 2 VJ⌧1K⇢[L3(⇣) 7!(`1,`2)]

Thus, the original configuration steps as follows:

(H1g+ ] H1l ] H1r ] H1+, let x = �1L(�
1

�
(e1+)) in �1L(�

1

�
(e2+)))

⇤
! ⇤L1

(H0
1g ] H1r ] H1+ ] H⇤

1l, let x = v⇤
1
in �1L(�

1

�
(e2+)))

⇤
! ⇤L1

(H0
1g ] H1r ] H1+ ] H⇤

1l, [x 7! v⇤
1
]�1L(�

1
�(e2

+)))
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and similarly

(H1g+ ] H2l ] H2r ] H2+, let x = �2L(�
2

�
(e1+)) in �2L(�

2

�
(e2+)))

⇤
! ⇤L2

(H0
1g ] H2r ] H2+ ] H⇤

2l, [x 7! v⇤
2
]�2L(�

2
�(e2

+)))

Let �L0
2 = �L2[x 7! (v⇤

1
, v⇤

2
)].

First, one can see that

(W 0,H1r ] H⇤
1l,H2r ] H⇤

2l, �L
0
2) 2 GJ�1, x : ⌧1K⇢[L3(⇣) 7!(`1,`2)]

because (W 0, (H⇤
1l, v

⇤
1
), (H⇤

2l, v
⇤
2
)) 2 VJ⌧1K⇢[L3(⇣) 7!(`1,`2)] and

(W 0,H1r,H2r, �L2) 2 GJ�2K⇢ (by Lemma C.0.3, and extending ⇢
with ⇣ does not invalidate any atoms in the substitution).

Thus, since GJ�K⇢,GJ�1 ] �2K⇢ are closed under world extension by
Lemma C.0.3, we can instantiate the second induction hypothesis with
⇢[L3(⇣) 7! (`1, `2)], ��, �L0

2,W
0,H1r ] H⇤

1l,H2r ] H⇤
2l to find

(W 0, (H1r ] H⇤
1l, [x 7! v⇤

1
]�1L(�

1
�(e2

+))), (H2r ] H⇤
2l, [x 7! v⇤

2
]�2L(�

2
�(e2

+))) 2 EJ⌧2K⇢[L3(⇣) 7!(`1,`2)]

(46)

Next, by the assumption that the configuration on the left-hand side
terminates, we have

(H0
1g ] H1+ ] H1r ] H⇤

1l, [x 7! v⇤1]�
1
L(�

1
�(e2

+)))
⇤
! ⇤L1(H1⇤, v1) 9L1

Ergo, by applying (46), we have

(H1⇤, v1) = (H00
1g ] H1f ] H1+, v

f

1)

and

(H0
2g]H2r]H

⇤
2l]H2+, [x 7! v⇤2]�

2
L(�

2
�(e2

+)))
⇤
! ⇤L2(H

00
2g]H2f ]H2+, v

f

2) 9L2

where H00
1g,H

00
2g : W 00 for someW 0

v(dom(H1+),dom(H2+)),rchgclocs(W 0,L1[FL(cod(H1+)),L2[FL(cod(H2+)))

W 00 and
(W 00, (H1f , v

f

1), (H2f , v
f

2)2VJ⌧2K⇢[L3(⇣) 7!(`1,`2)]

Then, by Lemma C.0.7, since FLV (⌧2) ✓ �,

(W 00, (H1f , v
f

1), (H2f , v
f

2)) 2 VJ⌧2K⇢

Finally, we can take H0
1 = H1f , H0

2 = H2f , W 0 =
W 00, H0

1g = H00
1g, and H0

2g = H00
2g. Notice that

W v(dom(H1+),dom(H2+)),rchgclocs(W ,L1[FL(cod(H1+)),L2[FL(cod(H2+))) W 00

by Lemma C.0.2. This su�ces to finish the proof.
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Lemma C.0.46 (Compat LeM⌧ ). If �; !�;�;� ` e � e : ⌧ and ⌧ ⇠ ⌧ ,
then

�;�;�; !� ` LeM⌧ � LeM⌧ : ⌧

Proof. Expanding the definition of � and ·+ and pushing substitutions in
the goal, we are to show that

(W , (H1, C⌧ 7!⌧ (�
1
�(�

1
L(e

+)))), (H2, C⌧ 7!⌧ (�
2
�(�

2
L(e

+))))) 2 EJ⌧ K⇢ (47)

given ⇢, ��, �L,W ,H1,H2 such that

⇢.F 2 DJ�K, ⇢.L3 2 DJ�K, (W , ��) 2 GJ�K⇢,
(W ,H1,H2, �L.�) 2 GJ!�K⇢, �L.� = �locs(⇢.L3)

Our first induction hypothesis, appropriately instantiated, tells us that:

(W , (H1, �
1
�(�

1
L(e

+))), (H2, �
2
�(�

2
L(e

+)))) 2 EJ⌧K⇢
Since ⌧ ⇠ ⌧ , we have (47) by Theorem C.0.15.

Lemma C.0.47 (Fundamental Property). If �;�;�;� ` e : ⌧ , then
�;�;�;� ` e � e : ⌧ and if �;�;�;� ` e : ⌧ , then �;�;�;� ` e � e : ⌧ .

Proof. By induction on typing derivation, relying on the following compat-
ibility lemmas, which have to exist for every typing rule in both source
languages.

Theorem C.0.48 (Type Safety for MiniML). If ·; ·; ·; · ` e : ⌧ , then
for any heap H, if (H, e+)

⇤
! ⇤(H0, e0), either there exist H00, e00 such that

(H0, e0) ! (H00, e00) or e0 is a vlaue.

Proof. By the fundamental property, since the environments under which e

is typechecked are empty, (·, (;, e+), (;, e+)) 2 EJ⌧K·.
Then, either (H0, e0) ! (H00, e00) or (H0, e0) is irreducible. If (H, e0) is

irreducible, we can apply the expression relation and find that there exists
a world W and expression v2 such that (W , (;, e0), (;, v2)) 2 VJ⌧K·. Since
expressions in the value relation are target values, this su�ces to show that
e0 is a value.

Theorem C.0.49 (Type Safety for L3). If ·; ·; ·; · ` e : ⌧ , then for any heap
H, if (H, e+)

⇤
! ⇤(H0, e0), either there exist H00, e00 such that (H0, e0) ! (H00, e00)

or e0 is a vlaue.

Proof. By the fundamental property, since the environments under which e
is typechecked are empty, (·, (;, e+), (;, e+)) 2 EJ⌧ K·.
Then, either (H0, e0) ! (H00, e00) or (H0, e0) is irreducible. If (H, e0)

is irreducible, we can apply the expression relation and find that
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there exists a world W , heaps H0
1,H

0
2, and an expression v2 such that

(W , (H0
1, e

0), (H0
2, v2)) 2 VJ⌧ K·. Since expressions in the value relation are

target values, this su�ces to show that e0 is a value.



D
BEHAVIOR INTEROPERABIL ITY : MUTABLE
STATE

d.0.1 Supporting Lemmas

Lemma D.0.1 (relevant locations subset). If '1 ⇢ ', '2 ⇢ ', and H :' W
then if '1 = flocs(P), hH #S #Pi ⇤

! hH1 #S1 #P1
i, and for some '0

1, W
1
v W ,

H1 :'0
1['1

W 1, then H1 :'2 W 1.

Proof. Consider what needs to be true for H1 :'2 W 1. For every location
in '2, either it is marked as dead in W 1, or the location must be in H1

and must map to a value in the relation described by W 1. Since we know
that '2 ⇢ ' and H :' W , we have a starting point at which these facts
held. Since W 1

v W , we know the only changes to the world can be adding
locations or marking existing locations as dead. Since H1 :'1 W 1, we know
that anything in '2 \ '1 is satisfied. What about locations not in that set?
Since '1 = flocs(P), we know the program only knew about the locations in
'1—there is no way for an existing location to be synthesized out of thin
air—and thus any locations in '2 \ '1 will have been unchanged between H
and H1, so we are done.

Corollary D.0.2 (Antireduction �).

If 8k '0HH0,S. (k � j,'0, push v1; push v2; . . . push vn;P) 2 E
�J⌧K, and

hH # S # P0;Pi
j
! hH0 # S, v1, v2, . . . , vn # Pi then (k,',P0;P) 2 E

�J⌧K.

Proof. Our obligation is to show that

8H,H0, S, S0, j < k. hH # S # P 0;P i
j
! hH0 # S0 # ·i

=) (S0 = Fail c ^ c 2 OkErr) _ 9v.
⇣
S0 = S, v ^ (k � j, v) 2 V

�J⌧K
⌘

From our second hypothesis, we know that

hH # S # P 0;P i
j
0

! hH⇤ # v1, . . . , vn # P i
j�j

0
! hH0 # S0 # ·i

Our first hypothesis then tells us that

�
S0 = Fail c ^ c 2 OkErr

�
_ 9v.

⇣
S0 = S, v ^

�
(k � j0)� (j � j0), v

�
2 V

�J⌧K
⌘

which su�ces to complete the proof.

372
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Corollary D.0.3 (Antireduction S).
If 8W 0 '0HH0,S. (W 0,'0, push v1; push v2; . . . push vn;P) 2 E

SJ⌧K and
W 0

v W , H :' W , H0 :'['0 W 0, and hH #S #P0;Pi
⇤
! hH0 #S, v1, v2, . . . , vn #Pi

then (W,',P0;P) 2 E
SJ⌧K.

Proof. We consider heap H :' W , arbitrary stack S. We know that if the
term in question does not run forever (which, if it does, then the su�x
P does as well, so we are done), then it steps to a terminal configuration
hHF #SF # ·i. We need to show that, assuming that is not an error, SF = S, v
and for some 'F and WF

v W , HF :'F WF and (WF ,'F , v) 2 V
SJ⌧K. We

know that hH # S #P0;Pi
⇤
! hH0 # S, v1, . . . , vn #Pi and that for some W 0

v W ,
H0 :'['0 W 0. So we instantiate our first hypothesis with H0 and S. After
n steps, it is in exactly the configuration our term left o↵ in. We know it
doesn’t run forever, and if it errors, similarly, our overall term must error, so
we conclude that it runs to a terminal configuration which due to confluence,
will be the same one. Thus, we know HF :'['0['F WF , which is stronger
than we need, and (WF ,'F , v) 2 V

SJ⌧K, exactly as needed.

d.0.2 FunLang Compatibility Lemmas

JI;� ` P : ⌧K ⌘
8k �. 8((k, ;), ;, �I

S

) 2 G
SJISK. 8((k, ;), ;, �I

X

) 2 G
XJIXK. (k, �) 2 G

�J�K =)

(k, �I
X

(�I
S

(�(P)))) 2 E
�J⌧K

We now state and prove all the compatibility lemmas for our source
language. Note that we have to prove these three times: once for each
model, though the boundary terms only exist at the top level, and they are
the most challenging/interesting.

Lemma D.0.4 (unit). Show that JI;� ` push 0 : unitK.
Proof. Since 0 has no free variables, what we need to show is that
(k, push 0) 2 E

�JunitK. Given any H, �, we can see that we take one
step from hH # � # push 0i to hH # �, 0 # ·i, and thus provided k was larger

than 1 (else, trivial), what remains to show is that (k�1, 0) 2 V
�JunitK.

But this is trivial by the definition of the value relation.

Lemma D.0.5 (bool). Show for any n, JI;� ` push n : boolK.
Proof. This proof is identical to that of unit.

Lemma D.0.6 (if). If JI;� ` P : boolK, JI;� ` P1 : ⌧K, and JI;� ` P2 : ⌧K
then

JI;� ` P; if0 P1 P2 : ⌧K.
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Proof. We are given (k, �) 2 G
�J�K, ((k, ;), ;, �I

S

) 2

G
SJISK, ((k, ;), ;, �I

X

) 2 G
XJIXK, and need to show that

(k, �I
X

(�I
S

(�(P; if0 P1 P2)))) 2 E
�J⌧K.

Pushing the substitutions in and combining �I
X

��I
S

�� (for compactness)
to �I, we refine this slightly to:

(k, �I(P); if0 �I(P1) �
I(P2)) 2 E

�J⌧K

Applying Lemma D.0.2, it su�ces to show

(k � j, push v1; if0 �I(P1) �
I(P2)) 2 E

�J⌧K

, since from the first hypothesis we know �I(P) will reduce to some value

v1 in V
�JboolK. We now appeal to Lemma D.0.2 again, finishing the proof

by noting that if v1 is 0 then the induction hypothesis on �I(P1) su�ces,
and if it is not, the induction hypothesis on �I(P2)) su�ces.

Lemma D.0.7 (int). For any n, show JI;� ` push n : intK.

Proof. This case is analogous to unit and bool.

Lemma D.0.8 (op-=). If JI;� ` P1 : intK and JI;� ` P2 : intK, show that
JI;� ` P1;P2; equal? : boolK.

Proof. We are given (k, �) 2 G
�J�K, ((k, ;), ;, �I

S

) 2

G
SJISK, ((k, ;), ;, �I

X

) 2 G
XJIXK, and need to show that

(k, �I
X

(�I
S

(�(P1;P1; equal?)))) 2 E
�JboolK.

Pushing the substitutions in and combining �I
X

��I
S

�� (for compactness)
to �I, we refine this slightly to:

(k, �I(P1); �I(P2); equal?)) 2 E
�JboolK

We apply Lemma D.0.2 twice, appealing to our inductive hypotheses to
reduce our obligation to showing that

(k0, push v1; push v2; equal?)) 2 E
�JboolK

for some v1 and v2 in V
�JintK. Since v1 and v2 are both integers, the term

steps to either 0 or 1 on the stack, which means we satisfy our requirement
to be in V

�JboolK, su�cient to complete the proof.

Lemma D.0.9 (op-¡). If JI;� ` P1 : intK and JI;� ` P2 : intK, show that
JI;� ` P1;P2; less? : boolK.

Proof. This proof is identical to that of =.

Lemma D.0.10 (op-+). If JI;� ` P1 : intK and JI;� ` P2 : intK, show
that JI;� ` P1;P2; add : intK.
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Proof. This proof is identical to that of =.

Lemma D.0.11 (var). For any x : ⌧ 2 �, show that JI;� ` push x : ⌧K.

Proof. We are given (k, �) 2 G
�J�K, ((k, ;), ;, �I

S

) 2 G
SJISK,

((k, ;), ;, �I
X

) 2 G
XJIXK, and need to show that (k, �I

X

(�I
S

(�(push x)))) 2

E
�J⌧K.
Since x 2 �, it isn’t in I, and thus we can eliminate the other substitutions.

Further, we know from the definition of G�J�K that there exists some v with

(k, v) 2 V
�J⌧K such that �(x) = v. This means we can substitute, yielding

this as a goal:

(k, push v) 2 E
�J⌧K

Now we can choose an arbitrary heap H and stack S, take one step, and
end up in a terminal state with stack S, v. Since (k, v) 2 V

�J⌧K, we are
done.

Lemma D.0.12 (pair). If JI;� ` P1 : ⌧1K and JI;� ` P2 : ⌧2K, show that
JI;� ` P1;P2; lam x2. lam x1.push [x1, x2] : ⌧1 ⇥ ⌧2K.

Proof. We are given (k, �) 2 G
�J�K, ((k, ;), ;, �I

S

) 2

G
SJISK, ((k, ;), ;, �I

X

) 2 G
XJIXK, and need to show that

(k, �I
X

(�I
S

(�(P1;P2; lam x2.lam x1.push [x1, x2])))) 2 E
�J⌧1 ⇥ ⌧2K.

Pushing the substitutions in and combining �I
X

��I
S

�� (for compactness)
to �I, we refine this slightly to:
(k, �I(P1); �I(P2); lam x2.lam x1.push [x1, x2])) 2 E

�J⌧1 ⇥ ⌧2K
We apply Lemma D.0.2 twice, appealing to both induction hypotheses,

to reduce our obligation to showing
(k0, push v1; push v2; lam x2.lam x1.push [x1, x2])) 2 E

�J⌧1 ⇥ ⌧2K
where (k0, v1) is in V

�J⌧1K and (k0, v2) is in V
�J⌧2K. The term then takes

three steps, resulting in the value [v1, v2] on the stack, which su�ces to
finish the proof.

Lemma D.0.13 (fst). If JI;� ` P : ⌧1 ⇥ ⌧2K, show that JI;� `

P1; push 0; idx : ⌧1K.

Proof. We are given (k, �) 2 G
�J�K, ((k, ;), ;, �I

S

) 2

G
SJISK, ((k, ;), ;, �I

X

) 2 G
XJIXK, and need to show that

(k, �I
X

(�I
S

(�(P1; push 0; idx)))) 2 E
�J⌧1K.

Pushing the substitutions in and combining �I
X

��I
S

�� (for compactness)
to �I, we refine this slightly to:
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(k, �I(P1); push 0; idx)) 2 E
�J⌧1K

We apply Lemma D.0.2 to reduce this to showing
(k0, push v; push 0; idx)) 2 E

�J⌧1K
where (k0, v) 2 V

�J⌧1 ⇥ ⌧2K, and thus has shape [v1, v2]. The term takes
three steps to result in v1 on top of the stack, which su�ces to finish the
proof.

Lemma D.0.14 (snd). If JI;� ` P : ⌧1 ⇥ ⌧2K, show that JI;� `

P1; push 1; idx : ⌧2K.

Proof. This proof is nearly identical to that of fst.

Lemma D.0.15 (inl). If JI;� ` P : ⌧1K, show that JI;� `

P; lam x.push [0, x] : ⌧1 + ⌧2K.

Proof. We are given (k, �) 2 G
�J�K, ((k, ;), ;, �I

S

) 2

G
SJISK, ((k, ;), ;, �I

X

) 2 G
XJIXK, and need to show that

(k, �I
X

(�I
S

(�(P; lam x.push [0, x])))) 2 E
�J⌧1 + ⌧2K.

Pushing the substitutions in and combining �I
X

��I
S

�� (for compactness)
to �I, we refine this slightly to:

(k, �I(P1); lam x.push [0, x]) 2 E
�J⌧1 + ⌧2K

We apply Lemma D.0.2 to reduce this to
(k0, push v1; lam x.push [0, x]) 2 E

�J⌧1 + ⌧2K
where (k0, v1) 2 V

�J⌧1K. This takes three steps to result in [0, v1] on the
stack, which su�ces to complete the proof.

Lemma D.0.16 (inr). If JI;� ` P : ⌧2K, show that JI;� `

P; lam x.push [1, x] : ⌧1 + ⌧2K.

Proof. This proof is nearly identical to that of inl.

Lemma D.0.17 (match). If JI;� ` P : ⌧1 + ⌧2K, JI;�, x : ⌧1 `

P1 : ⌧K, and JI;�, y : ⌧2 ` P2 : ⌧K, show that JI;� `

P;DUP; push 1; idx; SWAP;
push 0; idx; if0 (lam x.P1) (lam y.P2)

: ⌧K.

Proof. We are given (k, �) 2 G
�J�K, ((k, ;), ;, �I

S

) 2 G
SJISK,

((k, ;), ;, �I
X

) 2 G
XJIXK, and need to show that, after pushing substi-

tutions and combining �I
X

� �I
S

� � (for compactness) to �I,

(k, �I(P);DUP; push 1; idx; SWAP; push 0; idx; if0 (lam x.�I(P1)) (lam y.�I(P2)))

2 E
�J⌧K

We apply Lemma D.0.2 to reduce this to showing
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(k0, v;DUP; push 1; idx; SWAP; push 0; idx; if0 (lam x.�I(P1)) (lam y.�I(P2))) 2 E
�J⌧K

where (k0, push v) 2 V
�J⌧1 + ⌧2K. We appeal to Lemma D.0.2 again,

noting that after seven steps we will either have a v1, 0 where v1 is in V
�J⌧1K

or v2, 1 where v2 is in V
�J⌧2K on the top of the stack, and thus in either

case, after two more steps we can appeal to one of our induction hypotheses
to complete the proof.

Lemma D.0.18 (fold). If JI;� ` P : ⌧ [µ↵.⌧/↵]K, show that JI;� ` P :
µ↵.⌧K.

Proof. We are given (k, �) 2 G
�J�K, ((k, ;), ;, �I

S

) 2 G
SJISK,

((k, ;), ;, �I
X

) 2 G
XJIXK, and need to show that (k, �I

X

(�I
S

(�(P)))) 2

E
�Jµ↵.⌧K.
This means we need to pick an arbitrary heap H and stack S and show

that this runs down to a value in the value relation (or else runs forever or
to a well-defined error).

We can instantiate our hypothesis with the same substitutions, combining

�I
X

� �I
S

� � (for compactness) to �I, and heap and stack. This means
that (assuming no divergence beyond k, or error, which would finish the
proof immediately):

hH # S # �I(P)i j
! hH # S, v # ·i

Now, we know from the hypothesis that (k�j, v) 2 V
�J⌧ [µ↵.⌧/↵]K. What

we need to show is that (k� j, v) is also in V
�Jµ↵.⌧K. But this is fine, since

that definition only requires that the value be in V
�J⌧ [µ↵.⌧/↵]K for smaller

step index, and our relations are closed under smaller step index.

Lemma D.0.19 (unfold). If JI;� ` P : µ↵.⌧K, show that JI;� `

P; noop : ⌧ [µ↵.⌧/↵]K.

Proof. We are given (k, �) 2 G
�J�K, ((k, ;), ;, �I

S

) 2

G
SJISK, ((k, ;), ;, �I

X

) 2 G
XJIXK, and need to show that

(k, �I
X

(�I
S

(�(P; noop)))) 2 E
�J⌧ [µ↵.⌧/↵]K.

This means we need to pick an arbitrary heap H and stack S and show
that this runs down to a value in the value relation (or else runs forever or
to a well-defined error).

We can instantiate our hypothesis with the same substitutions, combining

�I
X

� �I
S

� � (for compactness) to �I, and heap and stack. This means
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that (assuming no divergence beyond k, or error, which would finish the
proof immediately):

hH # S # �I(P)i j
! hH # S, v # ·i

Now, we return to our original program, which runs as:

hH # S # �I(P); noopi j
! hH # S, v # noopi ! hH # S, v # ·i

Now, we know from the hypothesis that (k � j, v) 2 V
�Jµ↵.⌧K. What

we need to show is that (k � j � 1, v) (since we took one more step) is in

V
�J⌧ [µ↵.⌧/↵]K. But, the definition of V�Jµ↵.⌧K gives us this immediately,

as our step index is lower.

Lemma D.0.20 (fun). If JI;�,f : (⌧1, . . . , ⌧n) ! ⌧ 0, xi : ⌧i ` P : ⌧ 0K,
show that JI;� ` push (thunk push (thunk lam f.lam xn. . . . lam x1.P); fix) :
(⌧1, . . . , ⌧n) ! ⌧ 0K

Proof. We are given (k, �) 2 G
�J�K, ((k, ;), ;, �I

S

) 2 G
SJISK,

((k, ;), ;, �I
X

) 2 G
XJIXK, and need to show, after pushing in substitutions

and combining �I
X

� �I
S

� � (for compactness) to �I:

(k, push (thunk push (thunk lam f.lam xn. . . . lam x1.�I(P)); fix))

2 E
�J(⌧1, . . . , ⌧n) ! ⌧ 0K

Following the definition of E�J⌧K, we choose an arbitrary H and S and
run the term, which after one step, results in the thunk on the stack. That
means what we need to show is:

(k, thunk push (thunk lam f.lam xn. . . . lam x1.�
I(P)); fix) 2 V

�J(⌧1, . . . , ⌧n) ! ⌧ 0K

Syntactically, this clearly satisfies the value relation; that means what we
need to show is:

8vi k0 < k. ^ (k0, vi) 2 V
�J⌧iK

=) (k0, [x1 7! v1, . . . , xn 7! vn,

f 7! (thunk push (thunk lam f.lam xn. . . . lam x1.�I(P)); fix)]P) 2 E
�J⌧ 0K

We do this by appeal to our hypothesis. Specifically, we construct an
extended substitution �0:

�I, x1:v1, . . . , xn:vn, f : (thunk push (thunk lam f.lam xn. . . . lam x1.�
I(P)); fix)
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Note that f can be given the needed type in the relation because we
are only considering step k0 < k, and our overall induction is over step
indices. Further, our relations are closed under step indices, which means
our substitution �I is still valid when restricted to k0. This means that we
know:

(k0, �0(P )) 2 E
�J⌧ 0K

Which, expanding out �0, is exactly what we needed to show.

Lemma D.0.21 (app). If JI;� ` P : (⌧1, . . . , ⌧n) ! ⌧ 0K and for i 2

{1, . . . , n} JI;� ` Pi : ⌧iK then

JI;� ` P;P1; SWAP . . .Pn; SWAP; call : ⌧ 0K

Proof. We are given (k, �) 2 G
�J�K, ((k, ;), ;, �bIS) 2

G
SJISK, ((k, ;), ;, �I

X

) 2 G
XJIXK, and need to show that

(k, �I
X

(�I
S

(�(P;P1; SWAP . . .Pn; SWAP; call)))) 2 E
�J⌧ 0K. Pushing

the substitutions in and combining �I
X

� �I
S

� � (for compactness) to �I,
we refine this slightly to:

(k, �I(P); �I(P1); SWAP . . . �I(Pn); SWAP; call) 2 E
�J⌧ 0K

Following the definition of E�J⌧K, we choose an arbitrary H and S and
run the term. To figure out how it steps, we instantiate our first hypothesis
with �I, H, and S. This tells us that either P runs forever (in which case,
the term is in the relation trivially), or:

hH # S # �I(P)i j
! hH0 # S0 # ·i

And either S0 is a well-defined error (in which case, the entire program
would have run to the same error, and we are again done), or S, vf with

(k � j, vf) 2 V
�J(⌧1, . . . , ⌧n) ! ⌧ 0K.

Then, we instantiate the second hypothesis with �I, H0, and S, resulting
in a similar result for a smaller step index k1 and H1 and value v1. We can
repeat this process another n� 1 times. This results in an overall evaluation
of:

hH # S # �I(P); �I(P1); SWAP . . . �I(Pn); SWAP; calli
⇤
! hH0 # S, vf # �I(P1); SWAP . . . �I(Pn); SWAP; calli
⇤
! hH1 # S, vf , v1 # SWAP . . . �I(Pn); SWAP; calli
⇤
! hH1 # S, v1, vf # . . . �I(Pn); SWAP; calli

. . .
⇤
! hHn # S, v1, v2, . . . , vn, vf # calli
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From V
�J(⌧1, . . . , ⌧n) ! ⌧ 0K, we know the shape of vf , so we can expand

that out and step further:

hHn # S, v1, v2, . . . , vn, (thunk push (thunk lam f.lam xn. . . . lam x1.P); fix) # calli
! hHn # S, v1, v2, . . . , vn # push (thunk lam f.lam xn. . . . lam x1.P); fixi
! hHn # S, v1, v2, . . . , vn, thunk lam f.lam xn. . . . lam x1.P # fixi
! hHn # S, v1, v2, . . . , vn, thunk(push(thunk lam f.lam xn. . . . lam x1.P); fix)#

lam f.lam xn. . . . lam x1.Pi
n+1
! hHn # S # [xi 7! vi, f 7! thunk(push(thunk lam f.lam xn. . . . lam x1.P); fix)]Pi

Now we can appeal to the definition of V�J(⌧1, . . . , ⌧n) ! ⌧ 0K, which tells

us that this term is in E
�J⌧ 0K, which is exactly what we need to complete

the proof: we can instantiate that relation with Hn, S, and compose the two
reductions together to produce the result needed.

Lemma D.0.22 (boundary S). JIS]"� `S P : ⌧K =) JI;� ` P; h#⌧i : #⌧K

Proof. Expanding the goal, we see we need to show:

8k �. 8((k, ;), ;, �I
S

) 2 G
SJISK. 8((k, ;), ;, �I

X

) 2 G
XJIXK. (k, �) 2 G

�J�K =)

(k, �I
X

(�I
S

(�(P; h#⌧i)))) 2 E
�J#⌧K

From Lemma 9.5.2, we know h#⌧i is closed, so we can push the substitu-
tions in to just over P. Further, from the hypothesis, we know that P has
no free variables from IX, so we can eliminated that substitution.

The hypothesis that we are working with says:

8W '�0 (W,', �0) 2 G
SJIS]"�K ^ ' = flocs(�(P )) =) (k,', �0(P)) 2 E

SJ⌧K

To instantiate the hypothesis, we need an environment �0 that satisfies

G
SJIS ] "�K. We argue that it is exactly � composed with �I

S

: we know
they are disjoint, and we know the former can be lifted into the latter via
Lemma 9.5.1. This means, in particular, that ' is ;.

Since we have no relevant locations, any heap will satisfy the expression
relation: in particular, the arbitrary H that we have to consider for our
obligation, and we can similarly use the arbitrary stack S. This means that
we our hypothesis tells us that:

hH # S # (�I
S

(�(P))i
⇤
! hH0 # S0 # ·i

Unless we run beyond our step budget, in which case we are trivially
in the relation. Similarly, if we run to Fail c, we are also in our relation.
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Otherwise, we know that S0 = S, v and, for a future world W 0
v W that H0

satisfies with the relevant locations '0, (W 0,'0, v) 2 V
SJ⌧K.

Now, what we want to show is that this value is “contained” by the code
in h#⌧i to behave like #⌧ . But, clearly we can’t show that using the E

�J⌧K
logical relation, as the value still can have locations it is closing over, etc.
So, we proceed by two steps. First, we appeal to Lemma 9.5.3
This will tell us that we can evaluate the whole program at question

further, to get to a point with a world W 00
v W 0, '00, H00 :'00['0 W 00 and

(W 00,'00, v0) 2 V
SJ"#⌧K:

hH # S # (�I
S

(�(P)); h#⌧ii
⇤
!

hH0 # S, v # h#⌧ii ⇤
!

hH00 # S, v0 # ·i

Now, we appeal to Lemma 9.5.1
This means that the value that we ran down to is in (W 00.k, v0) 2 V

�J#⌧K,
which is exactly what we need to show.

d.0.3 FunLang with S Compatibility Lemmas

J� `S P : ⌧K ⌘ 8W '�. (W,', �) 2 G
SJ�K =) (W, flocs(�(P)), �(P)) 2 E

SJ⌧K

Lemma D.0.23 (unit). Show that J� `S push 0 : unitK.

Proof. We expand the goal, pushing out substitution through and simplifying
', given there are no free variables in push 0, to get an obligation:

(W, ;, push 0) 2 E
SJunitK

To satisfy this, we note that we can take 1 step (if W.k = 1, we are in the
relation trivially) to having 0 on top of the stack, with a world that has the
same heap typing and, still, no relevant locations, thus satisfying V

SJunitK,
as needed.

Lemma D.0.24 (bool). Show for any n, J� `S n : boolK.

Proof. This proof is identical to that of unit.

Lemma D.0.25 (if). If J� `S P : boolK, J� `S P1 : ⌧K, and J� `S P2 : ⌧K
then

J� `S P; if0 P1 P2 : ⌧K.

Proof. We are given (W,'†, �) 2 G
SJ�K, where ' = flocs(�(P; if0 P1 P2)),

and need to show that (W,', �(P; if0 P1 P2)) 2 E
SJ⌧K. Pushing the substi-

tutions in, we refine this slightly to:
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(W,', �(P); if0 �(P1) �(P2))) 2 E
SJ⌧K

We appeal to Lemma D.0.3, which reduces our obligation to

(W 0,'0, v; if0 �(P1) �(P2))) 2 E
SJ⌧K

where from our induction hypothesis we know that for H :' W and
arbitrary S, hH # S # �(P)i ⇤

! hH1 # S1 # ·i and either S1 is a dynamic failure,
in which case we are done, or it is v above, where for some W 0

v W , '0,
H1 :'['0 W 0.

From the definition of VSJboolK, we know v is either 0 or non-zero. In
either case, we appeal to Lemma D.0.3 again, relying on the corresponding
hypotheses in the corresponding case that the term reduces to.

Lemma D.0.26 (int). For any n, show J� `S push n : intK.

Proof. This proof is essentially equivalent to that of unit and bool.

Lemma D.0.27 (op-=). If J� `S P1 : intK and J� `S P2 : intK, show that
J� `S P1;P2; equal? : boolK.

Proof. We are given (W,'†, �) 2 G
SJ�K, where ' = flocs(�(P1;P2; equal?)),

and need to show that (W,', �(P1;P2; equal?)) 2 E
SJboolK. Pushing the

substitutions in, we refine this slightly to:

(W,', �(P1); �(P2) equal?) 2 E
SJboolK

We then apply Lemma D.0.3 twice, relying on our two hypotheses to
reduce our obligation to

(W 0,'0, push v1; push v2; equal?) 2 E
SJboolK

Note that we instantiate the second hypothesis with '00 = flocs(�(P2)) ⇢
', noting that H1 :'00 W 1 via Lemma D.0.1.

Since v1 and v2 are integers, this takes three steps to either 0 or 1 on
top of the stack (with unchanged heap), which is su�cient to complete the
proof.

Lemma D.0.28 (op-¡). If J� `S P1 : intK and J� `S P2 : intK, show that
J� `S P1;P2; less? : boolK.

Proof. This proof is identical to that of =.

Lemma D.0.29 (op-+). If J� `S P1 : intK and J� `S P2 : intK, show that
J� `S P1;P2; add : intK.
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Proof. This proof is identical to that of =.

Lemma D.0.30 (var). For any x : ⌧ 2 �, show that J� `S push x : ⌧K.

Proof. We are given (W,'†, �) 2 G
SJ�K, where ' = flocs(�(push x)), and

need to show that (W,', �(push x)) 2 E
SJ⌧K.

Based on the definition of GSJ�K, we know that �(x) = v for some v where
(W,'0, v) 2 V

SJ⌧K and '0
⇢ '. Substituting, we can refine our proof goal to:

(W,', push v) 2 E
SJ⌧K

And since ' = flocs(v), we know '0 = '. This means that after one step
starting from a heap satisfying W and '0, we terminate with v on the top
of the stack, and we are done.

Lemma D.0.31 (pair). If J� `S P1 : ⌧1K and J� `S P2 : ⌧2K then J� `S

P1;P2; lam x2.lam x1.push [x1, x2] : ⌧1 ⇥ ⌧2K

Proof. We are given (W,'†, �) 2 G
SJ�K, where ' =

flocs(�(P1;P2; lam x2.lam x1.push [x1, x2])), and need to show that
(W,', �(P1;P2; lam x2.lam x1.push [x1, x2])) 2 E

SJ⌧1 ⇥ ⌧2K.
Pushing the substitutions in, we refine this slightly to:

(W,', �(P1); �(P2); lam x2.lam x1.push [x1, x2])) 2 E
SJ⌧1 ⇥ ⌧2K

This follows from two applications of Lemma D.0.3 and the operational
semantics, relying on Lemma D.0.1 for the choice of relevant locations.

Lemma D.0.32 (fst). If J� `S P : ⌧1 ⇥ ⌧2K, show that J� `S P1; push 0; idx :
⌧1K.

Proof. We are given (W,'†, �) 2 G
SJ�K, where ' = flocs(�(P1; push 0; idx)),

and need to show that (W,', �(P1; push 0; idx)) 2 E
SJ⌧1K.

Pushing the substitutions in, we refine this slightly to:

(W,', �(P1); push 0; idx) 2 E
SJ⌧1K

We apply Lemma D.0.3, which, combined with the hypothesis, the opera-
tional semantics, and definition of the value relation is su�cient to complete
the proof.

Lemma D.0.33 (snd). If J� `S P : ⌧1 ⇥ ⌧2K, show that J� `S

P1; push 1; idx : ⌧2K.

Proof. This proof is identical to fst.

Lemma D.0.34 (inl). If J� `S P : ⌧1K, show that J� `S P; lam x.push [0, x] :
⌧1 + ⌧2K.
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Proof. We are given (W,'†, �) 2 G
SJ�K, where ' =

flocs(�(P; lam x.push [0, x])), and need to show that
(W,', �(P1; lam x.push [0, x])) 2 E

SJ⌧1 + ⌧2K.
Pushing the substitutions in, we refine this slightly to:
(W,', �(P); lam x.push [0, x]) 2 E

SJ⌧1 + ⌧2K
As in other cases, this follows from Lemma D.0.3 and our hypothesis.

Lemma D.0.35 (inr). If J� `S P : ⌧2K, show that J� `S P; lam x.push [1, x] :
⌧1 + ⌧2K.

Proof. This proof is identical to that of inl.

Lemma D.0.36 (match). If J� `S P : ⌧1 + ⌧2K, J�, x : ⌧1 `S

P1 : ⌧K, and J�, y : ⌧2 `S P2 : ⌧K, show that J� `S

P;DUP; push 1; idx; SWAP; push 0; idx; if0 (lam x.P1) (lam y.P2) : ⌧K.

Proof. We are given (W,'†, �) 2 G
SJ�K, where

' = flocs(�(P;DUP; push 1; idx; SWAP; push 0; idx; if0 (lam x.P1) (lam y.P2)))

and need to show that, after pushing in substitutions: Pushing the
substitutions in, we refine this slightly to:

(W,', �(P);DUP; push 1; idx; SWAP; push 0; idx; if0 (lam x.�(P1) (lam y.�(P2))))
2 E

SJ⌧1 + ⌧2K

We appeal to Lemma D.0.3 and the operational semantics to reduce this
to considering the two possible branches: when V

SJ⌧1+⌧1K is [0, v] and when
it is [1, v]. In both cases, we again appeal to Lemma D.0.3, but to the second
or third hypothesis respectively, as operationally that is what we will reduce
to, with appropriate substitution.

Lemma D.0.37 (fold). If J� `S P : ⌧ [µ↵.⌧/↵]K, show that J� `S P : µ↵.⌧K.

Proof. We are given (W,'†, �) 2 G
SJ�K, where ' = flocs(�(P)), and need

to show that (W,', �(P)) 2 E
SJµ↵.⌧K.

This means we are given an heap H :' W , stack �, and, assuming we
don’t run forever or out of steps (in W.k budget), we run down to hH0 # �0 # ·i.
We instantiate our first hypothesis with W , H, �, and ', to get that:

hH # S # �(P)i j
1

! hH1 # S1 # ·i

Now, either S1 is Fail c for appropriate c, in which case the entire program
will be and we are done, or S1 = S, v and for W 1

v W , H1 :'1[' W 1, and
(W 1,'1, v) 2 V

SJ⌧ [µ↵.⌧/↵]K. Now, our obligation only needs us to prove
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that the resulting value, which is the same value, is in this relation at lower
step index, so we are done.

Lemma D.0.38 (unfold). If J� `S P : µ↵.⌧K, show that J� `S

P; noop : ⌧ [µ↵.⌧ ]K.

Proof. We are given (W,'†, �) 2 G
SJ�K, where ' = flocs(�(P; noop)), and

need to show that (W,', �(P; noop)) 2 E
SJ⌧ [µ↵.⌧ ]K.

This means we are given an heap H :' W , stack �, and, assuming we
don’t run forever or out of steps (in W.k budget), we run down to hH0 # �0 # ·i.
We instantiate our first hypothesis with W , H, �, and ', to get that:

hH # S # �(P)i j
1

! hH1 # S1 # ·i

Now, either S1 is Fail c for appropriate c, in which case the entire program
will be and we are done, or S1 = S, v and for W 1

v W , H1 :'1[' W 1, and
(W 1,'1, v) 2 V

SJµ↵.⌧K. Now, our original term steps as follows:

hH # S # �(P; noop)i j
1

!

hH1 # S, v # noopi !
hH1 # S, v # ·i

We need to fulfill ESJ⌧ [µ↵.⌧ ]K, which means we need to choose W 0
v W ,

'0 such that H1 :'0 W 0 and (W 0,'0, v) 2 V
SJ⌧ [µ↵.⌧ ]K. We choose W 0 to be

W 1 with the step index decreased by one. Because this is a strictly future
world of W 1, this follows directly from the definition of VSJµ↵.⌧K.

Lemma D.0.39 (fun). If J�,f : (⌧1, . . . , ⌧n)
 
! ⌧ 0, xi : ⌧i `S P : ⌧ 0K, show

that J� `S push (thunk push (thunk lam f.lam xn. . . . lam x1.�(P)); fix) :
(⌧1, . . . , ⌧n)

 
! ⌧ 0K

Proof. We are given (W,'†, �) 2 G
SJ�K, where

' = flocs(�(push (thunk push (thunk lam f.lam xn. . . . lam x1.P); fix)))

and need to show that

(W,', �(push (thunk push (thunk lam f.lam xn. . . . lam x1.P); fix))) 2 E
SJ(⌧1, . . . , ⌧n)

#
! ⌧ 0K

We can then push the substitution in to refine that to:

(W,', push (thunk push (thunk lam f.lam xn. . . . lam x1.�(P); fix)) 2 E
SJ(⌧1, . . . , ⌧n)

#
! ⌧ 0K
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This means we are given a H :' W , stack S, and, assuming we don’t run
forever or out of steps (in W.k budget), we run down to hH0 # S0 # ·i.
This clearly takes a single step to put

thunk push (thunk lam f.lam xn. . . . lam x1.�(P); fix on the stack. We
can thus choose W 0 to be W with k decreased by 1, the same relevant
location set ;. Thus we need to satisfy the value relation, which amounts
to:

8vi 'i W 0 AW.
'i ⇢ dom(W 0. ) ^ (W 0,'i, vi) 2 V

SJ⌧iK
=) (W 0,' [

S
i
'i, [x1 7! v1, . . . , xn 7! vn,

f 7! (thunk push (thunk lam f.lam xn. . . . lam x1.�(P)); fix)]�(P)) 2 E
SJ⌧ 0K

Thus we choose an arbitrary future world W 00 @ W 0, and construct
an extended substitution �0 = �, x1 7! v1, . . . , xn 7! vn, f 7! (thunk...). We
argue that (W 00,' [

S
i
'i, �0) 2 G

SJ�,f : (⌧1, . . . , ⌧n)
#
! ⌧ 0, xi : ⌧iK. Clearly,

all of the values vi are in the value relation at the correct type. And, since
W 00 is a strict world extension, it has a smaller step index, which means
that we can appeal to our inductive hypothesis to get that our function has
the correct semantic type at that world.
That means we can instantiate our first hypothesis with W 00, ' [

S
i
'i

and �0 to complete the proof.

Lemma D.0.40 (app pure). If J� `S P : (⌧1, . . . , ⌧n)
#
! ⌧ 0K and for i 2

{1, . . . , n} J� `S Pi : ⌧iK then
J� `S P;P1; SWAP . . .Pn; SWAP; call : ⌧ 0K

Proof. We are given (W,'†, �) 2 G
SJ�K, where

' = flocs(�(P;P1; SWAP . . .Pn; SWAP; call))

and need to show that

(W,', �(P;P1; SWAP . . .Pn; SWAP; call)) 2 E
SJ⌧ 0K

We can then push the substitution in to refine that to:

(W,',P;P1; SWAP . . .Pn; SWAP; call 2 E
SJ⌧ 0K

This means we are given a H :' W , stack S, and, assuming we don’t run
forever or out of steps (in W.k budget), we run down to hH0 # S0 # ·i.

To figure out how it steps, we instantiate our first hypothesis with W , �,
H, S and '0, where '0 = flocs(�(P1)) ⇢ ', noting that the heap will still
satisfy the same world with the smaller '0, to get that:
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hH # S # �(P)i j
1

! hH1 # S1 # ·i

Now, either S1 is Fail c for appropriate c, in which case the entire program
will be and we are done, or S1 = S, vf and for W 1

v W , H1 :'f['0 W 1, and

(W 1,'f , vf) 2 V
SJ(⌧1, . . . , ⌧n)

#
! ⌧ 0K. From the value relation, we note that

'f is ;.
We then instantiate out second hypothesis with W 1, H1, S1, and '00 =

flocs(�(P2)) ⇢ '. Note that H1 :'00 W 1 from Lemma D.0.1.
This means that:

hH1 # S, vf # �(P2)i
j
2

! hH2 # S2 # ·i

Since this program began running in the same state as the previous
one stopped, and the previous one began at the beginning of our whole
program, again, we are either trivially in the relation or else we know that
S2 = S1, v1 = S, vf , v1 and for W 2

v W 1, H2 :'1['00 W 2, and (W 2,'1, v1) 2
V
SJ⌧1K.
We can repeat this process another n� 1 times. This results in an overall

evaluation of:

hH # S # �(P); �(P1); SWAP . . . �(Pn); SWAP; calli
⇤
! hH0 # S, vf # �(P1); SWAP . . . �(Pn); SWAP; calli
⇤
! hH1 # S, vf , v1 # SWAP . . . �(Pn); SWAP; calli
⇤
! hH1 # S, v1, vf # . . . �(Pn); SWAP; calli

. . .
⇤
! hHn # S, v1, v2, . . . , vn, vf # calli

From V
SJ(⌧1, . . . , ⌧n)

#
! ⌧ 0K, we know the shape of vf , so we can expand

that out and step further:

hHn # S, v1, v2, . . . , vn, (thunk push (thunk lam f.lam xn. . . . lam x1.P); fix) # calli
! hHn # S, v1, v2, . . . , vn # push (thunk lam f.lam xn. . . . lam x1.P); fixi
! hHn # S, v1, v2, . . . , vn, thunk lam f.lam xn. . . . lam x1.P # fixi
! hHn # S, v1, v2, . . . , vn, thunk(push(thunk lam f.lam xn. . . . lam x1.P); fix)#

lam f.lam xn. . . . lam x1.Pi
n+1
! hHn # S # [xi 7! vi, f 7! thunk(push(thunk lam f.lam xn. . . . lam x1.P); fix)]Pi

Now we can appeal to the definition of VSJ(⌧1, . . . , ⌧n)
#
! ⌧ 0K, which tells

us that this term is in E
SJ⌧ 0K, given the values were in the value relation,

which we know from each instantiated hypothesis. We then instantiate that
relation with Wn+1, 'f

[
S

i
'i , and compose the reductions together to

produce the result needed.
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Lemma D.0.41 (app state). If J� `S P : (⌧1, . . . , ⌧n)
 
! ⌧ 0K and for i 2

{1, . . . , n} J� `S Pi : ⌧iK then
J� `S P;P1; SWAP . . .Pn; SWAP; call : ⌧ 0K

Proof. This proof is nearly identical to the previous one: the only di↵erence
is that 'f is not empty, but that just carries down to the final instantiation
which we left unsimplified in the above proof for clarity.
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BEHAVIOR INTEROPERABIL ITY : EXCEPT IONS

e.0.1 Supporting Lemmas

Lemma E.0.1 (EXJ⌧K Embeds V
XJ⌧K). If (W,', v) 2 V

XJ⌧K, then
(W,', push v) 2 E

XJ⌧K.

Proof. We choose heap H :' W , arbitrary stack S, take a single step and
the result is immediate.

Lemma E.0.2 (EXJ⌧K✓ Embeds E
XJ⌧K). If (W,',P) 2 E

XJ⌧K, then
(W,',P) 2 E

XJ⌧K✓.

Proof. Our obligation is to show that for arbitrary ⌧ 0,K, where (W,'k,K) 2
KJ⌧ ) ⌧ 0K, (W,' [ 'k,K[P ]) 2 E

XJ⌧K. We do this by appealing to our
hypothesis, as we know that if we do not run forever, or result in an
acceptable error, we will reduce to a final value on the stack. In that case,
we simply appeal to the first case of RJ⌧K and we are done.

Lemma E.0.3 (Monotonicity X). If (W,', v) 2 V
XJ⌧K and W 0

w W , then
(W 0,', v) 2 V

XJ⌧K

Proof. This follows from the definition of world extension: step indices
can decrease, which can only have the e↵ect of bringing more terms into
the relation, in the case that we run out of steps before we can rule our
membership, and the heap typing can expand or mark existing locations as
dead, neither of which rules out existing values being in the relation.

Lemma E.0.4 (Antireduction# X).
If 8W 0 '0HH0,S. (W 0,'0, push v1; push v2; . . . push vn;P) 2 E

XJ⌧K# and
W 0

v W , H :' W , H0 :'['0 W 0, and hH #S #P0;Pi
⇤
! hH0 #S, v1, v2, . . . , vn #Pi

then (W,',P0;P) 2 E
XJ⌧K#.

Proof. We consider heap H :' W , arbitrary stack S. We know that if the
term in question does not run forever (which, if it does, then the su�x
P does as well, so we are done), then it steps to a terminal configuration
hHF #SF # ·i. We need to show that, assuming that is not an error, SF = S, v
and for some 'F and WF

v W , HF :'F WF and (WF ,'F , v) 2 V
XJ⌧K#.

We know that hH # S # P0;Pi
⇤
! hH0 # S, v1, . . . , vn # Pi and that for some

W 0
v W , H0 :'['0 W 0. So we instantiate our first hypothesis with H0 and

S. After n steps, it is in exactly the configuration our term left o↵ in. We
know it doesn’t run forever, and if it errors, similarly, our overall term must

389
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error, so we conclude that it runs to a terminal configuration which due to
confluence, will be the same one. Thus, we know HF :'['0['F WF , which
is stronger than we need, and (WF ,'F , v) 2 V

XJ⌧K, exactly as needed.

Lemma E.0.5 (Monadic Bind X). If (W,'p,P) 2 E
XJ⌧K , and (W 0,'k [

'0
p,K[P

0]) 2 E
XJ⌧ 0K whenever (W 0,'0

p,P
0) 2 RJ⌧K and W 0

w W , then
(W,'k [ 'p,K[P]) 2 E

XJ⌧ 0K .

Proof. Given (W,'0
k
,K0) 2 KJ⌧ 0 ) ⌧ 00K, we must show (W,'0

k
[ 'k [

'p,K0[K[P]]) 2 E
XJ⌧ 00K#. Because (W,'p,P) 2 E

XJ⌧K , it su�ces if
(W,'k['0

k
,K0[K]) 2 KJ⌧ ) ⌧ 00K. Given (W 0,'0

p,P
0) 2 RJ⌧K where W 0

w W ,
we must show (W 0,'0

k
[ 'k [ '0

p,K
0[K[P0]]) 2 E

XJ⌧ 00K#. By assumption,
(W 0,'k [ '0

p,K[P
0]) 2 E

XJ⌧ 0K , so (W 0,'0
k
[ '0

k
[ '0

p,K
0[K[P0]]) 2 E

XJ⌧ 00K#
by definition of EXJ⌧ 0K .

Corollary E.0.6 (Antireduction X).

If 8W 0 '0HH0,S. (W 0,'0, push v1; push v2; . . . push vn;P) 2 E
XJ⌧K and

W 0
v W , H :' W , H0 :'['0 W 0, and hH #S #P0;Pi

⇤
! hH0 #S, v1, v2, . . . , vn #Pi

then (W,',P0;P) 2 E
XJ⌧K .

Proof. In Lemma E.0.4, the only cases are divergence, (type-sound) termi-
nation, and failure. Here, we must also consider exceptions, but we can
use Lemma E.0.5 as needed. Otherwise, the proof proceeds as in Lemma
E.0.4.

Lemma E.0.7 (Thread X). If (W,'p,P) 2 E
XJ⌧K , and (W 0,'k [

'v,K[push v]) 2 E
XJ⌧ 0K whenever (W 0,'v, v) 2 V

XJ⌧K and W 0
w W , then

(W,'k [ 'p,K[P]) 2 E
XJ⌧ 0K .

Proof. By Lemma E.0.5, it su�ces if (W 0,'k [ '0
p,K[P

0]) 2 E
XJ⌧ 0K given

(W 0,'0
p,P

0) 2 RJ⌧K where W 0
w W . Unfolding RJ⌧K, there are two cases.

• P0 = push v for (W 0,'0
p, v) 2 V

XJ⌧K. Then apply the second premise.

• P0 = push [0, v]; shift ();P00 for (W 0,'v, v) 2 V
XJUK,

'v ✓ '0
p. Given (W 0,'0

k
,K0) 2 KJ⌧ 0 ) ⌧ 00K, we must

show (W 0,'0
k

[ 'k [ '0
p,K

0[K[push [0, v]; shift ();P00]]) 2

E
XJ⌧ 00K#. Since K = push vk; [·];Pk, we must show

(W 0,'0
k
[ 'k [ '0

p,K
0[push v; push [0, v]; shift ();P00;Pk]) 2 E

XJ⌧ 00K#.
Applying Lemma E.0.4, it su�ces if (W 00,'0

k
[ 'k [

'0
p,K

0[push [0, v]; shift ();P00;Pk]) 2 E
XJ⌧ 00K#. But notice that

(W 00,'k [ '0
p, push [0, v]; shift ();P00;Pk) 2 RJ⌧ 0K, so applying the

definition of KJ⌧ 0 ) ⌧ 00K is su�cient.
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e.0.2 FunLang with X Compatibility Lemmas

JK� `X P : ⌧ ⌘ 8W '�. (W,', �) 2 G
XJ�K =) (W, flocs(�(P)), �(P)) 2 E

XJ⌧K✓

Lemma E.0.8 (unit). Show that JK� `X push 0 : unit.

Proof. We are given (W,'†, �) 2 G
XJ�K, where ' = flocs(�(push 0)) = ; ,

and need to show that (W, ;, �(push 0)) 2 E
XJunitK✓.

Thus, we consider arbitrary continuation K with (W,'k,K) 2 KJunit )

⌧K. We need to show that (W,'k,K[�(push 0)]) 2 E
XJ⌧K. But this follows

exactly from the definition of RJ⌧K.

Lemma E.0.9 (bool). Show for any n, JK� `X n : bool.

Proof. This proof is essentially identical to that of unit.

Lemma E.0.10 (if). If JK� `X P1 : bool, JK� `X P2 : ⌧ , and JK� `X P3 : ⌧
then

JK� `X P1; if0 P2 P3 : ⌧ .

Proof. Unfolding JK· and pushing substitutions, we must show

(W,', �(P1); if0 �(P2) �(P3)) 2 E
XJ⌧K✓

given (W,'†, �) 2 G
XJ�K where ' =

S
'i and 'i = flocs(�(Pi)). Applying

Lemma E.0.7 with the first premise, it su�ces if

(W 0,'2 [ '3, push n; if0 �(P2) �(P3)) 2 E
XJ⌧K✓

given (W 0, ;, n) 2 V
XJboolK and W 0

w W . There are two cases.

• Suppose n = 0. Then by Lemma E.0.6, it su�ces if

(W 0,'2, �(P2)) 2 E
XJ⌧K✓

Applying Lemma E.0.7 with the second premise, it su�ces if

(W 00,'0, push v) 2 E
XJ⌧K✓

where (W 00,'0, v) 2 V
XJ⌧K, W 00

w W 0. Then apply Lemmas E.0.1,
E.0.2.

• Suppose n 6= 0. Then by Lemma E.0.6, it su�ces if

(W 0,'3, �(P3)) 2 E
XJ⌧K✓

Applying Lemma E.0.7 with the third premise, it su�ces if

(W 00,'0, push v) 2 E
XJ⌧K✓
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where (W 00,'0, v) 2 V
XJ⌧K, W 00

w W 0. Then apply Lemmas E.0.1,
E.0.2.

Lemma E.0.11 (int). For any n, show JK� `X push n : int.

Proof. This proof is essentially identical to that of unit.

Lemma E.0.12 (op-=). If JK� `X P1 : int and JK� `X P2 : int, then
JK� `X P1;P2; equal? : bool.

Proof. Unfolding JK· and pushing substitutions, we are to show

(W,', �(P1); �(P2); equal?) 2 E
XJboolK✓

given (W,'†, �) 2 G
XJ�K where ' =

S
'i and 'i = flocs(�(Pi)).

Applying Lemma E.0.7 twice, it su�cies if

(W 0, ;, push n1; push n2; equal?) 2 E
XJboolK✓

given (W 0, ;, ni) 2 V
XJintK and W 0

w W . Applying Lemma E.0.6, there
are two cases:

• Suppose n1 = n2. Then we must show

(W 0, ;, push 0) 2 E
XJboolK✓

which we have by Lemmas E.0.1, E.0.2 and the definition of VXJboolK.

• Suppose n1 6= n2. Then we must show

(W 0, ;, push 1) 2 E
XJboolK✓

which we have by Lemmas E.0.1, E.0.2 and the definition of VXJboolK.

Lemma E.0.13 (op-¡). If JK� `X P1 : int and JK� `X P2 : int, then
JK� `X P1;P2; less? : bool.

Proof. This proof is essentially identical to that of =.

Lemma E.0.14 (op-+). If JK� `X P1 : int and JK� `X P2 : int, then
JK� `X P1;P2; add : int.

Proof. This proof is essentially identical to that of =.

Lemma E.0.15 (var). JK� `X push x : ⌧
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Proof. Unfolding JK· and pushing substitutions, we are to show

(W,', push v) 2 E
XJ⌧K✓

given (W,'†
[', �[x 7! v]) 2 G

XJ�K where (W,', v) 2 V
XJ⌧K. Then apply

Lemmas E.0.1, E.0.2.

Lemma E.0.16 (pair). If JK� `X P1 : ⌧1 and JK� `X P2 : ⌧2 then
JK� `X P1;P2; lam x2.lam x1.push [x1, x2] : ⌧1 ⇥ ⌧2

Proof. Unfolding JK· and pushing substitutions, we are to show

(W,', �(P1); �(P2); lam x2.lam x1.push [x1, x2]) 2 E
XJ⌧1 ⇥ ⌧2K✓

given (W,'†, �) 2 G
XJ�K where ' =

S
'i and 'i = flocs(�(Pi)).

Applying Lemma E.0.7 twice, it su�cies if

(W 0,'0, push v1; push v2; lam x2.lam x1.push [x1, x2]) 2 E
XJ⌧1 ⇥ ⌧2K✓

given (W 0,'0
i
, vi) 2 V

XJ⌧iK and '0 =
S

'0
i
and W 0

w W . Applying Lemma
E.0.6, it su�ces if

(W 00,'0, push [v1, v2]) 2 E
XJ⌧1 ⇥ ⌧2K✓

given W 00
w W 0, which we have by Lemmas E.0.1, E.0.2 and the definition

of VXJ⌧1 ⇥ ⌧2K.

Lemma E.0.17 (fst). If JK� `X P : ⌧1 ⇥ ⌧2, then JK� `X P; push 0; idx : ⌧1.

Proof. Unfolding JK· and pushing substitutions, we are to show

(W,', �(P); push 0; idx) 2 E
XJ⌧1K✓

given (W,'†, �) 2 G
XJ�K where ' = flocs(�(P)).

Applying Lemma E.0.7, it su�cies if

(W 0,'0, push [v1, v2]; push 0; idx) 2 E
XJ⌧1K✓

where (W 0,'0
i
, vi) 2 V

XJ⌧iK and '0 =
S
'0
i
and W 0

w W . Applying
Lemma E.0.6, it su�ces if

(W 00,'0
1, push v1) 2 E

XJ⌧1K✓

where W 00
w W 0, which we have by Lemmas E.0.1, E.0.2.

Lemma E.0.18 (snd). If JK� `X P : ⌧1 ⇥ ⌧2, then
JK� `X P1; push 1; idx : ⌧2.
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Proof. As in Lemma E.0.17.

Lemma E.0.19 (inl). If JK� `X P : ⌧1, then
JK� `X P; lam x.push [0, x] : ⌧1 + ⌧2.

Proof. Unfolding JK· and pushing substitutions, we are to show

(W,', �(P); lam x.push [0, x]) 2 E
XJ⌧1 + ⌧2K✓

given (W,'†, �) 2 G
XJ�K where ' = flocs(�(P)).

Applying Lemma E.0.7, it su�cies if

(W 0,'0, push v; lam x.push [0, x]) 2 E
XJ⌧1 + ⌧2K✓

given (W 0,'0, v) 2 V
XJ⌧1K and W 0

w W . Applying Lemma E.0.6, it
su�ces if

(W 00,'0, push [0, v]) 2 E
XJ⌧1 + ⌧2K✓

given W 00
w W 0, which we have by Lemmas E.0.1, E.0.2 and the definition

of VXJ⌧1 + ⌧2K.

Lemma E.0.20 (inr). If JK� `X P : ⌧2, then
JK� `X P; lam x.push [1, x] : ⌧1 + ⌧2.

Proof. As in Lemma E.0.19.

Lemma E.0.21 (match). If JK� `X P0 : ⌧1 + ⌧2,
JK�, x : ⌧1 `X P1 : ⌧ , and JK�, y : ⌧2 `X P2 : ⌧ , then
JK� `X P0;DUP; push 1; idx; SWAP; push 0; idx; if0 (lam x.P1) (lam y.P2) : ⌧ .

Proof. Unfolding JK· and pushing substitutions, we must show

(W,', �(P0);DUP; push 1; idx; SWAP; push 0; idx; if0 (lam x.�(P1)) (lam y. �(P2)))
2 E

XJ⌧K✓

given (W,'†, �) 2 G
XJ�K where ' =

S
'i and 'i = flocs(�(Pi)). Applying

Lemma E.0.7 with the first premise, it su�ces if

(W 0,'0,
push [n, v];DUP; push 1; idx; SWAP; push 0; idx; if0 (lam x.�(P1)) (lam y. �(P2)))

2 E
XJ⌧K✓

given (W 0,'0
0, [n, v]) 2 V

XJ⌧1 + ⌧2K and W 0
w W where '0 = '0

0['1['2.
There are two cases.



behavior interoperability: exceptions 395

• Suppose n = 0 and (W 0,'0
0, v) 2 V

XJ⌧1K. Then by Lemma E.0.6 and
pushing substitutions, it su�ces if

(W 0,'1, �[x 7! v](P1)) 2 E
XJ⌧K✓

Applying Lemma E.0.7 with the second premise, it su�ces if

(W 00,'00, push v0) 2 E
XJ⌧K✓

where (W 00,'00, v) 2 V
XJ⌧K, W 00

w W 0. Then apply Lemmas E.0.1,
E.0.2.

• Suppose n = 1 and (W 0,'0
0, v) 2 V

XJ⌧2K. Then by Lemma E.0.6 and
pushing substitutions, it su�ces if

(W 0,'2, �[y 7! v](P2)) 2 E
XJ⌧K✓

Applying Lemma E.0.7 with the third premise, it su�ces if

(W 00,'00, push v0) 2 E
XJ⌧K✓

where (W 00,'00, v) 2 V
XJ⌧K, W 00

w W 0. Then apply Lemmas E.0.1,
E.0.2.

Lemma E.0.22 (fold). If JK� `X P : ⌧ [µ↵.⌧/↵], then JK� `X P : µ↵.⌧ .

Proof. Unfolding JK· and pushing substitutions, we are to show

(W,', �(P)) 2 E
XJµ↵.⌧K✓

given (W,'†, �) 2 G
XJ�K where ' = flocs(�(P)).

Applying Lemma E.0.7 with the first premise, it su�cies if

(W 0,'0, push v) 2 E
XJµ↵.⌧K✓

given (W 0,'0, v) 2 V
XJ⌧ [µ↵.⌧/↵]K and W 0

w W . Applying Lemmas E.0.1,
E.0.2, it su�ces if

(W 0,'0, v) 2 V
XJµ↵.⌧K

which is immediate from the assumption, the definition of VXJµ↵.⌧K, and
Lemma E.0.3.

Lemma E.0.23 (unfold). If JK� `X P : µ↵.⌧ , then
JK� `X P; noop : ⌧ [µ↵.⌧ ].
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Proof. Unfolding JK· and pushing substitutions, we are to show

(W,', �(P); noop) 2 E
XJ⌧ [µ↵.⌧ ]K✓

given (W,'†, �) 2 G
XJ�K where ' = flocs(�(P)).

Applying Lemma E.0.7 with the first premise, it su�ces if

(W 0,'0, push v; noop) 2 E
XJ⌧ [µ↵.⌧ ]K✓

given (W 0,'0, v) 2 V
XJµ↵.⌧K and W 0

w W . Applying Lemma E.0.6, it
su�ces if

(W 00,'0, push v) 2 E
XJ⌧ [µ↵.⌧ ]K✓

given W 00 AW 0 (N.B., we take care to strictly advance the world, here).
Applying Lemmas E.0.1, E.0.2, it su�ces if

(W 00,'0, v) 2 V
XJ⌧ [µ↵.⌧ ]K

which is immediate from the assumption, the definition of VXJµ↵.⌧K, and
Lemma E.0.3.

Lemma E.0.24 (fun). If JK�,f : (⌧1, . . . , ⌧n)
⌅
! ⌧ 0, xi : ⌧i `X P : ⌧ 0, then

JK� `X push (thunk push (thunk lam f.lam xn. . . . lam x1.P); fix) : (⌧1, . . . , ⌧n)
⌅
! ⌧ 0

Proof. Unfolding JK· and pushing substitutions, we are to show

(W,', push (thunk push (thunk lam f.lam xn. . . . lam x1.�(P)); fix))

2 E
XJ(⌧1, . . . , ⌧n)

⌅
! ⌧ 0K✓

given (W,'†, �) 2 G
XJ�K where ' = flocs(�(P)).

Applying Lemmas E.0.1, E.0.2, it su�ces if

(W,', thunk push (thunk lam f.lam xn. . . . lam x1.�(P)); fix)

2 V
XJ(⌧1, . . . , ⌧n)

⌅
! ⌧ 0K

Unfolding the definition of VXJ(⌧1, . . . , ⌧n)
⌅
! ⌧ 0K and pushing substitu-

tions, we must show

(W 0,'0, �[xi 7! vi, f 7! thunk push (thunk lam f.lam xn. . . . lam x1.�(P)); fix](P))
2 E

XJ⌧ 0K✓

given W 0 A W and (W 0,'i, vi) 2 V
XJ⌧iK where '0 =

S
'i [ ' ⇢ W 0. ,

which is immediate from the premise.
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Lemma E.0.25 (app). If JK� `X P0 : (⌧1, . . . , ⌧n)
⌅
! ⌧ 0 and for i 2

{1, . . . , n} JK� `X Pi : ⌧i then
JK� `X P0;P1; SWAP . . .Pn; SWAP; call : ⌧ 0

Proof. Unfolding JK· and pushing substitutions, we are to show

(W,', �(P0); �(P1); SWAP . . . �(Pn); SWAP; call) 2 E
XJ⌧ 0K✓

given (W,'†, �) 2 G
XJ�K where 'i = flocs(Pi) and ' =

S
Pi.

Applying Lemmas E.0.7, E.0.6 with the premises in order, it su�ces if

(W 0,'0, push v1; . . . ; push vn; push (thunk push (thunk lam f.lam xn. . . . lam x1.P); fix);
call) 2 E

XJ⌧ 0K✓

given W 0
w W , (W 0,'0

i
, vi) 2 V

XJ⌧iK for i > 0, and

(W 0,'0
0, thunk push (thunk lam f.lam xn. . . . lam x1.P); fix) 2 V

XJ(⌧1, . . . , ⌧n)
⌅
! ⌧ 0K

where '0 =
S
'0
i
. Applying Lemma E.0.6, it su�ces if

(W 0,'0, [xi 7! vi, f 7! thunk push (thunk lam f.lam xn. . . . lam x1.P); fix](P)) 2 E
XJ⌧ 0K✓

which is immediate from the definition of VXJ(⌧1, . . . , ⌧n)
⌅
! ⌧ 0K.
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