
85

The Next 700 Compiler Correctness Theorems
(Functional Pearl)

DANIEL PATTERSON, Northeastern University, USA

AMAL AHMED, Northeastern University, USA

Compiler correctness is an old problem, with results stretching back beyond the last half-century. Founding

the field, John McCarthy and James Painter set out to build a łcompletely trustworthy compilerž. And yet, until

quite recently, even despite truly impressive verification efforts, the theorems being proved were only about

the compilation of whole programs, a theoretically quite appealing but practically unrealistic simplification.

For a compiler correctness theorem to assure complete trust, the theorem must reflect the reality of how the

compiler will be used.

There has been much recent work on more realistic łcompositionalž compiler correctness aimed at proving

correct compilation of components while supporting linking with components compiled from different

languages using different compilers. However, the variety of theorems, stated in remarkably different ways,

raises questions about what researchers even mean by a łcompiler is correct.ž In this pearl, we develop a new

framework with which to understand compiler correctness theorems in the presence of linking, and apply it

to understanding and comparing this diversity of results. In doing so, not only are we better able to assess

their relative strengths and weaknesses, but gain insight into what we as a community should expect from

compiler correctness theorems of the future.

CCS Concepts: · Software and its engineering→ General programming languages.

Additional Key Words and Phrases: compilers, verification

ACM Reference Format:

Daniel Patterson and Amal Ahmed. 2019. The Next 700 Compiler Correctness Theorems (Functional Pearl).

Proc. ACM Program. Lang. 3, ICFP, Article 85 (August 2019), 29 pages. https://doi.org/10.1145/3341689

1 WHO VERIFIES THE VERIFIERS?

łCan you trust your compiler?ž So began Xavier Leroy in a Journal of Automated Reasoning paper
describing the CompCert C compiler[Leroy 2009], a tour de force in verified compilers that is
implemented and proved correct using the Coq proof assistant. Compiler correctness is not a new
problem: in a seminal 1967 paper, John McCarthy and James Painter, using a simple compiler for
arithmetic expressions, proposed the problem of how to build a completely trustworthy compiler1.
They wondered, as we wonder now, what happens if the programs we write do not correspond
to what actually runs? In 1973, F. Lockwood Morris provided a more solid foundation for the
field with a compiler correctness theorem that is essentially indistinguishable from what showed
up in CompCert more than 30 years later: the theorem says the łmeaningž of the program after

1In an earlier report, [McCarthy 1959] mentioned the goal of having theories for equivalences of transformations.

Authors’ addresses: Daniel Patterson, Northeastern University, 440 Huntington Avenue, Boston, MA, 02115, USA, dbp@

dbpmail.net; Amal Ahmed, Northeastern University, 440 Huntington Avenue, Boston, MA, 02115, USA, amal@ccs.neu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/8-ART85

https://doi.org/10.1145/3341689

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3341689
https://doi.org/10.1145/3341689


85:2 Daniel Patterson and Amal Ahmed

compilation should be essentially the same as the łmeaningž of the original source programÐthat
is, the compiler should be semantics preserving.

But the compiler correctness theorem from Morris, proved for CompCert and in numerous other
results before and after, is about compiling whole programs2, and whole programs, unfortunately,
are rare occurrences indeed in the diet of real-world compilers. Infrequent enough are C programs
that do not use the C standard library, but once we broaden our tastes to higher-level languages
the issues of runtimes and efficient low-level data-structure implementations completely disabuse
us of the notion that correctly compiling łwhole source programsž is enough.
If we are to have confidence that the code that we write is indeed the code that runs, we need

theorems that address the reality of the programs we compile. Compiler correctness theorems tell
us how the compiler will behave provided we fulfill the assumptions of the theorem. Traditional
compiler correctness results, such as those of Morris and CompCert, assume that the inputs to
the compiler are complete runnable programs.3 Hence, in situations when the compiler that the
theorem describes is actually used to compile partial programs (say, code that links against the
standard library), the theorem itself no longer holds! So if we are to have a łcompletely trustworthyž
compiler, the goal laid out for us by McCarthy and Painter, we are left wanting for better compiler
correctness theorems.
And so we enter a more muddled world, without the benefit of a half century of clarity. In

this world, fragments of code come from different languages and are stitched together before
running, and the question of what researchers even mean by a łcompiler is correctž has become the
subject of some dispute, if only to the careful observer. In the last few years, there have been many
fundamentally different theorems, all dubbed łcompositional compiler correctness,ž that aim to
capture correctness when compilers translate partial programs and allow linking with other code.
But łwho watches the watchmen?ž4 we ask, or in our context, łwho verifies the verifiers?ž We ask
this because knowing that a theorem has been proved does not help understand how the theorem
statement relates to reality. Clearly, if a theorem only applies when compiling whole programs, it
cannot be relied upon when compiling code that will be linked. But if a theorem is more flexible,
capturing łcompositional correctness,ž then often figuring out what it states and whether it applies
when linking with some particular code is subtle.

Even worse, different theorems under the umbrella of compositional compiler correctness make
radically different choices that restrict, in different ways, how they can be used and what guarantees
they provide. Given that compiler correctness is about trusting the behavior of the compiler,
confidence that the theorem relates to its actual use is as important, if not more so, than the proof
of the theorem. Because if we do not knowÐor cannot understandÐwhat was proved, the proof
itself is, perhaps, meaningless.
Our goal with this pearl is therefore threefold. First, we aim to characterize the spectrum of

compiler correctness, not only for whole-program compilation, but for so-called łcompositionalž
compilers that allow compiling partial programs and then linking them to produce what we run.
Compositional compilation, we argue, is the mode of use that accurately reflects the vast majority
of real-world compilation. Second, we aim to give readers a systematic methodology to assess and
compare compiler correctness results as they see them. Third, we aim to hopefully convince our
colleagues that having such a common compositional compiler correctness framework is useful for
our research community.

2Morris’s denotational model included open terms, but the actual theorem relating the semantics was only over closed

terms, as he stated they were the only programs that would actually be run.
3Here we mean CompCert prior to 2.7. CompCert 2.7 added support for separate compilation, incorporating the work of

[Kang et al. 2016] that we describe later in this pearl.
4Quoting the English writer Alan Moore.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



The Next 700 Compiler Correctness Theorems 85:3

2 ADVICE ON PROVING COMPILERS CORRECT

While most begin their assessment of the field of compiler correctness with McCarthy and Painter
[1967], and indeed, McCarthy is usually a safe place to start, a better starting place in this case
is a less cited paper by F. Lockwood Morris that appeared six years later in the first Symposium
on Principles of Programming Languages (POPL) in 1973. In łAdvice on Structuring Compilers
and Proving Them Correctž, Morris [1973] stated that his purpose was to ładvise an approachž to
achieve McCarthy’s goal: to prove compilers completely trustworthy. He outlined his theorem with
a diagram, which we approximately reproduce here:

Source Language S Target Language TCompile CS

T
(·)

Semantics of S Semantics of T

meaning meaning

Decode

We read the diagram as follows: The source language S should be given meaning via a source
semantics and the target language T should be given meaning via a target semantics, and then
the compilation of S to T should relate the two semantics. Specifically, the semantics of the target
program produced by the compiler should be related to the semantics of the source program,
which is expressed via a łdecodež function, since Morris concluded that the semantics of the target
program may not be identical but should be somehow compatible with the semantics of the source
program from which it was compiled. A typical reason we need to decode is that the target language
may expose implementation details (e.g., memory allocations) that were not visible in the source
semantics. This is currently more commonly referred to as refinement: depending on the specifics
of the compiler, we say that the compiled target-language program refines the behavior of the
source-language program, or vice versa (discussed further in ğ6.3). Informally, a program e1 refines
a program e2 if every behavior of e1 is a possible behavior of e2.

The above theorem is thus the familiar semantics preservation theorem: Morris had denotational
semantics in mind while CompCert (and most recent research) considers operational semantics,
but the essential notion is that programs have extensional behaviorÐwhether as mathematical
functions or as running artifactsÐand that this behavior should be preserved through compilation.
We can define this notion more concisely: an S-to-T compiler CS

T
(·) is correct if

∀eS ∈ S . CS

T
(eS ) T⊏S

eS

We read this as follows: if eS is compiled from source language S to target language T , resulting in
the compiled program CS

T
(eS ), then the observable behavior (in the operational setting, which is

our focus in this paper) of eS is preserved in the observable behavior of CS

T
(eS )Ðor, alternatively,

the behavior of CS

T
(eS ) refines the behavior of eS . It is important to note that, throughout this pearl,

whenever we write e1 L1⊏L2
e2 we assume that e1 and e2 are whole programsÐin languages L1

and L2, respectivelyÐelse this relation is not defined. Since the ⊏ relation is defined only on
whole programs, it is clear that this theorem says absolutely nothing about what (if anything) the
compiler does for partial programs.

Semantics preservation has had such staying power because the above theorem statement is so
crisp: once the semantics of the source and target languages are defined, the meaning of the theorem
is entirely contained in the dozen odd symbols above. While formally defining source- and target-
language semantics may be non-trivial, they do not increase the burden of understanding whether
semantics preservation implies what we want from whole-program compiler correctness. We
simply expect that the source semantics must match the language definition that the programmer

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



85:4 Daniel Patterson and Amal Ahmed

What can be linked? A Spectrum.

Nothing

CompCert
Leroy ’06

Same
compiler

SepCompCert
Kang et al.’16

Diff. compiler,
same lang

Pilsner
Neis et al.’15

Compiled from
diff. lang

Compositional CompCert
Stewart et al.’15

CompCertX
Gu et al.’15, Wang et al.’19

Compiled from
very diff. lang

Multi-language ST
Perconti-Ahmed’14

Cito
Wang et al.’14

Fig. 1. A Spectrum of Linking Options

is using, and the target semantics must match however the programs will be run, whether that
is the model of some hardware or the reduction semantics of a low-level language. There are, of
course, subtleties that researchers have worked through over the years: the definition and direction
of refinement as used in the statement may need to be changed in the presence of nondeterminism

in one or both languages (e.g., the work by Ŝevčik et al. [2011]) or undefined behavior (see ğ6.3 for
a more thorough discussion), but the essential character of what Morris described has served the
field of compiler verification incredibly well for decades.
Unfortunately, the theorem is about whole programs, and it is rare to encounter real-world

compilation of whole programs. Languages inevitably link against libraries after compilation, often
written wholly or in part in lower-level languages. So while having whole-program compiler-
correctness theorems is sure to increase the likelihood of a compiler being correct when linking,5 it
does not give us a łcompletely trustworthyž proof that our compilers, as used, are correct.

3 COMPILER CORRECTNESS IS A SPECTRUM

If whole-program semantics preservation, beautiful though it is, cannot account for realistic com-
pilers, then how should our desired compiler correctness theorem be stated? We first state our
goals for such a theorem:

(1) It should accommodate a suitably broad spectrum of non-whole-program compilers that exist
in the world.

(2) It should accommodate existing work that has been done under the banner of compositional
compiler correctness.

(3) It should be straightforward to understand.

To readers following the literature on compositional compiler correctness, achieving all three
goals in a single theorem might seem to be an impossible task! We discuss the difficulties in light
of the literature alongside our goals in the rest of this section.
Compiler correctness results exist on a compositional spectrum featuring correctness theorems

that assume no linking at all, to theorems that assume linking only with code that has certain

5 Yang et al. [2011]’s study found no miscompilation errors in the verified part of CompCert but many such errors in GCC

and LLVM, leading them to conclude that verification of a compiler using a theorem prover has tangible benefits for users.

Indeed, we have no reason to believe that that doesn’t correspondingly imply that there are fewer bugs when CompCert is

used to compile partial programs.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



The Next 700 Compiler Correctness Theorems 85:5

characteristics, to theorems that have incredibly broad flexibility. In Figure 1, we illustrate some
points on this spectrum and where to place some recent results, characterizing the points loosely
for now in terms of where the code we link with could have come from.6 When building a verified
compiler for a source language S , we can define the correctness theorem so it assumes that compiled
programs will only be linked with:

• code produced by the same verified compiler;
• code produced by a different compiler for the same source language S7

• code produced by a different compiler for a different source language R, but one with no
more expressive power (in the sense of Felleisen [1990]) than S ; or

• code whose behavior, ignoring performance considerations, cannot even be expressed in
language SÐfor instance, code compiled from a more expressive source language R or written
directly in a more expressive target language T .

As remarked in ğ1, recent compositional compiler results feature correctness theorems expressed
in remarkably different ways, with the complexity of theorem statements and proofs increasing
significantly once we get beyond the łfrom same compilerž restriction on code we link with.
Reflecting on the above, the fact that there is no single compositional compiler correctness

theorem is what makes this work necessary! We want to show with this pearl not only how to
arrive at a single high-level understanding of compositional correctness, analogous to Morris’ for
whole-program compiler correctness, but also how to reason about the diversity of meanings and
attendant practical implications.
At either end of the spectrum, it is easy to understand the results and their implications: a

whole-program compiler like the original CompCert [Leroy 2006] allows no linking and shows up
on the far left in Figure 1, while the source-target multi-language approach of Perconti and Ahmed
[2014] allows linking with arbitrary target code, even code whose functionality cannot be expressed
in the source, and appears on the far right. To the right of CompCert there is SepCompCert which
supports only separate compilation [Kang et al. 2016] and has been incorporated into the current
version of CompCert. Throughout this pearl, we use the term łseparate compilationž to characterize
results that only support linking with code compiled by the same compiler. Next on the spectrum
is Pilsner [Neis et al. 2015] where target code we link with must be related to some code in the
same source language, but not necessarily produced by the same compiler. Further right, there is
Compositional CompCert [Beringer et al. 2014; Stewart et al. 2015], which is not incorporated into
mainline CompCert, but which is more liberal than SepCompCert in that it essentially supports
linking with any code that satisfies the CompCert memory model (therefore, including code written
in any of CompCert’s intermediate languages). We have placed CompCertX, developed by Gu
et al. [2015] and Wang et al. [2019], in the same linking category as Compositional CompCert.
CompcertX supports łcontextual compilationž which allows components in assembly language
contexts that may not necessarily have been expressible in the source language of the compiler. 8

Finally, there is the approach taken by Wang et al. [2014], which we refer to as the łfully specifiedž

6In ğ5, when we discuss existing compiler correctness results, we will be more precise about how each result characterizes

the code that the theorem supports linking with; this is usually done without reference to the origin of the code.
7We can characterize this point in the spectrum differently: code that is provably related to (or refines) some code in

language S .
8There are reasons why CompCertX could be placed to the left of Compositional CompCert, because, as Wang et al. [2019]

write, ł[Compositional CompCert] is more powerful than contextual compilation in that it allows for recursive calls between

heterogeneous modules while contextual compilation does not.ž On the other hand, there are arguments to place it to the

right of Compositional CompCert, since the assembly language contexts and lower-level memory representations that

CompCertX supports are more expressive than what Compositional CompCert supports. Thus, we give up and place them

at the same point in our, admittedly, imperfect spectrum.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



85:6 Daniel Patterson and Amal Ahmed

approach, which doesn’t exactly fit on the spectrum at all. This involves giving full functional
specifications for the code that is being compiled and the code that will be linked, so in essence,
whole-program behavior is specified before compilation. We discuss this further in ğ5.6.

There are many other approaches that exist at other points of the above linking spectrum or
outside of it, some of which we will examine in this pearl. The essential point to note is that the
question is not a binary łis this compiler compositionally correct?ž, but rather: what does it allow
you to link with, and what do you have to do to use it (i.e, what must you check to know that the
code you wish to link with satisfies the assumptions of the theorem).
While achieving a compositional correctness theorem as simple as Morris’ whole-program

semantics preservation is likely impossible, we develop over the course of this pearl a common
theorem outline (or framework) that is not much more complicated. We will show that for different
compiler correctness results, different parameters we pick for the theorem will be more or less
complicated, which both helps to organize the results and to compare their merits. None of this will
make the theorems easier to prove, but we believe our contributions make it easier to understand
what has been proved. Finally, we note that our focus is on making theorems easier to understand,
not proofs. While proofs may remain the domain of experts (e.g., people working on the compiler
verification project), theorems must be understandable by the masses (e.g., users of the verified
compilers) if they are to provide any confidence in the trustworthiness of verified compilers.

4 ADVICE ON COMPOSITIONAL COMPILER CORRECTNESS

Consider an S-to-T compiler CS

T
(·) for partial programs where compiled code eT = CS

T
(eS ) can be

linked with some target code e ′
T
Ðpossibly produced by a different compiler, or written by handÐto

produce a complete target program that can be run. We shall write
LZL

to denote the result of
linking two components (partial programs) written in language L and

L1ZL2
to link a component

in language L1 with a component in language L2. Note that, in general, linking may not be defined
for components from different languages; one would have to define it for specific pairs of languages.
Moreover, even single-language linking is usually a partial function: it is only defined when two
components can be sensibly linked together. For instance, if the language is a low-level untyped
language, this might be a matter of ensuring symbols required by one component are provided by
the other. If the language is typed, linking might require that the components, when put together,
are well typed.

To understand how to specify compositional correctness for CS

T
(·), let us consider how we would

use such a compiler. We would compile a partial program eS to eT = CS

T
(eS ) and then link eT with

some e ′
T
to obtain a whole program we can run. Intuitively, for this compiler to be correct, it should

be the case that the behavior of the whole program e ′
T TZT

eT refines the behavior of eS linked
with some code e? that is semantically equivalent to e ′

T
. We write e? because we aren’t sure yet what

language to express this program in, but we do know that no matter the language, the behavior of
e? must be equivalent to e ′

T
. In other words, for a compiler CS

T
(·) to be correct, we need to know

that the following holds:

∀eS ∈ S . ∀e ′
T
∈ T . e ′

T TZT
CS

T
(eS ) T⊏? e? ?ZS

eS where e? ≈ e ′
T

Assuming that it makes sense to link CS

T
(eS ) with e ′

T
, and assuming that this results in a whole

program, for the compiler to be correct we require a łsemantics preservationž statement, as discussed
for whole programs in ğ2. Specifically, we want the behavior resulting from linking e ′

T
with the

source component eS to be preserved in the result of linking e ′
T
with the compiled CS

T
(eS ). It is

critical here that linking the compiled compoenent with e ′
T
should yield a whole program, since our

goal is to define partial-program refinementÐthat the partial program CS

T
(eS ) refines the partial

program eSÐin terms of whole-program refinement ⊏ . Informal though it is, the above statement

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



The Next 700 Compiler Correctness Theorems 85:7

captures what we mean by a correct compiler: before and after compilation, it has the same behavior
when interacting with e ′

T
. Figuring out how to make it formal, in short, how to define ? and come

up with e?, is the main task in front of us.

4.1 The CCC Theorem, Formally

The definition in the last section captures the intuition for when a compositional compiler should
be considered correct. We now introduce the ingredients we must specify in order to state a precise
compositional compiler correctness (CCC) theorem. Throughout the bulk of this pearl, we only
consider linking two components, but our definitions generalize straightforwardly to an arbitrary
number of components. We include the latter definition in the Appendix. We have mechanized
the definitions and the proofs in ğ4.2 (provided as supplementary material [Patterson and Ahmed
2019]); our mechanization uses the CCC definition for an arbitrary number of components.

Linking Set. Any endeavour to formalize a compositional compiler correctness theorem must
specify the set of programs that the compiler’s output may be linked with. We specify this via a
linking set L, which is a set of pairs (e ′

T
,φ) where e ′

T
is a target program that the theorem deems

permissible to link with and φ is a łproofž term that can be thought of as a witness to e ′
T
being

suitable to be linked with. For example, results such as Pilsner’s [Neis et al. 2015] only allow linking
with target components e ′

T
that can be shown to be related to a source component e ′

S
, so any e ′

T
in

the linking set must be accompanied by a witness φ testifying to that fact.

Source-Target Linking Medium. In the condition we sketched for compositional compiler correct-
ness in the last section, we said that the compiled program CS

T
(eS ) linked with some permissible e ′

T

must refine the source program eS linked with some e? that is equivalent to e
′
T
, leaving open what

language ł?ž that e? would be written in. We describe this language as the source-target linking

medium Ŝ , as it is the setting in which we can meaningfully talk about linking the source compo-
nent eS with (behavior equivalent to) the target component e ′

T
. Some approaches to compositional

compiler correctness may choose Ŝ to be the source language S (e.g., Pilsner), in which case we

need to be able to first lift the target term e ′
T
into that medium. Others may choose Ŝ to be a mixed

source-target multi-language (as in [Perconti and Ahmed 2014]), which means we can directly link
eS with e ′

T
.

Lift Function from L to Ŝ . We will require a function ↠ (pronounced łliftž) that translates T

components in the linking set L to components in the source-target linking medium Ŝ . More

precisely, the ↠ function translates a pair (eT ,φ) from L to a component in Ŝ , which means that

the function can make use of information in φ to generate the Ŝ component. This will turn out to
be critical for modeling results such as Pilsner and SepCompCert as we shall see in ğ5. In cases
where the source or target include nondeterminism, defining the lift function can be subtle, which
we discuss in depth in ğ6.2.

Linking S and Ŝ . Once we have chosen a source-target linking medium Ŝ we will need to formally

specify linking of source S components with Ŝ components,
SZŜ

, which produces an Ŝ term.

Linking Target Components. Finally, we need a specification of linking for target-language com-
ponents:

TZT
. This should be a specification of the linking used by the compiler being verified.

CCC Theorem. We present the full CCC theorem below, noting that part (1) is very similar to our
informal definition earlier, but made concrete using the parameters we specified above.
The subsequent requirements (2-6) are necessary to make the theorem well-behaved, and we

will go through them in detail, but we present the entire definition at once to make it easier to
reference. Most of the side conditions are not terribly interesting. But they are critical in ensuring

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



85:8 Daniel Patterson and Amal Ahmed

that compilers that satisfy CCC are indeed compositional in the sense that we expect, as we show
in the next subsection by proving that weaker compositional results follow from CCC.

Theorem 4.1 (CCC: Compositional Compiler Correctness).

∃ ↠. ∀eS ∈ S . ∀(eT ,φ) ∈ L. eT TZT
CS

T
(eS ) T⊏Ŝ ↠(eT ,φ) ŜZS

eS (1)

where (�T ,φ�) ∈ L (2)

∀eS . ∃φ. (C
S

T
(eS ),φ) ∈ L (3)

↠(�T ,φ�) = �
Ŝ

(4)

∀eS . �Ŝ ŜZS
eS Ŝ⊏S

eS (5)

∀(eT ,φ) ∈ L. ∀eS . (∀cT . cT TZT
eT T⊏T

cT TZT
CS

T
(eS )) =⇒

(∀cS . cS SZŜ ↠(eT ,φ) Ŝ⊏S
cS SZS

eS )
(6)

We walk through the theorem in detail, starting with part (1), which is the central result. Given
the existence of ↠, the theorem states that for any term eS in S and any pair (eT ,φ) in the set of
permissible-to-link terms L, the following refinement may hold. We say łmayž because the linking
operation is assumed to be a partial function that may fail if a language-specific linking validation
failed (e.g., a type error if the language was typed). Provided this was not the case, and the result
is a whole program, the refinement is defined, and semantics preservation holds from the source
term eS linked with the lifted target ↠(eT ,φ) to the compiled term CS

T
(eS ) linked with eT .

It is important to describe which parts of this definition the reader must understand. Theorems
are about trust, and trust is about understanding, thus the understanding burden is closely related
to how trustworthy the theorem is. In this case, the reader needs to understand the lifted language

Ŝ and how linking of Ŝ components with S terms works. On the other hand, the reader does not
need to understand how the particular ↠ function works, just that it exists (and fulfills various
side-conditions to the theorem which we will go over shortly); this is why it is existentially
quantified. Finally, the reader needs to understand L, and in particular, if φ is non-trivial, will need
to understand how they can be sure that the target component eT that they want to link with is
indeed something that the theorem covers.

The side-conditions of the theorem serve to ensure that the various novel parts of this definition
are well-formed. Part (2) ensures that the empty component �T in the target T is in L, which is
used to prove that the definition implies whole-program correctness (a corollary we prove in ğ4.2).
Part (3) says that anything that is the output of the compiler is in the set L. Note that some of

these terms may not actually be able to be linked (because linking would not result in well-formed
programs), but it ensures that compositionally correct compilers are correct separate compilers
(another corollary we prove in ğ4.2).

Part (4) ensures that ↠ translates the empty T component �T (and łemptyž proof φ�) into an

empty Ŝ component�
Ŝ
. This seemingly trivial condition is nonetheless important in proving whole-

program correctness based on CCC, and ensures that ↠ is well-defined on empty T components.

Next, (5) ensures that linking a program eS with an empty Ŝ component preserves the semantics
of just running eS . This may seem trivial but note that

ŜZS
can be instantiated to anything, and in

particular there is no reason why it couldn’t result in making non-trivial changes to eS (we will see
a particularly devious case of this in ğ6.1).

Finally, (6), requires that semantically ↠ (lift) is the inverse of compile CS

T
(·) on compiler output.

This may be thought of as the minimal condition required for ↠ to be sensible (which we need
since ↠ is existentially quantified, and thus not something the user of the theorem need inspect).
Hence, ↠ and C

S

T
(·) behave nearly as inverses: łnearlyž because CS

T
(·) only compiles S programs but

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



The Next 700 Compiler Correctness Theorems 85:9

↠ maps to Ŝ . Specifically, this condition states that if a target component eT (contextually) refines a
compiled source component CS

T
(eS ) then the lift of eT should (contextually) refine eS . This then

has to be stated for complete programs, since ⊏ is whole-program refinement, which means the
components need to be completed by linking with some (context) cS or cT .

4.2 Corollaries of The CCC Theorem

We can prove a few important corollaries of CCC. While compositional correctness is more general
than whole-program correctness and separate compilation, we certainly want both of those to hold.

Corollary 4.2 (CCC Implies Whole Program Compiler Correctness).

CCC(CS

T
(·)) =⇒ ∀eS ∈ S . CS

T
(eS ) T⊏S

eS

Proof. If we instantiate Theorem 4.1with�T as eT (whichwe knowwe can fromTheorem 4.1 (2)),
then from Theorem 4.1 (1) we get that �T TZT

CS

T
(eS ) T⊏Ŝ ↠(�T , _) ŜZS

eS .
From Theorem 4.1 (4) we know that ↠(�T , _) ŜZS

eS = �
Ŝ ŜZS

eS . Further, from Theo-
rem 4.1 (5) we know that �

Ŝ ŜZS
eS Ŝ⊏S

eS . Since our notion of refinement is based upon set

inclusion of behaviors, we can compose
T⊏Ŝ

and
Ŝ⊏S

to get that �T TZT
CS

T
(eS ) T⊏S

eS .

Since �T is an empty target component, linking with it does not change the behavior of CS

T
(eS ),

which is a whole program, and the result follows. □

Corollary 4.3 (CCC Implies Correct Separate Compilation).

CCC(CS

T
(·)) =⇒ ∀e1, e2 ∈ S . CS

T
(e1 SZS

e2) T⊏S
e1 SZS

e2
and CS

T
(e1) TZT

CS

T
(e2) T⊏S

e1 SZS
e2

Proof. From Corollary 4.2 we know that CS

T
(e1 SZS

e2) T⊏S
e1 SZS

e2. It remains to show

that CS

T
(e1) TZT

CS

T
(e2) T⊏S

e1 SZS
e2 as well.

We instantiate Theorem 4.1 with e2 as eS and C
S

T
(e1) as eT , noting from Theorem 4.1 (3) that there

exists φ such that (CS

T
(e1),φ) ∈ L. From Theorem 4.1 (1) we get that CS

T
(e1) TZT

CS

T
(e2) T⊏Ŝ

↠(C
S

T
(e1),φ) ŜZS

e2.

From Theorem 4.1 (6) (taking eT to be CS

T
(e1), eS to be e1, and cS to be e2), we know that

↠(C
S

T
(e1),φ) ŜZS

e2 Ŝ⊏S
e1 SZS

e2, and we can compose those two together to get what we

need, that CS

T
(e1) TZT

CS

T
(e2) T⊏S

e1 SZS
e2. □

5 RESULTS FROM ACROSS THE SPECTRUM

The essential intuition of Morris’ compiler correctness theorem is that for a compiler to be correct,
it must be semantics preservingÐthat is, the behavior of the compiled code eT = CS

T
(eS ) must be

related9 to the behavior of the source eS . While Morris’ theorem formalizes semantics preservation
for whole-program compilation, we note that CCC, in essence, does the same for partial-program
compilation, with the main difference being that defining relatedness for whole programs is easier
than defining relatedness for partial programs (which we denote eT T≈S

eS ).
Assuming one has a means of specifying

T≈S
, we should always be able to state compositional

compiler correctness as CS

T
(eS ) T≈S

eS . The central difference between existing compositional com-

piler correctness results arises due to different approaches to defining the relation CS

T
(es ) T≈S

eS .
All existing results define this partial-program relation by considering all target components e ′

T

that when linked with CS

T
(es ) produce a whole program e ′

T TZT
CS

T
(es ). This approach is taken

because it means we can rely upon the much easier-to-define relation for whole programs; in the

9We use the term relation as a high-level notion to capture both equivalence relations and the refinements that occur in

some work.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



85:10 Daniel Patterson and Amal Ahmed

operational setting, we can simply require that the compiler preserves the behavior observed by
running the program, something that is clearly impossible to do of a partial program. Then each
compiler correctness result ends up having to define some version of the program e? ?ZS

eS for the
other side, where e ′

T T≈? e?. That is, we must come up with some source-like equivalent of that
target module such that we can construct a whole program by linking it with eS . The theorems for
these results then ensure that the behavior of the complete program e ′

T TZT
CS

T
(es ) is related to

the behavior of e? ?ZS
eS (which the user of the theorem must understand, along with the relation

e ′
T T≈? e?). These insights are precisely the ones used when motivating our CCC theorem in ğ4.
In this section, we work our way across the spectrum of compositional compiler correctness,

examining how existing results define the relation eT T≈S
eS , and showing how each result’s

position on the linking spectrum can be understood using our CCC theorem. In doing so, we will
reveal various features of the approaches taken in the literature. While these are not the only
pieces of prior work on compositional compiler correctnessÐin particular, we do not examine the
most recent results by Wang et al. [2019] and Jiang et al. [2019]Ðthey represent a suitably broad
cross-section. At the end of this section, we will discuss an approach that does not fit as neatly into
the CCC framework.

5.1 Linking with Code Generated by Same Compiler: SepCompCert

CompCert, an optimizing C compiler developed within the Coq proof assistant by Leroy et al.
for over a decade, has been by any measure an enormous research success. Not only has it seen
adoption within high-assurance areas of industry, but there have been countless extensions of the
work, from within and outside the core group at Inria. However, a longstanding issue was that
the correctness theorem for CompCert only held for whole programs. At the same time, perhaps
dangerously, the CompCert compiler, extracted from Coq, did not have that restriction:

łWhile the soundness proof for Compcert [sic] does not account for separate compila-
tion and assumes that whole programs are compiled at once, the compiler can be used
to separately compile C source files and link them with precompiled libraries, which is
convenient for testing.ž Ð Leroy [2009]

During the decade after the first paper was released, various people worked on the problem
of supporting linking, using different approaches, but the result that ended up incorporated into
CompCert 2.7 was the work by Kang et al. [2016], which they titled SepCompCert. SepCompCert is
interesting in that it explicitly łaimed lowerž than existing work at the time, extending CompCert
by only supporting linking with output that was produced by the exact same compiler, in an effort
to reduce the amount of changes to the verified compiler. Interestingly, the effort revealed bugs in
CompCertÐin particular, one that only showed up in the presence of separate compilation. The
latter re-iterates the necessity of having correctness theorems that apply to the reality of how
compilers are used. Because while CompCert since the beginning could be used as a separate
compilerÐand even now, with the incorporation of SepCompCert, can be used to link against
arbitrary assemblyÐdoing so gives up the guarantees that a verified compiler comes with because
such linking violates the assumptions of the correctness theorem.

Now, given that SepCompCert only allows linking with output that was generated by the same
compiler, and thus is really just a separate compilation result, rather than łtruly compositionalž,
the careful reader might cry foul that this means that CCC does not, indeed, imply compositional
compiler correctness, if a compiler that is not truly compositional can be shown to satisfy it. Indeed,
the critique is somewhat valid, but the key to the CCC approach is the way in which the parameters
to the theoremÐwhat we are allowed to link with, the source-target linkingmedium, etc.Ðilluminate
the result itself. Looking at the linking set L for SepCompCert (see below), it’s immediately clear

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



The Next 700 Compiler Correctness Theorems 85:11

that this is a separate compilation result. In this way, while the very fact that a compiler can fit into
the CCC framework does not imply any particular flavor of compositional correctness, the point
that we will show the reader by the end of this section is that no two results agree on a particular
flavor either. Therefore, the true value of a theorem like CCC is that it illuminates the questions that
one should have, including what can and cannot be linked. So perhaps the reader is right and we
should have called our theorem just CC, and done away with łcompositionalž from the name. But
we plead our defense that without the important questions brought up by compositionality, Morris’s
theorem from 1973 would have been just fine, and so highlighting the importance of the spectrum
of compositional compiler correctness in the theorem title itself is worth a little lack of precision.
For SepCompCert, as for each of the results we consider, we first present a summary of how

the CCC theorem is instantiated, then describe in detail each point, and finally explain why the
theorem Kang et al. prove implies our CCC theorem.

L {(eT ,φ) | φ = source component eS that was compiled by the SepCompCert compiler to eT }

Ŝ unchanged source language S

ŜZS
unchanged source language linking

SZS

Ŝ⊏S
source language (whole program) refinement

S⊏S

↠(·) ↠(eT , eS ) = eS

We can see that in this case, the language Ŝ is actually just the source language S . This is the
reason for much of the simplification that characterized the SepCompCert effort (and why it was
incorporated into CompCert, unlike the more powerful and earlier Compositional CompCert result
by Stewart et al. [2015]), as it means that much of the rest of the complexity (the cross-language

linking, the operational semantics of running Ŝ programs) evaporates. What is left is our lift
function, but this too becomes simple, because of the SepCompCert restriction that we only link
with components (i.e., modules) that were produced by the SepCompCert compiler. We can realize
that restriction by having the evidence φ that a component eT is permissible to link with be just the
source component eS that was compiled to produce eT . This then means that the lifting function is
trivial, as it can simply return this component. In this, we can see the various parts of the CCC
theorem fit together.
Next, we have to show that the theorem is implied by the SepCompCert correctness theorem.

Given the instantiations above (which we use to specialize the theorem), we must now show:

∀eS ∈ S . ∀(CS

T
(e ′
S
), e ′

S
) ∈ L. CS

T
(e ′
S
)
TZT

CS

T
(eS ) T⊏S

e ′
S SZS

eS (1)

where (�T ,φ�) ∈ L (2)

∀eS . (C
S

T
(eS ), eS ) ∈ L (3)

↠(�T ,φ�) = �S (4)

∀eS . �S SZS
eS S⊏S

eS (5)

∀(CS

T
(e ′
S
), e ′

S
) ∈ L. ∀eS . (∀cT . cT TZT

CS

T
(e ′
S
)

T⊏T
cT TZT

CS

T
(eS )) =⇒

(∀cS . cS SZS ↠(C
S

T
(e ′
S
), e ′

S
)

S⊏S
cS SZS

eS )
(6)

The side-conditionsmostly follow easily, as�S compiles to�T (i.e., an empty component compiles
to an empty component) covering (2) and (4), SepCompCert permits linking with components
compiled by it, covering (3), and (5) follows since ⊏ is reflexive. The only condition that’s a

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



85:12 Daniel Patterson and Amal Ahmed

little tricky is the last one, where essentially, we need to show that compilation (of components)
preserves refinement. But this is exactly implied by the correctness properties that SepCompCert
proves (both the level A correctness in ğ2.2 and level B correctness in ğ2.3 of [Kang et al. 2016]).10

Finally, we must show that (1) holds. But given the concrete instantiation the result is again the
statement of separate compilation.

Thus, we can see that SepCompCert fulfills a CCC theorem instantiated as above, and so fits into
our framework.

5.2 Linking with Code Representable in the Source Language: Pilsner

For their compositional correctness result for Pilsner, Neis et al. [2015] define eT T≈S
eS using

a cross-language relation. The relation specifies when components from language T should be
considered behaviorally related to components from language S in a manner similar to that of
cross-language logical relations. The latter have been used for years to establish the correctness of
transformationsÐe.g, for correctness of typed closure conversion [Minamide et al. 1996], correctness
of a multi-pass compiler for STLC [Chlipala 2007]. More recently, Benton and Hur [2009] used a step-
indexed logical relation [Ahmed 2006; Ahmed et al. 2009] to prove correct compilation from STLC
with recursion to an SECD machine, and later Hur and Dreyer [2011] did the same for compilation
from an idealized ML to assembly, both single-pass compilers because it was unclear how to scale
the cross-language logical-relations approach to multi-pass compilers. Assume a compiler from
source language S to intermediate language I and from I to target language T . The key technical
difficulty was proving transitivity in the presence of state Ðthat eT T≈I

eI and eI I≈S
eS implies

eT T≈S
eSÐwhich is a property we need in order to compose correctness lemmas for successive

compiler passes into a single theorem that end-to-end multi-pass compilation is correct. Neis
et al. [2015] addressed this by developing PILS (parametric inter-language simulations) that can be
proved transitive and used PILS between S and I , and I and T to prove a compositional correctness
theorem for Pilsner.

An issue with all cross-language-relation approaches to compiler correctness is that if we compile
eSÐso we have C

S

T
(eS ) T≈S

eSÐand link the compiled code with some e ′
T
, we are required to show

that there exists some e ′
S
∈ S such that e ′

T T≈S
e ′
S
. If the latter is true then we can conclude that

the behavior of CS

T
(eS ) linked with e ′

T
is related to the behavior of eS linked with e ′

S
. But finding

such a source component is challenging, unless the e ′
T
that we wish to link with is the result of

compiling e ′
S
using the same compilerÐwhich yields a proof of e ′

T T≈S
e ′
S
Ðor using a different

S-to-T compiler verified using the same cross-language relation
T≈S

. Even if it were possible to
easily find these examples, this still restricts linking to target components e ′

T
that are representable

in the source language S .
Hence, we can see that cross-language approaches provide a generalization of a separate compila-

tion result. In theory, one can link with any target code e ′
T
that can be shown to be related to some

source component, but in practice this will only be feasible if that source component had been com-
piled by the same compilerÐor a different compiler from the same source to the same target that was
verified using the same source-target cross-language relation! Unless one of the latter is true, mean-
ing there is a compiler that can produce a proof that e ′

T
is related to some source component, the

cross-language approach comes with a pretty significant amount of formalism that compiler users
must understand since without understanding the source-target relation, they can’t understand
how to ensure that any linking they do with some e ′

T
is deemed permissible by the theorem!

10Note that SepCompCert’s level A correctness assumes that the components being linked together have been compiled by

exactly the same passes, whereas level B correctness is more relaxed: it allows for some intra-language RTL optimizations

to be skipped when compiling some of the linked modules.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



The Next 700 Compiler Correctness Theorems 85:13

The particular compiler that Neis et al. [2015] proved correct was a two-pass compiler from an
ML-like language through an untyped intermediate language to an idealized assembly. As before,
we first present the instantiation and then go through each part in detail. Finally, we show how the
work done by the authors proves the instantiated CCC theorem. In this case, we are considering
either a single pass or the entire compiler; since they prove transitivity on both passes, from our
perspective these are similar (we discuss transitivity in much more depth later).

L {(eT ,φ) | φ = source component eS and a proof that eS is PILS-related to eT }

Ŝ unchanged source language S

ŜZS
unchanged source language linking

SZS

Ŝ⊏S
source language (whole program) refinement

S⊏S

↠(·) ↠(eT , (eS , _)) = eS

First, we can see that as with SepCompCert, the language Ŝ is the unadulterated source language
S . What differs is the definition of the linking set L. In this sense, Pilsner generalizes separate
compilation by allowing not just a target term eT that was compiled from a source term eS by the
Pilsner compiler, but rather any target that is PILS-related to some source term. In the Pilsner paper
(a detailed description is beyond the scope of this pearl), they set up a cross-language Parametric
Inter-Language Simulation (PILS) relation that allows them to formally prove source and target
terms related. They then prove, in particular, that their compiler produces PILS-related target terms,
so that this compiler will indeed be a correct separate compiler. But, the compiler is not limited to
separate compilation: they demonstrate that Pilsner code can be linked with the output of a second
compiler, Zwickel, that is verified using the same source-target PILS relation. They also show an
example where they have a hand-written assembly component shown PILS-related to a source term
(and thus a potential target for linking). However, all target code that can be linked must be related
to some source code. And indeed, part of the process of showing that a target component is related
to some source component can be seen as compiling, by hand, some source component. Essentially,
Pilsner generalizes across many different PILS verified compilers, allowing separate compilation of
modules using a heterogeneous set of compilers. There is a question as to the practicality of such a
scheme, as the reader may wonder how likely it would be to have multiple PILS-certified compilers
from the same source to the same target, with each one using precisely the same source-target PILS
relation. Assuming that this is unlikely, the simpler approach of SepCompCert may be preferable.
As before, we must show that, instantiated with the above, the CCC theorem holds based on

what Neis et al. [2015] have shown about their compilers.

∀eS ∈ S . ∀(eT , (e
′
S
, _)) ∈ L. eT TZT

CS

T
(eS ) T⊏S

e ′
S SZS

eS (1)

where (�T ,φ�) ∈ L (2)

∀eS . ∃p. (C
S

T
(eS ), (eS ,p)) ∈ L (3)

↠(�T ,φ�) = �S (4)

∀eS . �S SZS
eS S⊏S

eS (5)

∀(eT , (e
′
S
,p)) ∈ L. ∀eS . (∀cT . cT TZT

eT T⊏T
cT TZT

CS

T
(eS )) =⇒

(∀cS . cS SZS
e ′
S S⊏S

cS SZS
eS )

(6)

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



85:14 Daniel Patterson and Amal Ahmed

Horizontal Compositionality

eS e ′
S

eS Z e ′
S

eT e ′
T

eT Z e ′
T

T≈S
T≈S ⇒ T≈S

vs. Source-Independent Linking

eS eS Z e ′
T

eT e ′
T

eT Z e ′
T

T≈S ⇒ T≈?

Fig. 2. Compositional verified compilers should support Source-Independent Linking

In this case, the result follows for essentially the same reason as for SepCompCert (relying in this
case on Theorems 1 & 2 from ğ2.1 of [Neis et al. 2015]), as the only difference is in the form of L,
and with that restriction the (essentially) separate compilation result from Pilsner is sufficient.

Digression: Horizontal Compositionality vs. Source-Independent Linking

In the literature on compositional compiler correctness, a compiler is said to support horizontal
compositionality if it has support for linkingÐthat is, the two terms are conflated. We think this
conflation is detrimental and that it’s important to draw a distinction between the two.

What the phrase łhorizontal compositionalityž should meanÐappealing to how it’s traditionally
used in the PL communityÐis what the left side of Figure 2 depicts: that if we have a source
component eS that is related to a target component eT (i.e., eT T≈S

eS ), and similarly for e ′
S
and

e ′
T
, then the composition (linking) of eS and e ′

S
should be related to the composition of eT and e ′

T
.11

Note that a compiler that supports horizontal compositionality as depicted in Figure 2 compiles
a component eS to a component eT and then allows eT to be linked with a target component e ′

T

provided there exists some e ′
S
that corresponds to e ′

T
. (This is precisely the kind of linking that

Pilsner and SepCompCert support.)
We argue that horizontal compositionality constrains us to a highly impractical linking scenario,

and that compositionally verified compilers should aspire to do better. Contrast horizontal compo-
sitionality with what we call łsource-independent linkingž, depicted on the right in Figure 2. Here,
we allow linking with some target code e ′

T
without having to exhibit some source term e ′

S
that it is

related to. Since there is no natural operational notion of directly linking source and target code,
the formalism must provide some ładaptor blobž, which we portray here shaded. Note, in particular,
this means it may be possible to link with target code for which there is no equivalent source code,
as often happens in realistic settings where libraries are written in lower-level languages in order
to get access to features that don’t exist in the high-level languageÐsuch as threading, randomness,
etc. To be correct in this setting, the compiler verification effort must provide some interpretation
of linking the source term eS with the target of linking e ′

T
, and then show that this is equivalent to

11This is the kind of compositionality supported by logical relations, which we’ve discussed have long been considered useful

for proving correctness of translations. We believe the idea that horizontal compositionality gives us support for linking

became popular following Benton and Hur [2009], though they referred to the property simply as compositionality. The

adjective łhorizontalž was added later to distinguish it from a łverticalž compositionality property needed when verifying

multi-pass compilers [Perconti and Ahmed 2014; Ramananandro et al. 2015; Stewart et al. 2015].

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



The Next 700 Compiler Correctness Theorems 85:15

eT linked with e ′
T
. In the diagram, we wrote ? for the language that results from linking eS with e ′

T
,

but within CCC, this is exactly the role of the Ŝ language.
Horizontal compositionality is not the right property for the linking scenarios supported by

real-world compilers. Instead our compiler correctness results should strive to support source-
independent linking. Indeed, the CCC theorem provides a way of allowing this flexibility while
still making the resulting theorem accessible, and thus useful.

The next two compiler correctness results we discuss, the multi-language approach from Perconti
and Ahmed [2014] and Compositional CompCert from Stewart et al. [2015], both support source-
independent linking.

5.3 Linking with Code from an Arbitrary Language: Source-Target Multi-language

In 2007, Matthews and Findler [2007] came up with the idea of a syntactic multi-language as a way
of describing two languages interacting; in their case, a typed ML-like language and an untyped
Scheme-like language. When designing a multi-language, we merge the syntax of both languages
and then add special boundary terms to mediate between the two languages. For languages S and
T , the boundary ST(·) allows T terms to be embedded in S contexts (of appropriate type, if the
languages are typed), and the boundary TS(·) allows S terms to be embedded in T contexts (of
appropriate type). In the formulation by Matthews and Findler [2007], this was a notion entirely
about different source languages interacting, but Ahmed and Blume [2011] realized that if applied
to the source and target of a compiler, it gave a clear answer to the question posed by CCC: how to
reason about the interactions of the target library to be linked after compilation and the source
component before compilation. Once you have such a source-target multi-language, linking target
components and source components is a native feature. Ahmed and Blume built and verified a
simple compiler that did a continuation-passing-style transformation, proving as the central result
that the compiled code is equivalent, in the multi-language, to the source component wrapped in a
boundary: CS

T
(eS ) ≈ TS(eS ), which means that using these components in any way within the

multi-language always produces the same result.
In the context of CCC, we consider the later work by Perconti and Ahmed [2014], which used

the same multi-language technique to verify a type-preserving, multi-pass compiler from System
F through closure conversion (language C) and heap allocation (language A). Using the multi-
language, this compiler allows linking with arbitrary target code of translation type τ+ (where
(·)+ is a type-translation function), including code that is not expressible in the source, because
correctness is established component-wise in the multi-language. Indeed, in the example used
the source language is System F with existentials and recursive types but the target is a stateful
language, and we can link with arbitrary target code (provided it typechecks). In order to support
the two passes, they define a multi-language FCA that embeds all three languages used within the
compiler. Compiler correctness is then phrased as observational equivalence within the combined
FCA multi-language. In particular, the authors highlight that this allows linking with arbitrary
target code, even code that is not representable in the source.

As before, we show the instantiation of the CCC framework, describe each aspect, and then show
that the CCC theorem holds based on the work in Perconti and Ahmed [2014]. Below we simply
refer to the languages as S and T (with boundaries ST(·) and TS(·)), but S and T are actually
F and C for the first pass of Perconti and Ahmed [2014]’s compiler (with boundaries FC(·) and
CF (·)), and C and A for the second pass (with boundaries CA(·) and AC(·)).

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



85:16 Daniel Patterson and Amal Ahmed

L {(eT , _) | where eT is any target component of some translation type τ+}

Ŝ source-target multi-language ST with boundaries and source-target value translation

ŜZS
e ′

STZST
eS

Ŝ⊏S
runs Ŝ according to multi-language ST operational semantics, compares with running S

↠(·) ↠(eT , _) = ST(eT )

One thing that the reader should immediately note is that, unlike the previous examples, the
multi-language approach makes no (a priori) restriction on what we can link withÐthere will,
of course, be components that produce errors when linking, but that’s based on the definition
of the language and its type system, rather than a restriction of the compiler verification. This

is reflected in the composition of the linking set L. On the other hand, the lifted language Ŝ is
an ST multi-language, which includes all of the behavior of both the source language S and the
target language T . Note that we have (arbitrarily) chosen that cross-language linking within the
multi-language will take place with S components at the boundary. This means that cross-language
linking will pass eS through unchanged, whereas the lifting function ↠ will wrap the target term in
a boundary.

Given that instantiation, we present the theorem that we must show to follow from the work of
Perconti and Ahmed [2014]:

∀eS ∈ S . ∀(eT , _) ∈ L. eT TZT
CS

T
(eS ) T⊏ST

ST(eT ) STZST
eS (1)

where (�T ,φ�) ∈ L (2)

∀eS . (C
S

T
(eS ), _) ∈ L (3)

↠(�T , _) = �ST (4)

∀eS . �ST STZS
eS ST⊏S

eS (5)

∀(eT , _) ∈ L. ∀eS . (∀cT . cT TZT
eT T⊏T

cT TZT
CS

T
(eS )) =⇒

(∀cS . cS STZST
ST(eT ) ST⊏S

cS SZS
eS )

(6)

As before, the only illuminating side-conditions are (3), (5), and (6). For (3), note that this holds
trivially, since all target terms of translation type are in L. For (5), note that what this requires we
show is that ST(�T ) STZS

eS ST⊏S
eS , but this follows from the fact that the multi-language

runs a purely S term according to the S operational semantics.
For (6), we must show that for any component eS such that the semantics of CS

T
(eS ) are preserved

in eT , the semantics of eS are preserved in ST(eT ). Since the multi-language is a congruence, it
follows from the premise that the semantics of ST(CS

T
(eS )) are preserved in ST(eT ). Then, to

complete the proof, we rely on the proof of compiler correctness (ğ7.2 in [Perconti and Ahmed
2014]), which tells us that eS ≈ ST(CS

T
(eS )).

Finally, we must show that the central result (1) holds. Here, we run the T program on the
left and compare with running the program on the right wrapped in TS(·). By multi-language
boundary cancellation, the program on the right is equivalent to eT STZST

TS(eS ). By compiler

correctness (ğ7.2 in Perconti and Ahmed [2014]) we have eS ≈ ST(CS

T
(eS )), or equivalently by

boundary cancellation, that TS(eS ) ≈ CS

T
(eS ). From this equivalence of components, it follows

that they can be linked with eT to yield equivalent programs.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



The Next 700 Compiler Correctness Theorems 85:17

5.4 Linking with Languages with Common Values and Interaction Protocol:

Compositional CompCert

Since the first publication in 2006, CompCert has been extended by many groups in many ways,
but for nearly a decade papers would either explicitly acknowledge leaving non-whole-program
compilation to future work, or perhaps simply ignore the issue. Before SepCompCert, which we
discussed in ğ5.1, came another result, Compositional CompCert [Stewart et al. 2015], described
by the authors as łthe first verified separate compiler for Cž. But while Stewart et al. [2015] did
build a separate compiler in Compositional CompCert, they actually did quite a lot more. The
novel technique they followed involved defining an interaction protocol to support łlanguage
independent-linkingž, an interaction semantics that would support any language that obeyed the
protocol. While it was independent of the particular language, the protocol as specified did require
that the languages satisfy the CompCert memory model. The interaction semantics thus allowed
components to be written in any of the CompCert languages (all of which support the same memory
model), and probably any similar languages, which is a much more flexible notion of correctness
than that supported by SepCompCert, the subsequent work that eventually made it into the official
CompCert compiler.
What is interesting about Compositional CompCert is the similarity with Perconti and Ahmed

[2014]’s (syntactic) multi-language approach: Compositional CompCert essentially defined a se-
mantic multi-language with its notion of language-independent linking. The relation

T≈S
that

Compositional CompCert uses to establish the correctness of each pass is a contextual equivalence
over modules that they defined in the context of their interaction semantics. Like Perconti and
Ahmed [2014], Compositional CompCert also marked a break from the line of work that Pilsner
had extended, because it made no requirements that linked code be expressible in the source lan-
guage. In the end, Compositional CompCert was a significant change for CompCert, which is what
motivated the much simpler SepCompCert development that (nonetheless) produced the proof of
separate compilation. But separate compilation is not a universal solution, and understanding what
Compositional CompCert did and how it compares is useful for future work on verified compilation.
As before, we interrogate the formalism by way of instantiation using the CCC theorem:

L {(eT , _) | where eT is any target component }

Ŝ a syntax that embeds source and target, equipped with interaction semantics

ŜZS
adding another module to combined syntax

Ŝ⊏S
runs Ŝ according to interaction semantics, compares trace with running S

↠(·) ↠(eT , _) = eT

Note that in this setting, we have had to do more than in previous examples, because the Com-
positional CompCert formalization does not have a syntactic representation of multi-language
programs, instead defining them directly in terms of the Coq code in which they are formalized. In

this way, our Ŝ does not exist in the syntactic sense in the work presented by Stewart et al. [2015],

unless we take Ŝ to be Coq itself.
In this case, the CCC theorem holds for much the same reason as it holds for the multi-language

approach (particularly relevant for the proof is Theorem 2 from ğ5 of [Stewart et al. 2015]).

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



85:18 Daniel Patterson and Amal Ahmed

Vertical Compositionality

eS

eI

eT

I≈S

T≈I

⇒

eS

eT

T≈S

vs. Transitivity

eS

eI

eT

≈SIT

≈SIT

⇒

eS

eT

≈SIT

Fig. 3. Vertical Compositionality is Better than Transitivity

Digression: Vertical Compositionality vs. Transitivity

In the compositional compiler-correctness literature, a compiler with a pass from language S to I
and another pass from I to T is said to support vertical compositionality whenever it supports a
transitivity property: if eT and eI are related and eI and eS are related, then eT and eS are related.
As discussed in the literature, vertical compositionality or transitivity is critical for modular (one
pass at a time) verification of multi-pass compilers, so we can prove each pass correct and compose
the correctness theorems into an end-to-end compiler correctness theorem for the entire compiler.

We think it is detrimental to conflate vertical compositionality with transitivity. What the phrase
łvertical compositionalityž should mean is what the left side of Figure 3 depicts: that we should be
able to verify each pass of the compiler in isolation (using the relation

I≈S
relation for the first

pass and
T≈I

for the second pass), without taking into consideration what optimizations other
passes might perform or what intermediate languages we might find a few more levels higher or
lower in the compiler pipeline.

Contrast vertical compositionality on the left of the figure with how Perconti and Ahmed [2014]
achieve transitivity for their two-pass verified compiler, depicted on the right in Figure 3. They
merge all the languages in the compiler pipeline into a single multi-language, denoted SIT in the
figure, and then use the same SIT contextual equivalence to establish the correctness of each pass
of the compiler. Contextual equivalence is transitive, so they get transitivitiy for free. But since all
the languages in the compiler pipeline are taken into account when verifying each pass, this is far
less modular than vertical compositionality.
Compositional CompCert [Stewart et al. 2015] also fails the true vertical compositionality test,

though in their case it’s less obvious. Specifically, they use structured simulations to verify the
correctness of each pass. In order to define these structured simulations, they must take into
account all of the memory transformations that can possibly happen in any pass of the compiler.
Some compiler passes do memory extensions while others do memory injections. Their structured
simulations must be specified to impose a single rely-guarantee protocol between all the possible
languages in the compiler pipeline. This task is made easier for them, as compared to the multi-
language approach, because all of their compiler languages make use of the same CompCert memory
model, whereas the multi-language approach is able to deal with languages with different memory
models. Still, conceptually, both Compositional CompCert and the multi-language approach achieve
transitivity in a technical sense, by łpullingž all of their compiler languages into a single łmodelž

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



The Next 700 Compiler Correctness Theorems 85:19

(interaction semantics or multi-language semantics) and then using this single model to prove the
correctness of every single pass of the compiler. Thus, they achieve transitivity in a technical sense
and can therefore build multi-pass compilers, but neither support true vertical compositionality.
Finally, both approaches suffer from a similar weakness: if we extend either compiler with an

additional pass, we may have to reprove the correctness of all existing passes in the compiler.
Specifically, for the multi-language approach, if we add a pass to a new target languageU that is
more expressive than the multi-language SIT , then extending the multi-language with the new
language U might break equivalences that held in SIT . That could, in turn, invalidate correctness
of existing optimizations and transformations. Similarly, in the case of Compositional CompCert, if
we add a pass that performs a new memory transformation that requires a change to the structured
simulation, we may have to redo proofs of existing passes.
In comparison, Pilsner actually does support true vertical compositionality: they show that if

eT T≈I
eI and eI I≈S

eS , then eT T≈S
eS , though this requires significant effort to prove.

We argue that compiler correctness results should aim for vertical compositionality as depicted
on the left side of the figureÐthat is, they should try to make use of modular proof architectures
that allow every pass of the compiler to be verified without having to think about what languages
or transformations are happening in other parts of the compiler. Such compilers would be much
more robust in the face of future extensions.

5.5 Linking with Code that Respects Source-language Equivalences: Full Abstraction

A different question leads to a different design of compositional compilers: how do we ensure that
source-language abstractions are not violated after compilation to a low-level target language?
If we preserve source-language abstractions, we end up building compositional compilers that
ensure not only the preservation of behavior but also equivalences. Such so-called łfully abstractž
compilers compile contextually equivalent source components eS and e ′

S
to contextually equivalent

target components eT and e ′
T
[Ahmed and Blume 2008, 2011; Patrignani et al. 2015] (see Patrignani

et al. [2019] for a survey).
An example of this approach is the typed closure conversion pass from a functional language to

a target with exceptions shown by New et al. [2016]. Theirs is a type-preserving compiler, which
means that a source term eS of source type τ is compiled to a target term CS

T
(eS ) of translation type

τ+. New et al. show that the compiler is both correct and fully abstract. Their novel proof technique,
universal embedding, involves back-translation of target contexts into an untyped interpretation of
the source, made possible because the source has sums and recursive types and can thus encode
the universal type.

As with the other results, in order to show correctness of compilation of components, they need
to define some relation

T≈S
over components that the compiler will then be shown to satisfy. The

particular technique used by this paper is the multi-language technique, so the relation is similar
to that in Perconti and Ahmed [2014].
However, since they proved the compiler to be fully abstract, and in particular, exhibited a

back-translation function that could translate target terms of translation type (eT : τ+) into source
terms (eS : τ ), the instantiation of the CCC theorem is quite different from that by Perconti and
Ahmed [2014] that we showed in ğ5.3. This demonstrates a powerful information-abstracting
principle in the CCC theorem: it should not reveal more than is actually necessary for a user to
understand how the theorem can be used. A compiler that has been proved fully abstract requires
less trust than one that has not, as we can see in the following:

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



85:20 Daniel Patterson and Amal Ahmed

L {(eT , _) | where eT is any target component of some translation type τ+}

Ŝ unchanged source language S

ŜZS
unchanged source linking

SZS

Ŝ⊏S
unchanged source refinement

S⊏S

↠(·) ↠(eT , _) = back-translation of eT to S, written eT
↠

This has some good aspects from both families of approaches we have seenÐit allows linking
almost as much as the multi-language approach does (only restricting that the target component,

at the top level, has a translation type), and retains the simplicity of having Ŝ be S .
However, there is a significant restriction that may not be obvious from this summary, which

is that the proof of full abstraction relies upon the type translation for the compiler to rule out
linking with any behavior that is inexpressible in the source. That, intuitively, is how they are

able to define lifting to S and have Ŝ be S (unlike Perconti and Ahmed [2014] who can’t lift to S
since they explicitly wish to allow linking with behavior inexpressible in the source). Concretely,
to rule out such linking, [New et al. 2016] use a target language with a modal type system that
distinguishes code that can raise uncaught exceptions from code that must have caught all raised
exceptions. The output of the compiler has a type that prevents it from being linked with any code
that can raise uncaught exceptions.

As before, we must show that the CCC theorem, instantiated with the above, holds based on the
work of New et al. [2016]:

∀eS ∈ S . ∀(eT , _) ∈ L. eT TZT
CS

T
(eS ) T⊏S

eT
↠

SZS
eS (1)

where (�T , _) ∈ L (2)

∀eS . (C
S

T
(eS ), _) ∈ L (3)

↠(�T , _) = �S (4)

∀eS . �S SZS
eS S⊏S

eS (5)

∀(eT , _) ∈ L. ∀eS . (∀cT . cT TZT
eT T⊏T

cT TZT
CS

T
(eS )) =⇒

(∀cS . cS SZS ↠(eT , _) S⊏S
cS SZS

eS )
(6)

All side-conditions except for the last one hold trivially. The last holds because we have only
included in L terms that have translation type and thus can be back-translated. The condition
then follows from correctness of compilation and correctness of back-translation (Theorem 1.2 and
Corollary 5.5 in New et al. [2016]).

The central result follows by combining the back-translation correctness, that shows that eT
↠ ≈

ST(eT ), with correctness of compilation, that eS ≈ ST(CS

T
(eS )).

Beyond mere correctness, from the approach based on fully abstract compilation we can get truly
vertically compositional passes with independent proofs. Equivalence preservation, on its own,
does not imply compiler correctness, but a correct and fully abstract compiler like that by New
et al. [2016] is proved fully abstract by exhibiting a back-translation. A back-translation function
maps target components eT from the linking set L to source components eS without looking at the
proof φ. If two passes are proved compositionally correct, whatever the method, and they have

back-translations, we can define ↠ as that back-translation and the linking medium Ŝ as the source
language S of the respective pass. In that case, we can prove, in general, that the two passes compose

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



The Next 700 Compiler Correctness Theorems 85:21

to give a two-pass compiler that also satisfies our CCC theorem. In general, equivalence-preserving
compilersÐwhether they preserve contextual equivalence or other notions of equivalence such as
noninterference [Bowman and Ahmed 2015], which also requires back-translationÐalso have useful
security properties, so structuring our compilers or target languages to preserve equivalences has
other benefits. But we think that the fact compiler-passes with back-translations compose for free
is a very useful property, and not something that, to our knowledge, has been observed before. In
essence, it gives us vertical compositionality for free. The proof of that composition, which is done
in general, is thus agnostic to whatever proof methodology is used to establish the correctness of
the individual passes. The theorem statement is the following :

Theorem 5.1 (Passes With Backtranslations Compose).

(CCC(CS

I
(·)) where ↠ : I→S) ∧ (CCC(CI

T
(·)) where ↠ : T→I ) =⇒ CCC(CS

T
(·))

Proof. We define the compiler CS

T
(·) as the composition CI

T
◦ CS

I
and the composed lift function

↠ST
to be the composition of the two lift functions that exist due to the two passes satisfying

CCC. We know we can compose the two lift functions because of the restrictions of their types,
which map straight back to source terms and do not use φ terms. All of the conditions follow
straightforwardly from the conditions of the two passes, once we define things in this way. We
provide mechanized proofs of a generalized version of this theorem in our supplementary materials
[Patterson and Ahmed 2019]. □

5.6 Linking with Fully Specified Code: Cito Compiler

We referenced earlier what we term the łfully specified approachž to compositional correctness.
This strategy, typified by the Cito language from [Wang et al. 2014], but also similar to what’s used
in the Cogent language by O’Connor et al. [2016], relies on the module boundaries being given
full functional specifications. That is, when compiling a partial program eS , we already have a full
functional specification for every module we will link with. Once this is done, normal semantics
preservation, similar to that for whole programs, can be done for this partial program eS . By analogy,
if a function can only be understood as a black box that, given inputs, produces outputs, then it is
impossible to specify how it should be compiled without input: this is the essential compositional
correctness problem we’ve been addressing; but if the same function is given an input-output
specification, compiling it must simply preserve that specification. While this approach seems to
simplify the theorem itself, it complicates the use of the languages since programs must be shown
to satisfy functional correctness specifications in order to link, and indeed, we would argue is
solving a completely different problem, namely how to do compilation in the context of software
verification, rather than how to build verified compilers for unverified software. Given that in order
to link against the modules thus compiled the programmer has to prove that their target satisfies
the functional correctness specification, the approach only seems viable within the context of a
larger verification project, where this kind of activity is already expected.

6 DISCUSSION

6.1 Reflections on Trusting Trust

Trust is, in the final analysis, at the heart of verification. Minimizing the trusted computing base
has long been a goal in the security and verification community [Saltzer and Schroeder 1975], with
the intended goal of minimizing the amount of code that a user of the system would have to trust
to be correct, or perhaps to manually verify. But trust is about more than the code that carries out
proof verification, it also involves understanding theorems themselves. Just as a user has to trust or
manually verify that the unverified code in a verification framework does what they think, they

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



85:22 Daniel Patterson and Amal Ahmed

must trust or verify that theorems that make up the formalism of a compiler correctness result
actually correspond to the real behavior they expect of the compiler.
What the CCC framework does is help users to isolate the parts that must be trusted, in the

form of parameters to the framework, as those are the only parts that can attack the validity of the
result. Reviewing these parameters for the results in ğ5, we see that they all require that we trust
linking of S components and linking of T components in addition to trusting the formal semantics
of S and T as we did for whole-program correctness in ğ2. But for SepCompCert and for New et
al.’s fully abstract compiler, we do not have to trust or understand much more, while Pilsner, the
multi-language approach, and Compositional CompCert require that we understand considerably
more complex formalism, namely the source-target PILS relation, the multi-language semantics,
and interaction semantics, respectively.

The parameters to CCC are the only parts that can invalidate the compiler correctness theorem,
but render it invalid they certainly can! For example, consider a CCC theorem defined as such:

L {(eT , _) | any target term }

Ŝ unchanged target language T

ŜZS
compiles right side and links with left using

TZT

Ŝ⊏S
source-target refinement

T⊏S

↠(·) ↠(eT , _) = eT

This could be a perfectly valid CCC theorem, but it does so by taking the target language T to be Ŝ
and thus cross-language linking first involves compiling. A reader of this instantiation should reject
this as meaningless, because the definition of the compiler is now part of the parameters, and thus
to understand what the theorem says, the reader needs to understand (and trust) the compiler.
And if we require the reader to understand and trust the compiler in order to understand the

compiler correctness theorem, there is no point in having a theorem at all! Better to write łplease
read this compiler and check that it matches your expectationsž.

While this may seem absurd, in compiler correctness results, this (in more subtle ways) is a very
real risk, because if the formalism that a user needs to understand is of similar complexity to the
compiler itself, the theorem, however true, is useless! In this sense, there is a very real hard upper
limit to how complicated that compiler correctness formalism can be, as if it becomes any more
complicated, all hope is indeed lost.
Part of the value of the CCC approach is that it makes very explicit what are the parts that

must be understood and what are the details of the proofs that can be ignored. For users, this is
clearly beneficial, but is also benefits researchers, as it lets them know how close they are to the
danger-zone of łjust read the compilerž. Trust is a tricky business, but we trust that this can perhaps
help.

6.2 Nondeterminism and Lift Functions

Wementioned in ğ4.1 that defining the lift function can be subtle in the presence of nondeterminism.
Consider a compiler from a nondeterministic source to a more deterministic target. In particular,
consider a source language with an unspecified order of evaluation of addition operations and a
target that only permits addition of variables, eliminating the nondeterminism, which means that

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



The Next 700 Compiler Correctness Theorems 85:23

the compiler must choose an order of evaluation. For example, if our source component eS is:

print(1) + print(2)

then it could have been compiled to the following eT :

x1 = print(1)

x2 = print(2)

x1 + x2

Now, Condition (6) requires, essentially, that lifting eT will refine eS . To simplify our discussion, we

won’t consider what cS these are linking against, andwill consider Ŝ to be S . Then, for ↠(eT ,φ) S⊏S

eS to hold, every possible behavior of ↠(eT ,φ) must be a possible behavior of eS . We can easily
prove the latter in this case, by simply defining the lift function so it does the reverse of the compiler,
lifting eT to eS .
But now consider the situation where we had instead compiled the following source e ′

S
, to the

same target eT from above:

x = print(1)

x + print(2)

Now, if we still lift eT to eS , then we would not be able to prove the refinement required by Condition
(6), i.e., ↠(eT ,φ) S⊏S

e ′
S
, since one possible behavior of eS is to print 2 and then 1, but that is not

a behavior of e ′
S
.

To avoid such problems, we need to define the lift function so that it lifts to a source component
that is more deterministic than the target but where we haven’t added more nondeterminism in
than the compiler removed. So in this example, where the compiler is removing all nondeterminism,
we can lift to a fully deterministic source, and all the conditions will be satisfied. But it’s worth
exploring in more detail why these requirements exist.

First, we want to ensure that we lift to a source-like component that has at least as much behavior
as the target. This is a consequence of Condition (1): consider an empty eS , in which case Condition
(1) says that eT T⊏Ŝ ↠(eT ,φ), which requires that every behavior of eT is a possible behavior
of ↠(eT ,φ). If eT has more behaviors than ↠(eT ,φ), this is violated, so we can’t lift to a more

deterministic Ŝ component.
Second, from Condition (6), we have that if a target component eT refines a compiled source

component CS

T
(eS ), then the lifted version ↠(eT ,φ) must refine the source component eS . In the

maximal case, where the behavior of eT is equal to CS

T
(eS ), this means that the lift function can

only introduce behavior up to the point of the behavior of eS Ð as the refinement means that all
behavior in ↠(eT ,φ) must be present in eS . This, in a sense, gives us an upper bound on what the
lift function can do.

Combining these two observations, we have eT T⊏Ŝ ↠(eT ,φ) Ŝ⊏S
eS , which gives the range

of the possibilities for a lift function for a compiler from a nondeterministic source language to a
less nondeterministic (or completely deterministic) target language. If we instead had a compiler
from a more deterministic source language to a less deterministic target language, the refinements
would take place in the other direction, and everything would proceed analogously.

It’s not entirely clear that we will always be able to define a lifting to an Ŝ component that
fulfills these exact requirements. In particular, this requires that the desired lifting be syntactically

expressible in the source languageÐor actually, in Ŝ , not S . That is, we would need an Ŝ in which we
can express components that are less deterministic than the target code but not so nondeterministic
as to overshoot what the compiler did, which may be difficult, and of course the second part of the
restriction depends on the choices made in the compiler, which may indeed be subtle to understand.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



85:24 Daniel Patterson and Amal Ahmed

It is worth asking if the lift requirements that CCC imposes on compiler correctness results,
namely the requirement that every instantiation of CCC be able to provide a lift function that satisfies
these conditions is łtoo strongž. The answer depends on the kind of compiler correctness theorem
we are instantiating with. In the case of whole-program and separate-compilation correctness
results, if we carefully inspect what Condition (6) requires, then it’s clear that CCC doesn’t impose
any requirements stronger than what such results would already prove. This is because in the
case of whole-program results, the only element in the linking set is the empty component, and
thus Condition (6) follows from Condition (5). Meanwhile, in the case of separate compilers, the
requirement that components have been produced by the same compiler means the φ can be the
source component that was compiled, and thus the lift function, as it was for SepCompCert, simply
chooses the source component that is compiled.
When it comes to compositional compiler correctness results, Condition (6) does, of course,

impose a meaningful requirementÐin particular, when allowing linking with code of very different
provenance, getting access to a version of the code that can be linked and has behavior within this
range (in terms of determinism) is keyÐso the requirements of the lift function are not spurious,
though they may be not be easy to satisfy. So while one can view the lift requirements as a heavy
burden of CCC, as it forces the authors of correctness results to come upwith a lift function and prove
non-trivial properties about it, these properties are not irrelevant, at least in the most general cases
for compositional compilers. Nonetheless, we cannot predict whether future compositional compiler
correctness results can come up with clever ways of establishing correctness that might render the
lift requirements łtoo strongžÐthat is, we have no way of showing that these requirements are
necessary as well as sufficient.

6.3 Pedantics about Semantics Preservation

Throughout this pearl, we’ve said that by
T⊏S

we mean łsemantics preservationž, which we’ve
described earlier as łobservable behavior is preservedž. But depending on the languages in question,
what that means can differ. The simplest case is that both the source and target are deterministic
error-free languages. In that case, we expect that there is some set of observations that occur
from running programs in the source and target. This could include output printed to the screen,
allocations of memory, final results, etc. What exactly these observations are depends on the
particular approach to formalization, but should follow from the language, and usually includes
programs going wrong, termination, and possibly a final result. From these observations, we can
produce a trace of events that occur when the program runs. In the deterministic error-free case,
all events that occur in the source trace must appear in the target trace. In many results, the traces
should actually be equal, though this may depend on defining the observations to ensure the
property. For example, if the source language had large values that, through compilation, ended up
being allocated on the heap, the traces for the target should not include heap allocation events if
the traces are to be equal.

In the case that either the source or target language is non-deterministic, semantics preservation
means a somewhat different thing. If the source is non-deterministic, we usually require only that
every trace of the target program is one possible trace of the source. This is known as backwards
simulation or sometimes łbehavior refinementž, as we require than the target trace implies the
source trace. Forward simulation is the opposite, that a source trace implies a corresponding target
trace. In the case that the target is deterministic, forward simulation implies backwards simulation.
The verified compiler writer may also not want to preserve errors in the source language, which
is another reason why we may want the target behavior to be a subset of the source behavior. A
source program that goes wrong has no meaning, so there is little point in proving that the behavior
is preserved.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



The Next 700 Compiler Correctness Theorems 85:25

For most results, the end goal is proving that the target refines the source, i.e., a backwards
simulation. For instance, this is the case for [Stewart 2015] and [Neis et al. 2015], while [Perconti
and Ahmed 2014] actually prove equivalence since both their source and target are deterministic,
type-safe languages. However, it is interesting to note that even results that aim to prove backward
simulation might actually prefer to prove forward simulation (which is usually easier to prove)
and then show that forward simulation implies backward simulation. For instance, Pilsner uses a
mixed simulation that allows forward simulation at deterministic steps (and most of their steps are
deterministic) and backward simulation at non-deterministic steps, but they use this to then show
the usual notion that target refines source.

6.4 Multi-languages, Maligned but Still Kicking

While CCC captures what it means for a compositional compiler to be correct, it alone is not
sufficient for a programmer to actually understand what a program eT Z eS means. In particular,
without understanding the particular choices of representation that the compiler makes, the
programmer does not know how their code eS is translated to CS

T
(eS ). As a concrete example, we

could construct a compiler that translates true to false and vice-versa. What our theorem would
ensure (as would any whole-program correctness theorem) is that the order of branches was also
swapped. While the reader might, at first, think that this is a weakness, as we have permitted what
seems to be a łwrongž compiler, we note that this is simply an abstraction over data representation.
A compiler writer should be free to represent source abstractions in any manner that she chooses,
and the form of a generic compiler correctness theorem should not rule that out.

Indeed, we conjecture that given a compositionally correct compiler there exists a multi-language
that arises from a source-target value translationÐwhich specifies how source-typed (τ ) values are
converted to target-typed (τ+) values and vice versa (see Perconti and Ahmed [2014], Patterson
et al. [2017])Ðand source and target operational semantics, where the latter are preserved by the
embedding. The value translation, which the user must understand, is not a compiler, as it only
translates introduction forms, i.e., a single-argument source function f is translated to a target
function λx . TS(f ST(x))Ðessentially an eta-expansion plus language boundaries. The value
translation for this multi-language could then be used by the programmer to understand how
values flow between the two languages. This would allow them to reason about the meaning of the
program e ′

T TZS
eSÐdefined as ST(e ′

T
)
STZST

eSÐwhere within each language the operational
semantics of that language hold and the value translation guides crossing between languages.

Our reason for believing that such a multi-language should exist for every compiler comes from
the fact that the compiler is compositional. Such a multi-language requires that translating values
at any point produces similar results, which for a non-compositional compiler is not guaranteed.
It’s a research question whether this assertion could be proved, and whether there are additional
restrictions on the languages that would be necessary to do so, but we think that it’s an interesting
avenue of future work.
Note that while we think that such multi-languages should be used for programmer under-

standing, we do not want to require the CCC theorem to reference them. In particular, this should
mean that we never end up with multi-languages with more than two languages. A two-pass,
compositionally correct compiler from S to I and I to T should result in a multi-language from
the source to the target, where the value translation can be built by composing the two value
translations.

7 THEWAY FORWARD

Compiler verification is not, of course, a new problem. But whole program semantics preservation
like in Morris [1973] leaves a meaningful distance between the theorem that is proved and the way

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



85:26 Daniel Patterson and Amal Ahmed

that compilers are actually used today. Unfortunately, a theorem that does not match reality is not
a happy theorem. As the research of Kang et al. [2016] discovered when developing SepCompCert,
even verified compilers, proven for whole programs, may contain bugs lurking inside that only
appear when partial programs are compiled and linked. And that bug was found in the relatively
modest extension to separate compilation; who knows what kind of miscompilations might rear up
in the presence of linking with the output of other compilers, or hand-written assembly.

Of course, this pearl is in part a testament to the amount of work that has gone into and continues
to go into addressing this problem, and yet the sheer variety of solutions that have been proposed
hint that perhaps we haven’t found the perfect approach yet. But we hope that in accommodating
the divergent approaches taken in prior work, we haven’t obscured too much our thoughts on the
way forward. The reader may wonder, given this experience, łWhat formalism should I use for
my next verification effort?ž Some approaches we have shown, like SepCompCert, aim at simple
separate compilation, but they do that effectively, and indeed their formalism is now a part of the
CompCert compiler as of version 2.712. Others, like the multi-language approach by Perconti and
Ahmed [2014], allow flexible linking with arbitrary target code, but require extensive formalism
and remain, at this point, theoretical contributions.

The CCC framework exists not only as a way of understanding these disparate approaches, but
to aid in the process of reviewing new results. We’re happy that more and more, new results come
with mechanized proofs, which means that what is critical to review are the theorem statements
themselves. And understanding the theorems: their limitations, their expressiveness, and the way
they relate to others, is exactly the purpose of our CCC contribution.

We set out with three criteria: to accommodate realistic linking, to account for existing research,
and to get a theorem that was not too complex. The first is always hard to assess, but CCC balances
simplicity and an ability to account for the differences in various prior approaches, and the variety
of these approaches gives us hope that future efforts may fit in as well.

We’ve also demonstrated that for compilers with back-translations, normally true of equivalence-
preserving compilers, the important and often difficult process of proving vertical compositionality
can be proven abstractly. This is obviously appealing, as it means that in order to construct verified
multi-pass compilers, not only is it trivial to prove that the passes compose, but the proofs of each
pass need not even rely upon the same formalism, as the proof of the vertical compositionality
lemma relies solely on the CCC theorem. This is in contrast to any of the other approaches described
in this pearl, and truly something that we believe researchers should strive for.

We believe that rather than focusing on trying to invent a single best technique for verification,
future compositional efforts should aim to support passes that can be composed as flexibly as
possible, to hopefully support future extensions without requiring redundant re-verification. They
should also support linking with code that did not originate in the same source language, since often,
excluding separate compilation, the reason why we are linking is to gain access to some feature
that did not or could not originate in the source language. In short, we want verified compilers that
support both true Vertical Compositionality and Source-Independent Linking!
Though we’ve suggested that fully abstract compilers may be one possible way to get good

vertical compositionality, they come with a weakness, beyond being difficult to prove: they generally
only permit linking with code that extensionally behaves like some code expressible in the source
language. Technically, a fully abstract compiler can never allow linking with any code that can
disturb equivalences from the source language. This rules out common cases of linking with
libraries written in lower-level languages to gain access to features that do not exist in a simple
high-level language, for example, adding threading primitives to a language without them ([Ahmed

12See http://compcert.inria.fr/release/Changelog

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



The Next 700 Compiler Correctness Theorems 85:27

2015; Mates et al. 2019]). There is some work arguing that rather than a flaw of the fully abstract
compilation approach, this is instead a problem of incomplete source-language specifications that
fail to account for interoperability with features inexpressible in that language [Patterson and
Ahmed 2017]. The idea is that when linking, programmers should be able to annotate their programs
to reflect the kind of linking behavior that they expect, even linking with features unavailable
in the source, and then fully abstract compilers would ensure linking respects those annotations.
Whether that idea or others work out, there is a lot of exciting work to be done in this area to get
both vertical compositionality and source-independent linking.
The key challenge with compiler verification, is not whether the proof is true, but rather, does

the compiler in the proof correspond to the compiler in reality? Unquestionably, the work on
whole-program compiler correctness over the past several decades has been incredibly important.
But as we move forward, we must ask more from our theorems, and we should present them in the
simplest way possible so that users of our compilers can be sure that the way that they are using
the compiler corresponds to what was indeed verified. Perhaps someday, there will be a single
approach that will eliminate the need for the type of unifying framework that we have described in
this pearl. But until then, we hope that CCC will help to serve as a navigational aid for the landscape
of compiler verification efforts, to both illuminate for readers and reviewers, and set out guidelines
for researchers, and make all of this work a little easier to understand, and thus benefit from.

A CCCWITH MANY MODULES

Our definition can be generalized to handle an arbitrary number of target components that are
linked with the compiled source component. This changes both the primary definition and the
last side condition, as follows. This is the definition we used when proving the corollaries in Coq,
provided in our supplementary materials [Patterson and Ahmed 2019].

Theorem A.1 (CCC: Compositional Compiler Correctness).

∃ ↠. ∀eS ∈ S . ∀(eT ,φ) ∈ L. eT TZT
CS

T
(eS ) T⊏Ŝ ↠(eT ,φ) ŜZS

eS (1)

Notation: We write e as shorthand for e1, . . . , en , and e1, . . . , en L1ZL2
e ′1, . . . , e

′
m means inter-

leaving listed components in some fixed way, where the interleaving is fixed for each instantiation of

the theorem.

where (�T ,φ�) ∈ L (2)

∀eS . ∃φ. (C
S

T
(eS ),φ) ∈ L (3)

↠(�T ,φ�) = �
Ŝ

(4)

∀eS . �Ŝ ŜZS
eS Ŝ⊏S

eS (5)

∀(eT ,φ) ∈ L. ∀eS . (∀cT . cT TZT
eT T⊏T

cT TZT
CS

T
(eS )) =⇒

(∀cS . cS ŜZS ↠(eT ,φ) Ŝ⊏S
cS SZS

eS )
(6)

ACKNOWLEDGMENTS

We thank the ICFP’19 reviewers for their valuable feedback and reviewers from POPL’18 for helpful
feedback on an earlier version of this work. We also thank Lennart Beringer for an enlightening
conversation at PLDI’17 that helped us better understand Compositional CompCert. This material
is based on research supported by the National Science Foundation under grants CCF-1816837,
CCF-1618732, CCF-1453796, and CCF-1422133. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



85:28 Daniel Patterson and Amal Ahmed

REFERENCES

Amal Ahmed. 2006. Step-Indexed Syntactic Logical Relations for Recursive and Quantified Types. In European Symposium

on Programming (ESOP). 69ś83.

Amal Ahmed. 2015. Verified Compilers for a Multi-Language World. In 1st Summit on Advances in Programming Lan-

guages (SNAPL 2015) (Leibniz International Proceedings in Informatics (LIPIcs)), Thomas Ball, Rastislav Bodik, Shriram

Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett (Eds.), Vol. 32. 15ś31.

Amal Ahmed and Matthias Blume. 2008. Typed Closure Conversion Preserves Observational Equivalence. In International

Conference on Functional Programming (ICFP), Victoria, British Columbia, Canada. 157ś168.

Amal Ahmed and Matthias Blume. 2011. An Equivalence-Preserving CPS Translation via Multi-Language Semantics. In

International Conference on Functional Programming (ICFP), Tokyo, Japan. 431ś444.

Amal Ahmed, Derek Dreyer, andAndreas Rossberg. 2009. State-Dependent Representation Independence. InACM Symposium

on Principles of Programming Languages (POPL), Savannah, Georgia.

Nick Benton and Chung-Kil Hur. 2009. Biorthogonality, Step-Indexing and Compiler Correctness. In International Conference

on Functional Programming (ICFP), Edinburgh, Scotland.

Lennart Beringer, Gordon Stewart, Robert Dockins, and Andrew W. Appel. 2014. Verified Compilation for Shared-Memory

C. In European Symposium on Programming (ESOP).

William J. Bowman and Amal Ahmed. 2015. Noninterference for Free. In International Conference on Functional Programming

(ICFP), Vancouver, British Columbia, Canada.

Adam Chlipala. 2007. A Certified Type-Preserving Compiler from Lambda Calculus to Assembly Language. In ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI), San Diego, California.

Matthias Felleisen. 1990. On the Expressive Power of Programming Languages. In Science of Computer Programming.

Springer-Verlag, 134ś151.

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong

Zhang, and Yu Guo. 2015. Deep Specifications and Certified Abstraction Layers. In ACM Symposium on Principles of

Programming Languages (POPL), Mumbai, India. 595ś608.

Chung-Kil Hur and Derek Dreyer. 2011. A Kripke logical relation between ML and assembly. In ACM Symposium on

Principles of Programming Languages (POPL), Austin, Texas.

Hanru Jiang, Hongjin Liang, Siyang Xiao, Junpeng Zha, and Xinyu Feng. 2019. Towards certified separate compilation

for concurrent programs. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and

Implementation. ACM, 111ś125.

Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, and Viktor Vafeiadis. 2016. Lightweight Verification of

Separate Compilation. In ACM Symposium on Principles of Programming Languages (POPL), St. Petersburg, Florida. ACM,

178ś190.

Xavier Leroy. 2006. Formal certification of a compiler back-end or: programming a compiler with a proof assistant. In ACM

Symposium on Principles of Programming Languages (POPL), Charleston, South Carolina.

Xavier Leroy. 2009. A formally verified compiler back-end. Journal of Automated Reasoning 43, 4 (2009), 363ś446.

Phillip Mates, Jamie Perconti, and Amal Ahmed. 2019. Under Control: Compositionally Correct Closure Conversion with

Mutable State. In ACM Conference on Principles and Practice of Declarative Programming (PPDP).

Jacob Matthews and Robert Bruce Findler. 2007. Operational Semantics for Multi-Language Programs. In ACM Symposium

on Principles of Programming Languages (POPL), Nice, France. 3ś10.

JohnMcCarthy. 1959. A Basis for a Mathematical Theory of Computation. Studies in Logic and the Foundations of Mathematics,

33ś70.

John McCarthy and James Painter. 1967. Correctness of a compiler for arithmetic expressions. American Mathematical

Society, 33ś41.

Yasuhiko Minamide, Greg Morrisett, and Robert Harper. 1996. Typed Closure Conversion. In ACM Symposium on Principles

of Programming Languages (POPL), St. Petersburg Beach, Florida. 271ś283.

F Lockwood Morris. 1973. Advice on structuring compilers and proving them correct. In Proceedings of the 1st annual ACM

SIGACT-SIGPLAN symposium on Principles of programming languages. ACM, 144ś152.

Georg Neis, Chung-Kil Hur, Jan-Oliver Kaiser, Craig McLaughlin, Derek Dreyer, and Viktor Vafeiadis. 2015. Pilsner: A

Compositionally Verified Compiler for a Higher-Order Imperative Language. In International Conference on Functional

Programming (ICFP), Vancouver, British Columbia, Canada.

Max S. New, William J. Bowman, and Amal Ahmed. 2016. Fully Abstract Compilation via Universal Embedding. In

International Conference on Functional Programming (ICFP), Nara, Japan.

Liam O’Connor, Zilin Chen, Christine Rizkallah, Sidney Amani, Japheth Lim, Toby Murray, Yutaka Nagashima, Thomas

Sewell, and Gerwin Klein. 2016. Refinement through restraint: Bringing down the cost of verification. In ACM SIGPLAN

Notices, Vol. 51. ACM, 89ś102.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.



The Next 700 Compiler Correctness Theorems 85:29

Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs, Dave Clarke, and Frank Piessens. 2015. Secure Compilation to

Protected Module Architectures. ACM Transactions on Programming Languages and Systems 37, 2, Article 6 (April 2015),

50 pages.

Marco Patrignani, Amal Ahmed, and Dave Clarke. 2019. Formal Approaches to Secure Compilation: A Survey of Fully

Abstract Compilation and Related Work. Comput. Surveys 51, 6, Article 125 (Feb. 2019), 36 pages.

Daniel Patterson and Amal Ahmed. 2017. Linking Types for Multi-Language Software: Have Your Cake and Eat It Too. In 2nd

Summit on Advances in Programming Languages (SNAPL 2017) (Leibniz International Proceedings in Informatics (LIPIcs)),

Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi (Eds.), Vol. 71. Schloss DagstuhlśLeibniz-Zentrum fuer

Informatik, Dagstuhl, Germany, 12:1ś12:15. https://doi.org/10.4230/LIPIcs.SNAPL.2017.12

Daniel Patterson and Amal Ahmed. 2019. CCC: Supplementary Materials. https://dbp.io/pubs/2019/ccc/

Daniel Patterson, Jamie Perconti, Christos Dimoulas, and Amal Ahmed. 2017. FunTAL: Reasonably Mixing a Functional

Language with Assembly. In ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI),

Barcelona, Spain.

James T. Perconti and Amal Ahmed. 2014. Verifying an Open Compiler Using Multi-Language Semantics. In European

Symposium on Programming (ESOP).

Tahina Ramananandro, Zhong Shao, Shu-Chun Weng, Jérémie Koenig, and Yuchen Fu. 2015. A Compositional Semantics

for Verified Separate Compilation and Linking. In Proceedings of the 2015 Conference on Certified Programs and Proofs

(CPP ’15). ACM, New York, NY, USA, 3ś14. https://doi.org/10.1145/2676724.2693167

Jerome H. Saltzer and Michael D. Schroeder. 1975. The Protection of Information in Computer Systems. Proc. IEEE 63, 9

(September 1975), 1278ś1308. http://web.mit.edu/Saltzer/www/publications/protection/index.html

Jaroslav Ŝevčik, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2011. Relaxed-memory

concurrency and verified compilation. ACM SIGPLAN Notices 46, 1 (2011), 43ś54.

Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W. Appel. 2015. Compositional CompCert. In ACM

Symposium on Principles of Programming Languages (POPL), Mumbai, India.

James Gordon Stewart. 2015. Verified Separate Compilation for C. Ph.D. Dissertation. Princeton University.

Peng Wang, Santiago Cuellar, and Adam Chlipala. 2014. Compiler Verification Meets Cross-Language Linking via Data

Abstraction. In ACM Symposium on Object Oriented Programming: Systems, Languages, and Applications (OOPSLA).

Yuting Wang, Pierre Wilke, and Zhong Shao. 2019. An abstract stack based approach to verified compositional compilation

to machine code. Proceedings of the ACM on Programming Languages 3, POPL (2019), 62.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Understanding Bugs in C Compilers. In ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI), San Jose, California.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 85. Publication date: August 2019.

https://doi.org/10.4230/LIPIcs.SNAPL.2017.12
https://dbp.io/pubs/2019/ccc/
https://doi.org/10.1145/2676724.2693167
http://web.mit.edu/Saltzer/www/publications/protection/index.html

	Abstract
	1 Who Verifies The Verifiers?
	2 Advice on Proving Compilers Correct
	3 Compiler Correctness is a Spectrum
	4 Advice on Compositional Compiler Correctness
	4.1 The CCC Theorem, Formally
	4.2 Corollaries of The CCC Theorem

	5 Results from Across The Spectrum
	5.1 Linking with Code Generated by Same Compiler: SepCompCert
	5.2 Linking with Code Representable in the Source Language: Pilsner
	5.3 Linking with Code from an Arbitrary Language: Source-Target Multi-language
	5.4 Linking with Languages with Common Values and Interaction Protocol: Compositional CompCert
	5.5 Linking with Code that Respects Source-language Equivalences: Full Abstraction
	5.6 Linking with Fully Specified Code: Cito Compiler

	6 Discussion
	6.1 Reflections on Trusting Trust
	6.2 Nondeterminism and Lift Functions
	6.3 Pedantics about Semantics Preservation
	6.4 Multi-languages, Maligned but Still Kicking

	7 The Way Forward
	Acknowledgments
	A CCC with many modules
	References

