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Rust represents a major advancement in production programming languages because of its success in bridging
the gap between high-level application programming and low-level systems programming. At the heart of its
design lies a novel approach to ownership that remains highly programmable.

In this talk, we will describe our ongoing work on designing a formal semantics for Rust that captures
ownership and borrowing without the details of lifetime analysis. This semantics models a high-level un-
derstanding of ownership and as a result is close to source-level Rust (but with full type annotations) which
differs from the recent RustBelt effort that essentially models MIR, a CPS-style IR used in the Rust compiler.
Further, while RustBelt aims to verify the safety of unsafe code in Rust’s standard library, we model standard
library APIs as primitives, which is sufficient to reason about their behavior. This yields a simpler model of
Rust and its type system that we think researchers will find easier to use as a starting point for investigating
Rust extensions. Unlike RustBelt, we aim to prove type soundness using progress and preservation instead
of a Kripke logical relation. Finally, our semantics is a family of languages of increasing expressive power,
where subsequent levels have features that are impossible to define in previous levels. Following Felleisen,
expressive power is defined in terms of observational equivalence. Separating the language into different
levels of expressive power should provide a framework for future work on Rust verification and compiler
optimization.

1 INTRODUCTION
Programming languages have long been divided between “systems” languages, which enable low-
level reasoning that has proven critical in writing systems software, and “high-level” languages,
which empower programmers with high-level abstractions to write software more quickly and
more safely. For many language researchers then, a natural goal has been to try to enable both
low-level reasoning and high-level abstractions in one language. To date, the Rust programming
language has been the most successful endeavour toward such a goal.
Nevertheless, Rust has also developed something of a reputation for its complexity amongst

programmers. It would seem almost every new Rust programmer has their own tale of fighting
the borrow checker with its own mess of unfamiliar type errors and associated stress. A natural
question to wonder then is if this reality is inevitable. We argue it is not! The challenge of learning
Rust is a familiar one—namely, learning new semantics is hard. While analogies by syntax make
some aspects of Rust more comfortable to imperative programmers, one cannot escape having to
understand the novel semantics of ownership in Rust, and for new programmers, it is tempting to
get caught up in the details of lifetime inference and analysis. While these details are important for
building an efficient analysis, we feel they are inappropriate for building a high-level mental model
of the meaning of ownership, and hope that intuitions gleaned from our semantics can help. Of
course, we don’t anticipate that beginner programmers will work through the semantics directly.
Instead, we believe that semanticists (in this case, ourselves) have a secondary role as teachers—to
distill semantic intuitions into simple, clear explanations.

While there are some existing formalizations of Rust, we believe that none of them are sufficient
for our goals of (1) understanding ownership as a seasoned Rust programmer does and (2) rea-
soning about how abstractions that rely on unsafe code—such as those provided by the standard
library—affect the language’s expressivity. The first major effort came in the form of Patina [16], a
formalization of an early version of Rust with partial proofs of progress and preservation. More
recently, the most well-known and complete effort in formalizing Rust is RustBelt [11] whose λRust
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2 Aaron Weiss, Daniel Patterson, and Amal Ahmed

has already proven useful in verifying that major pieces of unsafe code in the standard library do
not violate Rust’s safety guarantees. Nevertheless, the low-level nature of λRust as a language in
continuation-passing style makes it harder to use for source-level reasoning. Also, RustBelt’s goal
of verifying the unsafe code in Rust’s standard library means that λRust has a much more complex
type system and lifetime logic than is necessary for understanding ownership and borrowing.

2 FORMALIZING RUST
In our talk, we will describe work in progress on developing Oxide, a formal semantics that
aims to capture the essence of Rust with inspiration from linear capabilities [8] and fractional
permissions [3]. To understand the core principles of how we model ownership and borrowing
in our semantics, it is helpful to look at a simple example in Rust with its corresponding form in
Oxide. This example declares a binding, and then immutably borrows it.

let x = 5;
let y = &x;

In Oxide, our code remains largely the same, but we make stack allocation explicit via the alloc
operator, and insert the usage of drop that Rust would ordinarily infer. We also include annotations
naming the regions that are being created (when we alloc or borrow) and destroyed (when we
drop). To aid in comprehension, we also include comments describing the state of an important
static context as it changes during type checking.

1 // P = {}
2 let imm x = alloc 'x 5;
3 // P = { 'x 7→ (u32, 1, {}) }
4 let imm y = borrow imm 'y x;
5 // P = { 'x 7→ (u32, 1/2, {}), 'y 7→ (u32, 1/2, { ϵ 7→ 'x }) }
6 drop 'y;
7 // P = { 'x 7→ (u32, 1, {}) }
8 drop 'x;
9 // P = {}

In particular, these comments describe the state of our region context (denoted P ) after type
checking each expression. This context contains a mapping from region names 'r to a triple of
the region’s type, its fractional capability, and some additional metadata. We can see on line 3
that when allocating a new region 'x for a numeric constant, we associate it with its type u32 (an
unsigned 32-bit integer), a whole capability (denoted 1), and no additional metadata. Then, when
we borrow immutably from x on line 4, we create a new region 'y that takes half of the capability
and records that it is aliased from the region 'x. This metadata about aliasing is then used on line
6 to return the half-capability to 'x when we drop 'y. This sort of automatic management is a
departure from typical presentations of linear capabilities—where they are instead first-class values
which are threaded manually through the program—but more closely resembles the programming
style of Rust. Finally, note that dropping 'x on line 8 corresponds to different operational behavior
than dropping 'y on line 6. Since we have a full capability for 'x on line 8 and since there is no
metadata indicating that we must return the capability to some other region, operationally this
situation corresponds to freeing the data on the stack.

It is also important to note the departures from Rust in the wild. Specifically, to have a capability
guard the use of each value, it must be associated with a region (since capabilities are always tied
to regions). Thus, in Oxide, all values are used under references. One view of this model is that the
mandatory reference makes explicit the notion that the value is placed somewhere on the stack.
Further, this decision enables us to simplify our model by treating moves as mutable borrows since
both require full ownership represented by a whole capability.
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Rust Distilled: An Expressive Tower of Languages 3

In the rest of this section, we discuss our plans for formalizing Oxide as a tower of languages
and then give more detail about our current model.

2.1 A Tower of Languages
Though we introduced it as a single language, Oxide is actually a family of languages that capture
increasing levels of expressive power [7]. The language we’ve already seen above represents “safe
Rust” without any features from the standard library—we call this Oxide0. Subsequent language
levels Oxiden+1 are achieved by extending each language Oxiden with abstractions (functionality)
implemented using unsafe code. We move up a language level, saying that Oxiden+1 is more
expressive than Oxiden , when there exist observationally equivalent programs in Oxiden , that are
not observationally equivalent in Oxiden+1.1 We say Oxiden+1 is "more expressive" than Oxiden
since Oxiden+1 has contexts with greater power that allows them to tell apart programs that cannot
be distinguished by contexts in Oxiden .

This model of Rust as a family of languages at different levels of expressive power gives us a way
of precisely talking about what code refactoring, compiler optimization, and program reasoning
is justified given our codebase and assumptions about the language level of code we link with.
In particular, we can say for real Rust code—which might contain some unsafe blocks—precisely
what unsafe abstractions have been considered, giving us a way to reason about observational
equivalence of Rust programs.

Allocation on the Heap. In Oxide1, we extend Oxide0 with Vec<T>which increases the expressivity
of our language by giving us access to the heap. Readers familiar with Rust might note that Box<T>
is typically thought of as the “heap-allocated type”, but we chose Vec<T> because it is more
general (a Box is a Vec of length 1). Further, in principle, Vec alone is sufficient to write interfaces
observationally equivalent to data structures from std::collections like HashMap, BTreeMap, and
BinaryHeap—assuming, as is typical, that performance is not included in our notion of observation.

SharedMemory with Rc. For Oxide2, we include Rc<T>which provides reference-counted pointers.
Like immutable references, these pointers can be used to share memory between different parts of
the program, but unlike immutable references, the information is tracked dynamically. This enables
programs to recover mutable references at runtime when they know that there are no additional
aliases. It is this ability to recover mutable references that raises the language’s expressive power.

RefCells for Interior Mutability. In Oxide3, we include RefCell<T> which provides a way for
shared data to be mutated. This capability is known in the Rust community as interior mutability
because it is often used to hide manipulations of internal state to ultimately present an immutable
interface. Like with Rc, RefCell works by deferring the necessary safety checks around mutation
to runtime. Though not restricted to the heap, RefCell is analogous to ref in the ML tradition.

Growing Further. Our current goal is to formalize Oxide0 through Oxide3. In the future, we could
extend our family of languages further, adding the ability to spawn threads (Oxide4), communicate
between them (Oxide5), and so on. Like the early levels, these extensions add further complexity
and increase language expressivity.

2.2 A Further Look at Oxide0
With a high-level understanding of Oxide in place, we can now take a closer look at the core
language, Oxide0. It includes allocation on the stack (denoted allocρ e), copying (copyρ e) and

1Observational equivalence for each level, Oxiden , is defined as the standard notion of contextual equivalence for that
language.
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borrowing mutably (borrowρ mut x) and immutably (borrowρ imm x), all of which create a fresh
region bound to ρ. Note that in our formal syntax, we write ρ for 'r seen in the earlier example and
use µ to collectively refer to mutability quantifiers mut and imm. Oxide0 also features let bindings,
assignment, branching, and pattern matching. However, pattern matching is restricted to allow only
simple patterns—i.e. those without nesting and ref patterns. Oxide0 also includes structs, tuples,
enumerations, and fixed-sized arrays with borrowing inside each data structure (borrowρ µ x .π ).
Here, π denotes the path through the data structure, e.g. borrowing the first field of a tuple x is
written borrowρ µ x .0. Finally, Oxide0 requires all drops to be explicit (denoted drop ρ). Hence,
with different strategies for placing these drop expressions when we compile—in essence, elaborate—
from Rust to Oxide, we can model Rust both with and without the upcoming non-lexical lifetimes
feature.

Type system. We make use of a type-and-effect system where effects keep track of changes to the
region context (written P ) caused by the given expression. This takes the shape of a judgment of the
form Σ; ∆; P ; Γ ⊢ e : τ ⇒ ε , read “in the global context Σ (which contains structure definitions),
type variable context ∆, region context P , and variable context Γ, e has type τ with effect ε .” Our
available effects include creating new regions (newrgn (τ , f ,M) as ρ where τ is the type of the value
stored in the new region ρ, f denotes the fractional capability for the region, and M denotes the
metadata seen in the example), borrowing from one region into a new region (borrow µ ρ1 as ρ2),
deleting a region (delrgn ρ), and updating (sub)regions during assignment (update ρ1.x to ρ2).

In order to prove type soundness using progress and preservation, we rely on the usual trick of
using an instrumented semantics. In our model, the instrumented semantics maintains information
about regions in order to track aliasing/borrowing relationships in memory during runtime (instead
of maintaining a more traditional flat memory structure that only maps locations to values).
Intuitively, the way to think about this is that, upon allocation (or copy), we create a new region
that essentially corresponds to what would normally be a physical location, but when we borrow,
we create fresh regions akin to ghost locations that exist for the purpose of keeping track of the
aliasing that results from borrowing. Nonetheless, both the physical and the ghost locations are
modeled as regions 'r.

Concretely, our operational semantics is a relation on machine configurations (σ , R, e) where σ
is a store that maps variables to regions, R is a region store that maps regions to the values stored
there—similar to the static environment P discussed earlier but storing values instead of types—and
e is the expression being evaluated. The instrumented semantics contains enough information to
enable a proof via progress and preservation (though the proof is still in progress). In the future, we
will provide an erasure procedure that, in essence, removes information about ghost locations from
our machine configurations, and prove an operational correspondence between the instrumented
semantics and the post-erasure semantics.

Current Status. At the time of this writing, we have specified Oxide0 and Oxide1 and are working
on the progress and preservation proofs for Oxide0. We have a prototype type checker implemented
in Scala for experimentation, and the beginnings of a Coq formalization. We plan to expand the
Scala prototype further to include a compiler that elaborates Rust programs into Oxide, as well as
an interpreter for Oxide. This will allow us to test our semantics against Rust for accuracy (along
the lines of Guha et al. [10]’s testing of their core calculus for JavaScript).

3 A RUSTY FUTURE
With a precise framework for reasoning about source-level Rust programs, we hope that we, as
a community, can build great things around Rust! We already have a number of ideas ourselves,
many of which we are only just beginning to explore.
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Rust Distilled: An Expressive Tower of Languages 5

Language Extensions. With semantics in hand, the eager programming language researcher can
jump at the opportunity to build nice, well-behaved extensions to Rust. This can be useful in trying
to evolve the language through its RFC process [4] where informal formalisms have already begun to
crop up [17]. Meanwhile, Oxide can also form the basis of domain-specific extensions. For example,
we are designing extensions for secure multiparty computation [6, 19] in the style of Obliv-C [20].
Further, extensions can be built with the particular focus of enabling Rust programmers to write
more reliable and correct software. This can include anything from verification-oriented language
features as in Liquid Haskell [18] to tools for symbolic execution [12] and beyond.

Safe Interoperability. The Rust community has already begun to recognize the importance of
building higher-level interfaces for interoperability with other programming languages [5, 9]. We
hope to use Oxide to expand what is possible for these interoperability frameworks. In particular,
we want to build on prior work on multi-language compilers [2, 15] and linking types [14] to
support provably safe interoperation between languages.

Unsafe Code Guidelines. Finally, a pressing issue in the Rust community remains the open question
of what unsafe code is safe to write [1]. With Oxide, we believe we are laying a foundation for
answering such a question [13]. Going forward, we hope to use the intuitions from our work to
contribute to the effort to develop unsafe code guidelines.
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