
Phantom Contracts for Better Linking
Daniel Patterson — Northeastern University — dbp@ccs.neu.edu

POPL 2019 Student Research Competition Extended Abstract

Introduction There are dozens of programming languages in
wide use, and people are designing new ones every day. Increas-
ingly, languages provide programmers with rich types to enforce
invariants about their code statically. But an outstanding challenge
remains how to integrate components written in new languages into
extant systems. Programmers currently rely on unsafe FFIs that
defer errors to runtime (if errors are reported at all), failing both to
permit a gradual evolution from older languages to a newer ones,
and to support graceful integration of domain specific languages.

The essential problem is that, at the point of linking (in low-level
bytecode, object code, etc), any static type information that could
have been used to report errors has already been discarded. To sup-
port linking errors, e.g., that a function is called with the wrong
number or type of arguments, we must preserve type information.
But what should target type systems look like? One option is to
add just enough types to support what you are compiling. In that
case, as soon as you build a compiler from a sufficiently different
source language, you will have to extend this target language. An-
other option is to try to give the target language the richest possible
type system: e.g., a dependent high-order separation logic ([5] or
similar), increasing the complexity of implementing compilers.

We propose a third option: enrich an existing possibly-typed tar-
get language with phantom contracts, which are written in a rich
but simple operational language, but that run at type-checking time.
The phantom language can then be used to encode source type in-
formation that cannot be captured in the existing target and to en-
force flexible linking invariants. Phantom contracts are refinements
to target types that operate over ghost state used in type checking.
Source types translate to target phantom computations that, after
linking and type checking, are erased.

By Example We demonstrate the idea by example. We show
compilers from two source languages into a target with phantom
contracts. We contrast this with the typical approach for type-
preserving compilation, using this to show how phantom contracts
work and why they are an improvement.

We begin with our source languages. One is Index±, the
simply-typed lambda calculus with integers enriched with an pos-
itive/negative index algebra that can be used to track the sign of
numbers. The syntax and a selection of the typing rules are in
Figure 1; operational semantics are standard, not depending on
indexes. Number types η capture our index system, where lit-
eral numbers are either +0 or −, and computations can degrade to
the unknown ?. Number type polymorphism allows functions like
e = Λα.λx:α.x ∗ 2, which has type ∀α.α ∗ +0. Then e[+0]2 would
have type +0, since type application reduces +0 ∗ +0 to +0.

Our second source language is BabyDill, a simply typed
linear lambda calculus based on removing polymorphism from
PDILL[13] (and adding a base type). The syntax and a few typing
rules are shown in Figure 2 (the reader is encouraged to consult
[13] for more details).

Phantom Contracts A typical approach to supporting type-
preserving compilation from various languages is to incorporate
all necessary features directly into the target. We would therefore

Index± τ ::= η | ∀α.τ | τ→ τ

η ::= α | +0 | − | ? | η+η | η∗η
e ::= n | x | e + e | e ∗ e | λx : τ. e | e e

Λα.e | e[η]
v ::= n | λx : τ. e | Λα.e

n ≥ 0

H; Γ ` n : +0

n < 0

H; Γ ` n : −

x : τ ∈ Γ

H; Γ ` x : τ

H; Γ ` e1 : η1 H; Γ ` e2 : η2
H; Γ ` e1 ∗ e2 : ⇓(η1∗η2)

H, α; Γ ` e : τ

H; Γ ` Λα.e : ∀α.τ

H; Γ ` e : ∀α.τ

H; Γ ` e[η] : ⇓(τ[η/α])

⇓(+0 + +0) = +0

⇓(− + +0) = ?
⇓(?+η) = ?
etc . . .
⇓(η1+η2) = η1+η2

Figure 1: Syntax and (very) selected static semantics for Index±.

BabyDill τ ::= unit | τ( τ |!τ | τ&τ | τ ⊗ τ
e ::= () | x | a | λa : τ.e | e e′ |!e

let !x = e in e′ | 〈e, e′〉 | e.1 | e.2

(e, e) | let (a, a′) = e in e′

v ::= () | λa : τ.e |!e | 〈e, e′〉 | (v, v′)

Γ; a : τ ` a : τ

x : τ ∈ Γ

Γ; · ` x : τ

Γ; ∆, a : τ1 ` e : τ2
Γ; ∆ ` λa : τ1.e : τ1 ( τ2

Γ; ∆1 ` e1 : τ1 ( τ2 Γ; ∆2 ` e2 : τ1 ∆1,∆2 = ∆

Γ; ∆ ` e1 e2 : τ2

Γ; ∆ ` e1 : τ1 Γ; ∆ ` e2 : τ2
Γ; ∆ ` 〈e1, e2〉 : τ1&τ2

Γ; · ` e : τ

Γ; · ` e : !τ

Figure 2: Syntax and (very) selected static semantics for BabyDill.

end up with a target with sign indexes and linearity (at least), and
we would have some translation into this target. If BabyDill had
integers, we could compile literal integers to precise types, but any
source integer types would translate to whatever ? translated to, to
capture the fact that BabyDill does not track sign. Here the com-
piler can determine how to translate representations—there also
may be cases where we need programmer annotations in order to
figure out what code to generate, which is an idea we have explored
in previous work called linking types [7].

This approach, while theoretically straightforward, has a major
downside: it’s likely that the target will be specialized to the par-
ticular source language(s) chosen, and as a result would have to
change in order to support more languages. Over time, it may
converge to something rich enough to capture almost everything
needed, but at that point the language would be a hodge-podge of
features.

Rather than try to incorporate all of the type features of the
source languages into the type system of the target, we propose en-
riching the target language with phantom contracts, that on their
own have straightforward semantics but can be used by compiler

1



writers to encode complex invariants. In Figure 3 we present syn-
tax and a small selection of the static semantics for PhantomLC,
which is the simply typed lambda calculus with pairs and recur-
sive types extended with phantom contracts. We highlight a few
important details, and then consider our two-language case study.

First, note that our static semantics involve running our phantom
contracts. Our phantom language is a simply typed lambda calcu-
lus with sexpressions, a first-order store, and assertions that can
fail (there is no reduction rule for δ1(assert, false)). The phan-
tom computations are guaranteed to terminate or fail, and these two
possibilities indicate whether the invariants encoded in the phan-
tom contracts were satisfied. This allows compilers to encode their
representations of types and the computational fragments that are
necessary for checking that the fragments that they receive have the
proper phantom representations.

PhantomLC τ ::= int | τ→ τ′ | µα.τ | α

e ::= ê{ϕ}

ê ::= x | n | e + e | e ∗ e | λx:τ.e | e e′

(e, e) | fst e | snd e | fold e
unfold e | let x{ν}:τ = e in e′

v ::= n | fold v | λx:τ.e | (v, v)
ϕ ::= sexp | ref sexp | ϕ := ϕ |!ϕ | ν

matchϕ | nν1.ϕ1 | sν2.ϕ2 | bν3.ϕ3 | (ν4, ν5).ϕ4
λν:ϕτ.ϕ | ϕϕ′ | ϕ;ϕ′ | δn(opn, ϕ1, . . . ϕn)

sexp ::= n | s | true | false | (sexp, sexp′)
op1 ::= assert | not | length | . . .

op2 ::= sexp= | append | + | ∗ | . . .

ϕτ ::= sexp | ref sexp | ϕτ→ ϕτ

Γ; S ` ê : τ; S′ Γ ` (S′, ϕ) ⇓ (S′′, ϕ′)

Γ; S ` ê{ϕ} : τ; S′′

Γ; S1 ` ê1 : τ; S2 Γ ` (S2, ϕ) ⇓ (S3, ϕ
′) Γ, x:τ, ν:ϕ′; S3 ` e2:τ2; S4

Γ; S1 ` let x{ν}:τ = ê1{ϕ} in e2 : τ2; S4

ν:ϕ ∈ Γ

Γ ` (S, ν) ⇓ (S, ϕ)

Γ ` (S, ϕ) ⇓ (S′, true)

Γ ` (S, δ1(assert, ϕ)) ⇓ (S′, true)

Γ ` (S, ϕ1) ⇓ (S′, s) Γ, ν:s ` (S′, ϕ2) ⇓ (S′′, ϕ′2)

Γ ` (S, match ϕ1 . . . | sν.ϕ2 . . .)

Figure 3: Syntax and selected static semantics for PhantomLC.

Compilers using Phantom Contracts To compile Index±, we
consider translating well-typed expressions. This means our com-
piler will be defined case-wise over the typing rules of the lan-
guage. We show an illustrative portion of it in Figure 4, where
(e)+ is the compiled term. The key case in the figure, when con-
sidering linking, is application. If the argument came from another
language, compiler, etc, we could use the same target code, replac-
ing e′+ with that code. We can see that the rest of the compiler
would then be able to enforce the sign restrictions from the source,
because they were encoded by the compiler into the phantom con-
tracts and checked at that point.

To compile BabyDill, we again define a translation case-wise
over typing derivations. A portion of this translation is shown in
Figure 5. Note that the only thing we use our phantom contracts
to track is that linearity is not violated, by using reference counts
in our phantom store. This presentation is slightly simplified, as
the full translation needs to implement a caller-save strategy on the
reference counts to support variable shadowing, which we elide for
space. One case that is important is lazy (i.e., additive) pairs (of

(e1 + e2 : η)+ = let e1{ν1} = e1
+ in

let e2{ν2} = e2
+ in

( e1 + e2){〈〈η〉〉}
(x : τ)+ = x{δ1(assert, δ2(sexp=, 〈〈τ〉〉, νx)); 〈〈τ〉〉}

(λx:τ.e : τ→ τ′)+ = (λx:τ+.let {νx} = 0{〈〈τ〉〉} in e+)
{〈〈τ→ τ′〉〉}

(e e′ : τ))+ = let f{νf} = e+ in

let a{νa} = e′+ in

(f a){match νf
|(′ 7→′, (ντ′ , ντ)).
δ1(assert, δ2(sexp=, ντ′ , νa)); 〈〈τ〉〉}

〈〈τ→ τ′〉〉 = (′ 7→′, (〈〈τ〉〉, 〈〈τ′〉〉)) ?+ = int

〈〈+0〉〉 = ′ + 0′ +0+ = int

Figure 4: Selections from Index± to PhantomLC compiler.

type τ1&τ2), for which only one projection is used. In that case,
we run the phantom contracts on one side, reset reference counts,
and then run the other, so that both sides use all variables. The
same technique would also be used to support if. Other cases
have empty phantom contracts, because we only have to handle
cases that affect the reference counts.

(λa : τ1.e : τ1 ( τ2)+ = λa : τ1+.let {a} = ref 1 in

let r{ r} = e+ in

r{δ1(assert, δ2(int =, !a, 0)); r}

(a : τ)+ = a{a := δ2(−, !a, 1)}
(Γ; a1 : τ1 . . . ` = let v1{} = e1

+ in let {} = 0{δ1(assert,
〈e1, e2〉 : τ1&τ2)+ δ2(int =, !a1, 0)) . . . ; a1 := 1 . . .} in (v1, e2+)

Figure 5: Selections from BabyDill to PhantomLC compiler.

As before, we can see what linking we can support. With no
shared base types, the default interactions are pretty limited, but
again if we extended BabyDill with integers, we could extend our
compiler to support them. But in this case, the compilation is more
interesting, because what we would compile them to is the par-
ticular choice of phantom contracts used by the Index± compiler,
rather than to a built-in feature of the target language. The re-
sulting interoperability would be the same, and indeed, that’s the
goal: phantom contracts are not about making fundamentally eas-
ier the task of building a given type-preserving compiler, but rather
to prevent the issue of having to migrate the entire ecosystem be-
cause some feature needs to be added to the target language. With
such a system, type-preserving compilers could be developed in-
dependently, and only at the point of interface do common types
and calling conventions need to be established, similarly to how
they have to be established with existing FFIs. Individual compiler
writers could experiment with different representations, benefiting
from not having to change the underlying target language infras-
tructure, and getting baseline interoperability to the extent that they
provide phantom interoperability wrappers.

Related Work The name should hint this derives inspiration both
from phantom types ([1]) and contracts (e.g., soft contract veri-
fication [6]) / gradual typing, where the notion of encoding typ-
ing constraints operationally is familiar (e.g., AGT [3]), though the
fact that our operational semantics is at type-checking time makes
things quite different. But we also draw much inspiration from
refinement type systems (e.g., [2, 8, 12], where the last made an
explicit connection to static higher-order contracts) and from ghost
state, both from separation logic (e.g., [4]) and F*’s ghost monad
[11] (and earlier ghost refinements [10]). We also see connections
to work translating typing rules into rewrite systems (e.g., [9]).

2



References

[1] Matthew Fluet and Riccardo Pucella. 2002. Phantom Types and Subtyping. In Proceedings of the Second IFIP International Confer-
ence on Theoretical Computer Science (TCS ’02).

[2] Tim Freeman. 1994. Refinement Types for ML. PhD Thesis.
[3] Ron Garcia, Alison Clark, Éric Tanter. 2016 Abstracting Gradual Typing. In 43rd ACM Symposium on Principles of Programming

Languages (POPL ’16).
[4] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-Order Ghost State. In 21st ACM International Confer-

ence on Functional Programming (ICFP ’16).
[5] Aleksander Nanevski, Amal Ahmed, Greg Morrisett, and Lars Birkedal. 2007. Abstract Predicates and Mutable ADTs in Hoare

Type Theory. In 16th European Symposium on Programming (ESOP ’07).
[6] Phúc C. Nguyen, Sam Tobin-Hochstadt, and David Van Horn. 2014. Soft contract verification. In 19th ACM International Conference

on Functional Programming (ICFP ’14).
[7] Daniel Patteron and Amal Ahmed. 2017. Linking Types for Multi-Language Software: Have Your Cake and Eat It Too. In SNAPL:

Summit on Advances in Programming Languages (SNAPL’17), May 2017.
[8] Patrick Rondon, Ming Kawaguchi, and Ranjit Jhala. 2008. Liquid Types. In 30th ACM Conference on Programming Language

Design and Implementation (PLDI ’08).
[9] Aaron Stump, Garrin Kimmell, Roba El Haj Omar. 2011. Type Preservation as a Confluence Problem. In Proceedings of the 22nd

International Conference on Rewriting Techniques and Applications (RTA ’11).
[10] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, Jean Yang. Secure Distributed Program-

ming with Value-dependent Types. 2011. In 16th ACM SIGPLAN International Conference on Functional Programming (ICFP
’11).

[11] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan,
Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoue, Santiago Zanella-Béguelin. 2016. Dependent
Types and Multi-Monadic Effects in F*. In 43rd ACM Symposium on Principles of Programming Languages (POPL ’16).

[12] Niki Vazou, Patrick M. Rondon, and Ranjit Jhala. 2013. Abstract Refinement Types. In 22nd European Symposium on Program-
ming (ESOP ’13).

[13] Jianzhou Zhao, Qi Zhang, and Steve Zdancewic. 2010. Relational Parametricity for a Polymorphic Linear Lambda Calculus. In
Proceedings of the 8th Asian conference on Programming languages and systems (APLAS’10).

3


