Linking Types for Multi-Language Software: Have Your Cake and Eat It Too

Daniel Patterson1 and Amal Ahmed2

1 Northeastern University, Boston MA, USA
dbp@ccs.neu.edu
2 Northeastern University, Boston MA, USA
amal@ccs.neu.edu

\begin{abstract}
Software developers compose systems from components written in many different languages. A business-logic component may be written in Java or OCaml, a resource-intensive component in C or Rust, and a high-assurance component in Coq. In this multi-language world, program execution sends values from one linguistic context to another. This boundary-crossing exposes values to contexts with unforeseen behavior—that is, behavior that could not arise in the source language of the value. For example, a Rust function may end up being applied in an ML context that violates the memory usage policy enforced by Rust’s type system. This leads to the question of how developers ought to reason about code in such a multi-language world where behavior inexpressible in one language is easily realized in another.

This paper proposes the novel idea of linking types to address the problem of reasoning about single-language components in a multi-lingual setting. Specifically, linking types allow programmers to annotate where in a program they can link with components inexpressible in their unadulterated language. This enables developers to reason about (behavioral) equality using only their own language and the annotations, even though their code may be linked with code written in a language with more expressive power.

\textit{NOTE: This paper will be much easier to follow if viewed/printed in color.}
\end{abstract}

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases
Linking, program reasoning, equivalence, expressive power of languages, fully abstract compilation

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Reasoning in a Multi-Language World

When building large-scale software systems, programmers should be able to use the best language for each part of the system. Using the “best language” means the language that makes it easiest for a programmer to reason about the behavior of that part of the system. Programmers should be able to reason only in that language when working on that component. That might be Rust for a high-performance component, a terminating domain-specific language for a protocol parser, or a general-purpose scripting language for UI code. In some development shops, domain-specific languages are used in various parts of systems to better separate the logic of particular problems from the plumbing of general-purpose programming. But it’s a myth that programmers can reason in a single language when dealing with multi-language software. Even if a high-assurance component is written in Coq, the programmer must reason about extraction, compilation, and any linking that happens at the machine-level. An ML component in a multi-language system has...
contexts that may include features that don’t exist in ML. This is a problem for programmers, because as they evolve complex systems, much time is spent refactoring—that is, making changes to components that should result in equivalent behavior. Programmers reason about that equivalence by thinking about possible program contexts within which the original and refactored components could be run, though usually they only think about contexts written in their own language. But if they have linked with another language, the additional contexts from that language also need to be taken into account. Equivalence in all contexts, or *contextual equivalence*, is therefore central to programmer reasoning. Unfortunately, programmers cannot rely upon contextual equivalence of their own language. Instead, since languages interact after having been compiled to a common target, the contextual equivalence that programmers must rely upon is that of the compilation target, which may have little to do with their source language.

For programmers writing components in safe languages like OCaml, the situation is made worse by the fact that the common target is likely a low-level unsafe language like assembly which permits direct access to memory and the call-stack. An object-code linker will verify symbols, but little more. This means that whenever an OCaml programmer links with C code via the FFI, they have to contend with the fact that the C code they write can easily disrupt the equivalences they rely on when reasoning about their OCaml code. Rather than being able to rely upon tooling, the user of a C library must reason carefully about how the C code will interact, at the assembly level, with their OCaml abstractions. For example, an OCaml function that is polymorphic in its arguments could have these arguments inspected by C code it linked with, violating parametricity. On the other side, the C programmer attempting to write a library that can be linked with OCaml must keep all the invariants of OCaml in mind and attempt not to violate any of them. This is difficult and requires reasoning not only about how the OCaml and C languages work but also how they are compiled to assembly, because it is at the assembly level that they interact.

Since programmers use a language for its features and linguistic abstractions, we would like programmers to be able to reason using contextual equivalence for that language, even in the presence of target-level linking. A *fully abstract* compiler enables exactly this reasoning: it guarantees that if two components are contextually equivalent at the source their compiled versions are contextually equivalent at the target. However, this guarantee comes at a steep cost: a fully abstract compiler must disallow linking with components whose behavior is inexpressible in the compiler’s source language. But often that extra behavior or control is exactly why the programmer is linking with a component written in another “more expressive” language. An example of additional *behavior* is a non-concurrent language linking with a thread implementation written in C. An example of additional *control* is an unrestricted language linking with a concurrent data structure written in Rust, where linear types ensure data-race freedom.

There are two ways in which a programming language \(A \) can be *more expressive* than another language \(B \), where, following Felleisen [12], we assume both languages have been translated to a common substrate (for us, compiled to a common target), such that \(A \) contexts can be wrapped around \(B \) program fragments:

1. \(A \) has features unavailable in \(B \) that can be used to create contexts that can distinguish components that are contextually equivalent in \(B \). We say that language \(A \) is positively more expressive than language \(B \), since the (larger) set of \(A \) contexts have more power to distinguish. For instance, \(A \) may have references or first-class control while \(B \) does not.
2. \(A \) has rich type-system features unavailable in \(B \) that can be used to rule out contexts that, at less precise types, were able to distinguish inequivalent \(B \) components. We say
that language \(A \) is \textit{negatively} more expressive than language \(B \), since type restrictions on \(A \) contexts result in a (smaller) set of well-typed \(A \) contexts that have less power to distinguish. For instance, \(A \) may have linear types or polymorphism while \(B \) does not.\footnote{Example 1: \(A \) has \textit{linear types}. Consider \(B \) components of type \textsf{unit \to int}:\}

\begin{align*}
\text{c1} & \text{ increments a counter on each call and returns it} \\
\text{c2} & \text{ increments a counter on first call and returns it}
\end{align*}

And \(B \) distinguishing context:

\begin{align*}
\lambda \text{c ()}. \text{c ()} : \textsf{(unit \to int) \to int}
\end{align*}

With \(A \) contexts of type \(\textsf{(unit \to int)} \), \(c1 \) and \(c2 \) are contextually equivalent, since each must be called exactly once.

The greater expressivity of programming languages explored by Felleisen [12] is what we call \textit{positive} expressivity. As far as we are aware, the notion of \textit{negative} expressivity, presented in this dual way, has not appeared in the literature.

Linking with code from more expressive languages affects not just \textit{programmer} reasoning, but also the notion of equivalence used by \textit{compiler writers} to justify correct optimizations. While there has been a lot of recent work on verified compilers, most assume no linking (e.g., [19, 20, 22, 29, 32, 17]), or linking only with code compiled from the same source language [4, 5, 15, 23, 16].

One approach that does support cross-language linking is Compositional Compcert [30], which nonetheless only allows linking with components that satisfy CompCert’s memory model. Another approach is the multi-language style of verified compilers by Perconti and Ahmed [28], which allows linking with arbitrary target code that may be compiled from another source language \(R \). This approach, which embeds both the source \(S \) and target \(T \) into a single multi-language \(ST \), means that compiler optimizations can be justified in terms of \(ST \) contextual equivalence. However, as a tool for programmer reasoning, this comes at a significant cost, as the programmer needs to understand the full \(ST \) language and the compiler from \(R \) to \(T \). Moreover, the design of the multi-language fixes what linking should and should not be permitted, a decision that affects the notion of contextual equivalence used to reason about every component written in the source language.

We contend that compiler writers should get to decide what linking is allowed, and indeed, we don’t think they want to. Currently compiler writers are forced to either ignore linking or make such arbitrary decisions because existing source-language specifications are incomplete with respect to linking. Instead, this should be a part of the language specification and exposed to the programmer so that she can make fine-grained decisions about linking, which leads to fine-grained control over what contexts she must consider when reasoning about a particular component. Every compiler should then be fully abstract, which means it preserves the equivalences chosen by the programmer.

We advocate extending source-language specifications with \textit{linking types}, which minimally enrich source-language types and allow programmers to optionally annotate where in their programs they can link with components that would not be expressible in their unadulterated source language. As a specification mechanism, types are familiar, and naturally allow us to change equivalences locally. They fulfill our desire to allow the programmer fine-grained control, as they appear on individual terms of the language. A linking-types extension will also often introduce new terms (and operational semantics) intended solely for reasoning about the additional contexts introduced through linking. These new terms are a representative example of how linking types can be used.

\begin{align*}
\text{Example 2: } \lambda f . \text{if } f () = 0 \text{ then diverge (); } (): \textsf{(unit \to int) \to unit}
\end{align*}

With \(A \) contexts of type \(\forall \alpha . \textsf{(unit \to } \alpha \text{) \to unit} \), \(p1 \) and \(p2 \) are contextually equivalent, since their return values may not be inspected.
abstraction of potentially complex new behavior from another language that the programmer
wants to link with. (This is analogous to how Gu et al. [13] lift potentially complex behavior
in a lower abstraction layer into a simpler representation in a higher layer.) Now if the
programmer reasons about contexts including those terms, she will have considered the
behavior of all contexts that her component may be linked with after compilation.
We envision that language designers will provide many different linking-types extensions
for their source languages. Programmers can then opt to use zero or more of these extensions,
depending on their linking needs.

2 Linking Types, Formally

To formally present the basic idea of linking types, we consider a setting with two simple
source languages—see Figure 1 (top)—and show how to design linking types that mediate
different interactions between them. Our source languages are λ, the simply typed lambda
calculus with integer base types, and λ_{ref}, which extends λ with ML-like mutable references.
We want type-preserving, fully abstract compilers from these source languages to a common
target language. That target should have a rich enough type system so that the compiler’s
type translation can ensure full abstraction by using types to rule out linking with target
contexts whose behavior is inexpressible in the source. Here we illustrate the idea with a fairly
high-level target language $\lambda_{\text{ref}}^{\text{exc}}$—see Figure 1 (bottom)—that includes mutable references
and exceptions and has a modal type system that can distinguish pure computations from
those that either use references or raise exceptions.\[2\] We include exceptions in the target
as a representative of the extra control flow often present in low-level targets (e.g., direct
jumps). An impure target computation E^{exc}_τ (pronounced “impure exception-raising tau
computation”) may access the heap while computing a value of type τ or raising an exception
of type τ_{exc}. In contrast, a pure computation E^{pure}_τ (pronounced “pure tau computation”)
may not access the heap, and cannot raise exceptions as the exception type is the void
(uninhabited) type 0.

Consider the scenario where the programmer writes code in λ and wants to link with
code written in λ_{ref}. Assume this linking happens after both λ and λ_{ref} have been compiled
using fully abstract compilers to $\lambda_{\text{ref}}^{\text{exc}}$. We illustrate this with concrete example programs
e_1 and e_2 which are equivalent in λ. Now consider the context C_{ref} which implements a
simple counter using a reference cell. The λ compiler, since it is fully abstract, would have to
disallow linking with C_{ref} since it can distinguish e_1 from e_2. More generally, in order to rule
out this class of equivalence-disrupting contexts, the fully abstract compiler would have to
prevent linking with any code that has externally visible effects.\[3\] This can be accomplished
by a type-directed compiler that sends all λ arrows $\tau_1 \to \tau_2$ to pure computations $\tau_{\text{pure}}^{\text{exc}}_1 \to \tau_{\text{pure}}^{\text{exc}}_2$, where $\tau_{\text{pure}}^{\text{exc}}_1$ and $\tau_{\text{pure}}^{\text{exc}}_2$ are the translations of types τ_1 and τ_2. This would rule out linking with contexts with heap effects like C_{ref}. But in this case, the programmer wants to link these
together and is willing to lose some equivalences in order to do so.

\[
\begin{align*}
\forall C. C[\vdash e_1] & \approx \text{ref}^\bullet C[\vdash e_2] \\
C_{\text{ref}} & = \text{let } x = \text{ref 0 in} \\
& \text{let } c'() = \text{!x + 1}; !x \text{ in } c'
\end{align*}
\]

\[2\] We use a modal type system here, but any type-and-effect system would suffice.
\[3\] For simplicity, the type system we show here doesn’t support effect masking, so we rule out linking with
This error matches our intuition — that an arrow means something fundamentally different in a pure language and one that has heap effects. For advanced users, the compiler could not do the same, an error would be reported: that by the counter from the \(\lambda \) counter library.

The type system includes reference types and tracks heap effects. We need to track heap effects that it will be linked with. This extension is shown on the left in Figure 2. The parts of type system includes reference types and tracks heap effects. We need to track heap effects that will be linked with. This extension is shown on the left in Figure 2. The parts of type system includes reference types and tracks heap effects. We need to track heap effects that it will be linked with. This extension is shown on the left in Figure 2. The parts of type system includes reference types and tracks heap effects. We need to track heap effects that it will be linked with. This extension is shown on the left in Figure 2. The parts of type system includes reference types and tracks heap effects. We need to track heap effects that it will be linked with. This extension is shown on the left in Figure 2. The parts of type system includes reference types and tracks heap effects. We need to track heap effects that it will be linked with. This extension is shown on the left in Figure 2. The parts of type system includes reference types and tracks heap effects. We need to track heap effects that it will be linked with. This extension is shown on the left in Figure 2. The parts of type system includes reference types and tracks heap effects. We need to track heap effects.

\[
\begin{align*}
\lambda \tau & ::= \text{unit} | \text{int} | \tau \to \tau \\
e & ::= () | n | x | \lambda x : \tau.e | ee \\
e + e & ::= e + e | e \cdot e \\
v & ::= () | n | \lambda x : \tau.e \\
\end{align*}
\]

\[
\begin{align*}
\lambda \text{ref } \tau & ::= 0 | \text{unit} | \text{int} | \text{ref } \tau | \tau \to E_{\text{ref }} \tau \\
e & ::= * | \circ \\
e & ::= () | n | x | \lambda x : \tau.e | ee | e + e | e \cdot e | \text{throw } e \\
v & ::= () | n | \lambda x : \tau.e | \ell \\
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash v : \tau & \\
\Gamma \vdash () : \text{unit} & \\
\Gamma \vdash \lambda x : \tau.e : \tau \to E_{\text{ref }} \tau & \\
\Gamma \vdash e : E_{\text{ref }} \tau & \\
\Gamma \vdash v : \tau & \\
\Gamma \vdash e_1 : E_{\text{ref }} \tau & \\
\Gamma \vdash e_2 : E_{\text{ref }} \tau & \\
\Gamma \vdash e_1 : e_2 : E_{\text{ref }} \tau & \\
\Gamma \vdash e : E_{\text{ref }} \tau & \\
\Gamma \vdash e_1 : E_{\text{ref }} \tau & \\
\Gamma \vdash e_2 : E_{\text{ref }} \tau & \\
\Gamma \vdash e : E_{\text{ref }} \tau & \\
\Gamma \vdash e_1 : E_{\text{ref }} \tau & \\
\Gamma \vdash e : E_{\text{ref }} \tau & \\
\Gamma \vdash e : E_{\text{ref }} \tau & \\
\Gamma \vdash \text{catch } e \text{ with } e_1 \text{ catch } e \text{ with } e_1 & \\
\Gamma \vdash e_1 : E_{\text{ref }} \tau & \\
\Gamma \vdash e_2 : E_{\text{ref }} \tau & \\
\Gamma \vdash e : E_{\text{ref }} \tau & \\
\end{align*}
\]

Figure 1 \(\lambda \) and \(\lambda \text{ref } \) syntax (top), \(\lambda \text{ref } \) syntax and selected static semantics (bottom).

To enable the above linking, we present a linking-types extension for \(\lambda \) that includes both an extended language \(\lambda^+ \) and functions \(\kappa^+ \) and \(\kappa^- \) that relate types of \(\lambda \) and \(\lambda^+ \). The \(\lambda^+ \) type system includes reference types and tracks heap effects. We need to track heap effects to be able to reason about the interaction between the pure \(\lambda \) code and impure \(\lambda \text{ref } \) code that it will be linked with. This extension is shown on the left in Figure 2. The parts of \(\lambda^+ \) that extend \(\lambda \) are typeset in magenta, whereas terms that originated in \(\lambda \) are orange. \(\lambda^+ \) types \(\tau \) include base types \text{unit} and \text{int}, reference types \text{ref } \tau, and a computation type \(\text{R}^\gamma \tau \), analogous to the target computation type \(E_{\text{ref }} \tau \), but without tracking exception effects. \(\lambda^+ \) terms \(e \) include terms from \(\lambda \), as well as terms for allocating, reading, and updating references.

With this extension, we annotate \(e_1 \) and \(e_2 \) with a linking type that specifies that the input can be heap-effecting: \(\lambda . c() \neq \lambda . c() : (\text{unit} \to \text{R}^\gamma \text{int}) \to \text{R}^\gamma \text{int} \). At this type, \(e_1 \) and \(e_2 \) are no longer contextually equivalent and, further, can be linked with the counter library.

Without the above annotation, the compiler would translate the type of \(\lambda . c() \) or \(\lambda . c() : c() \) from the \(\lambda \) type \(\text{unit} \to \text{int} \) to the \(\lambda \text{ref } \) type \(\text{unit} \to E_{\text{ref }} \text{int} \), and the type expected by the counter from the \(\lambda \text{ref } \) type \(\text{unit} \to \text{int} \) to the \(\lambda \text{ref } \) type \(\text{unit} \to E_{\text{ref }} \text{int} \). Since these are not the same, an error would be reported: that \(\text{unit} \to \text{int} \) is not compatible with \(\text{unit} \to \text{int} \). This error matches our intuition — that an arrow means something fundamentally different in a pure language and one that has heap effects. For advanced users, the compiler could all effectful code. More realistic target languages, e.g., based on Koka [18], would support linking with code without externally visible effects.
23:6 Linking Types for Multi-Language Software

2.1 Properties of Linking Types and thus no error will be raised. Linking-types extension if the following properties hold:

\[\text{λ} \]

For any source language \(\text{λ} \) arrow and reference cases of code. This results in essentially the same extended language program fragments that are free of heap effects and can then safely be passed to linked

\[\text{κ} \]

and \(\text{κ} \) part of the linking-types extension is the pair of functions of their existing language. Our focus is programmers to use these terms in their code, we would be changing the programming

\[\text{ε} \]

—rather than \(\text{ref} \) terms are a subset of \(\text{κ} \) types to

\[\tau \]

also shown in Figure 2 is a linking types extension of \(\text{λ} \) for projecting \(\text{λ} \) types to \(\text{λ} \) types. We will discuss the properties that \(\text{κ} \) must satisfy below.

\[\kappa^+(\text{unit}) = \text{unit} \]
\[\kappa^+(\text{int}) = \text{int} \]
\[\kappa^+(\tau_1 \rightarrow \tau_2) = \kappa^+(\tau_1) \rightarrow \kappa^+(\tau_2) \]
\[\kappa^-(\text{unit}) = \text{unit} \]
\[\kappa^-(\text{int}) = \text{int} \]
\[\kappa^-(\tau_1 \rightarrow \tau_2) = \kappa^-(\tau_1) \rightarrow \kappa^-(\tau_2) \]

Figure 2 Linking-types extension of \(\text{λ} \) and \(\text{λ}^{ref} \).

explain the type translations that gave rise to that incompatibility. By contrast, with the type annotation \(\text{unit} \rightarrow \text{R} \) both types translate to the same \(\text{λ}^{ref} \) type \(\text{unit} \rightarrow \text{E} \) and thus no error will be raised.

With the linking types extended language, note that the additional terms are intended only for reasoning, so that programmers can understand the kind of behavior that they are linking with; they should not show up in code written by the programmer. If we allowed programmers to use these terms in their code, we would be changing the programming language itself, whereas linking types should only allow a programmer to change equivalences of their existing language. Our focus is linking, not general language extension. The last part of the linking-types extension is the pair of functions \(\text{κ}^+ \), for embedding \(\text{λ} \) types in \(\text{λ}^\kappa \), and \(\text{κ}^- \) for projecting \(\text{λ}^\kappa \) types to \(\text{λ} \) types. We will discuss the properties that \(\text{κ}^+ \) and \(\text{κ}^- \) must satisfy below.

Also shown in Figure 2 is a linking types extension of \(\text{λ}^{ref} \) that allows \(\text{λ}^{ref} \) to distinguish program fragments that are free of heap effects and can then safely be passed to linked \(\text{λ} \) code. This results in essentially the same extended language \(\text{λ}^{ref} \); the only changes are the arrow and reference cases of \(\kappa^+ \) and \(\kappa^- \) and in terms that should be written by programmers.

We can now develop fully abstract compilers from \(\text{λ}^\kappa \) and \(\text{λ}^{ref,k} \)—rather than \(\text{λ} \) and \(\text{λ}^{ref} \)—using the following type translation to ensure full abstraction:

\[\langle \text{unit} \rangle = \text{unit} \]
\[\langle \text{int} \rangle = \text{int} \]
\[\langle \text{ref} \tau \rangle = \text{ref} \langle \tau \rangle \]
\[\langle \tau_1 \rightarrow \text{R} \tau_2 \rangle = \langle \tau_1 \rangle \rightarrow \text{E} \langle \tau_2 \rangle \]

2.1 Properties of Linking Types

For any source language \(\text{λ}_{src} \), an extended language \(\text{λ}^\kappa_{src} \) paired with \(\kappa^+ \) and \(\kappa^- \) is a linking-types extension if the following properties hold:

= \(\text{λ}_{src} \) terms are a subset of \(\text{λ}^\kappa_{src} \) terms.
= \(\text{λ}_{src} \) type \(\tau \) embeds into a \(\text{λ}^\kappa_{src} \) type by \(\kappa^+(\tau) \).
= \(\text{λ}^\kappa_{src} \) type \(\tau^\kappa \) projects to a \(\text{λ}_{src} \) type by \(\kappa^-(\tau^\kappa) \).
\begin{align*}
\text{program A} & \quad \lambda f : \text{int} \to \text{int}.1 \\
\text{program B} & \quad \lambda f : \text{int} \to \text{int}.f0; 1 \\
\text{program C} & \quad \lambda f : \text{int} \to \text{int}.f0; f0; 1
\end{align*}

Figure 3: Equivalence classes when giving different linking types to programs.

- For any \(\lambda_{\text{src}} \) type \(\tau \), \(\kappa^- (\kappa^+ (\tau)) = \tau \).
- \(\kappa^+ \) preserves and reflects equivalence: \(\forall e_1, e_2 \in \lambda_{\text{src}}. e_1 \approx_{\text{ctx}} e_2 : \tau \iff e_1 \approx_{\lambda_{\text{src}}} e_2 : \tau \).
- \(\forall \epsilon, \tau. e : \tau \implies e : \kappa^- (\tau) \) when \(e \) only contains \(\lambda_{\text{src}} \) terms.
- A compiler for \(\lambda_{\text{src}}^\kappa \) should be fully abstract, but it need only compile terms from \(\lambda_{\text{src}} \).

Reasoning about contextual equivalence means reasoning about the equivalence classes that contain programs. Thus we can understand the effect of linking types, and of the properties that guide them, by studying how the extensions affect equivalence classes. In Figure 3, we present three programs (A, B, and C) valid in both \(\lambda \) and \(\lambda_{\text{ref}} \). At the type \((\text{int} \to \text{int}) \to \text{int} \), all three programs are equivalent in \(\lambda \), which we illustrate by putting A, B, and C in a single equivalence box. In \(\lambda \), all functions terminate, which means that calling the argument \(f \) zero, one, or two times before discarding the result is equivalent. However, in \(\lambda_{\text{ref}} \), A, B, and C are all in different equivalence classes, since \(f \) may increment a counter, which means a context could detect the number of times it was called.

The top of the diagram shows equivalence classes for \(\lambda^\kappa / \lambda_{\text{ref}}^\kappa \). Here we can see how equivalences can be changed by annotating these functions with different linking types. Note that equivalence is only defined at a given type, so we only consider when all three functions have been given the same linking type.

At the type \((\text{int} \to \text{R每一个int}) \to \text{R每一个int} \) these programs are all equivalent since this linking type requires that \(f \) be pure. At the type \((\text{int} \to \text{R每一个int}) \to \text{R每一个int} \) all three programs are in different equivalence classes, because the linking type allows \(f \) to be impure, which could be used by a context to distinguish the programs. At the type \((\text{int} \to \text{R每一个int}) \to \text{R每一个int} \) all three programs are again equivalent. While the type allows the body to be impure, since the argument \(f \) is pure, no difference can be detected. The last linking type \((\text{int} \to \text{R每一个int}) \to \text{R每一个int} \) is a type that can only be assigned to the program A, because if the argument \(f \) is impure but the result is pure the program could not have called \(f \).

We can see here that \(\kappa^+ \) is the “default” embedding, which has the important property that it preserves equivalence classes from the original language. Notice that \(\kappa^+ \) for \(\lambda \) and \(\lambda_{\text{ref}} \) both do this, and send the respective source \((\text{int} \to \text{int}) \to \text{int} \) to different types.
3 Additional Applications of Linking Types

This section contains examples of languages which we would like to link with λ^{ref} but have features that, without linking types, would rule out linking. In this setting, the languages are idealized, and indeed, we believe that programmers would benefit from smaller more special purpose languages but the ideas carry through to full languages with different expressivity.

3.1 Linearity in Libraries

Substructural type systems are particularly useful in modeling resources, where a resource must be used, or consuming a resource should render it unusable to others. Network sockets and file handles are simple examples, where opening creates the resource, reading consumes the resource potentially creating a new resource, and closing consumes the resource. If a language with affine types like Rust allows values to cross the linking boundary, the other language needs to respect the affine invariant to remain sound.

A value could be passed as affine to a language like Rust but retained as well, and could then be used after it was consumed. Similarly, a linear value could be never consumed by the non-linear language, resulting in a resource leak.

A fully-abstract compiler would prevent linking in those scenarios, as a context could sequence code around the consumption of the resource, resulting in crashes in one case but not the other for programs that would be equivalent in contexts that respect linearity. To expose libraries with linear APIs, we would extend the types of the source language λ^{ref} as the following:

\[
\begin{align*}
\phi & ::= \text{unit} \mid \text{int} \mid \text{ref } \tau \mid \tau \to \tau \\
\tau & ::= \phi \mid \phi^L \\
\kappa^+(\text{unit}) & = \text{unit} \\
\kappa^+(\text{int}) & = \text{int} \\
\kappa^+(\text{ref } \tau) & = \text{ref } \kappa^+(\tau) \\
\kappa^+(\tau_1 \to \tau_2) & = \kappa^+(\tau_1) \to \kappa^+(\tau_2) \\
\kappa^-(\phi) & = \kappa^{L-}(\phi) \\
\kappa^-(\phi^L) & = \kappa^{L-}(\phi) \\
\kappa^{L-}^-(\text{unit}) & = \text{unit} \\
\kappa^{L-}^-(\text{int}) & = \text{int} \\
\kappa^{L-}^-(\text{ref } \tau) & = \text{ref } \kappa^{-}(\tau) \\
\kappa^{L-}^-(\tau_1 \to \tau_2) & = \kappa^{-}(\tau_1) \to \kappa^{-}(\tau_2)
\end{align*}
\]

Note, of course, that the target of compilation would either need to support linearity or enforcement would have to be at runtime, via contracts ala Tov-Pucella [31].

3.2 Terminating Protocol Parsers

For certain programming tasks, every program should terminate. For example, protocol parsing should never end up in an infinite loop. In these cases, we would accept less powerful languages for which divergence is impossible. We still, however, need to link these with general purpose languages, as in the case of a protocol parser, the server that is listening must run forever! In some cases, we could imagine that code shared between these languages would be written in the terminating language, but especially when introducing the terminating language, there may already be existing utility code written in the potentially non-terminating language.

Fully abstract compilers would prevent this linking, as equivalent programs when terminating may not both diverge or terminate in the presence of non-termination—a function that calls its argument, discarding the result, and one that ignores its argument are equivalent if the argument terminates, but not if it diverges.

In this case, we can extend the types of λ^{ref} with a terminating function type, written $\tau \to \tau$| (here we elide cases of κ^+ and κ^- that are the same as Figure 2):
\[\tau ::= \text{unit} \mid \text{int} \mid \text{ref} \tau \mid \tau \rightarrow \tau \]

\[\kappa^+(\tau_1 \rightarrow \tau_2) = \kappa^+(\tau_1) \rightarrow \kappa^+(\tau_2) \]

\[\kappa^-(\tau_1 \rightarrow \tau_2) = \kappa^- (\tau_1) \rightarrow \kappa^- (\tau_2) \]

The typing rules, elided, would likely need to rely on some syntactic termination check for functions given the terminating arrow type. We could also imagine making the terminating arrow rely on a runtime timeout, which would mean we needed a new application typing rule to reflect that sometimes applying a terminating function might return a nonce value, indicating computation was cut off, and our language would likely need to be trivially extended with sum types to handle that possibility in programs.

3.3 Surfacing Cost of Computation

Some security vulnerabilities rely on the fact that the cost of a computation may be discernable (via time, cpu or memory consumption, etc). Proving that this cannot happen relies upon either removing the mechanism of observation, which is likely impossible (as even if we remove timing from our language, if the program communicates over the network timing can happen on other systems), or introducing the notion of timing into the model and then proving that various branches are indistinguishable in that context (see, e.g. [6], [14], [9]).

However, one would not want to have to write non-security sensitive parts of programs in one of these cost-aware languages, which motivates a linking types extension of a non-cost aware language, in this case again our idealized \(\lambda^{\text{ref}} \), with a notion of computations with cost (as before, we only show differences from Figure 2):

\[\tau ::= \text{unit} \mid \text{int} \mid \text{ref} \tau \mid \tau \rightarrow C^*\tau \mid \tau \rightarrow C^N\tau \]

\[\kappa^+(\tau_1 \rightarrow \tau_2) = \kappa^+(\tau_1) \rightarrow \kappa^+(\tau_2) \]

\[\kappa^-(\tau_1 \rightarrow \tau_2) = \kappa^- (\tau_1) \rightarrow \kappa^- (\tau_2) \]

The type system is modal – computations \(C^N\tau \) have a known cost \(N \), and computations \(C^*\tau \) have an unknown cost. Fully abstract compilers from a cost-aware language and this extended language would only allow known cost computations to be passed to the cost aware language. As before, this relies upon the target language supporting a type system that was at least as expressive, such that it can safely separate the two modalities.

This application of linking types echos the work by D’Silva et al. in [11], where they describe enriching the model in which properties are investigated to cover side-effects like timing. In their case, they investigate machine models, whereas in ours we rely upon type systems in the language where linking takes place. Further, they imagine programmers opting in to security properties via annotations that would change how the compiler treated a piece of code, whereas in our setting we imagine that the compiler would preserve source equivalences by default, and programmers would have to opt-out of such compilation. We believe that our approach can be used with other side-channels, provided sufficient mechanisms exist to distinguish computations that might reveal information from those that cannot.

3.4 Gradual Typing

As we have already shown, linking types are useful when linking more precisely and less precisely typed languages. Taken to an extreme, we can add linking types to an un(i)typed language to facilitate sound linking with a statically typed language. We do this by starting
with a language with a single type, the dynamic type, and then construct an extension that adds further types. A typed target language would then allow code compiled from a different, typed, source language to be linked with this gradually typed language. Necessarily, the fully abstract compiler for this extended language would need to make use of run-time checks at the boundaries between typed and untyped code, analogous to sound gradual typing.

4 Bringing Linking Types to Your Language

To understand linking types and the way they interact with existing languages, we consider an example of how a language designer would incorporate them and discuss their usefulness and viability (à la Cardelli [8]).

Day 1: Fully abstract compiler As a first step, the language designer implements and proves fully abstract a type-directed compiler for her language \mathcal{A}. To make it more concrete, you can consider \mathcal{A} to be the language λ from earlier in the paper, but this scenario is general — you could equally consider \mathcal{A} to be a language like OCaml. The compiler targets a typed low-level intermediate language \mathcal{L}, using an appropriate type translation to guarantee that equivalences are preserved. This, concretely, could be a target like $\lambda^{\text{ref,exn}}$, but could also be a richly-typed version of LLVM. All linking should occur in \mathcal{L}, which means the subsequent passes, to LLVM, assembly, or another target, need not be fully-abstract.

Discussion • Full abstraction is a key part of linking types, as it is required to preserve the equivalences that programmers rely upon for reasoning. • The representative terms added to the linking-types-extended language are used in the proof of full abstraction, which essentially requires showing that target contexts can be back-translated to equivalent source contexts. • While we use static types in our target to ensure full abstraction— and gain tooling benefits from it (explored in Day 3)—we can also use dynamic checks when appropriate (e.g. [25, 10]). • We are currently designing a language like \mathcal{L}, which we expect to be similar to a much more richly typed version of LLVM, such that types could be erased and existing LLVM code-generation infrastructure could be used (as discussed by Ahmed at SNAPL’15 [1]).

Day 2: Linking with more expressive code \mathcal{A} programmers are happy using the above compiler since they can reason in terms of \mathcal{A} semantics, even when using libraries directly implemented in \mathcal{L} or compiled from other languages. But, soon the language designer’s users ask to link their code with a \mathcal{B} language library with features in \mathcal{L} but not in \mathcal{A}, something that the fully abstract compiler currently prevents. In the example used earlier in the paper, \mathcal{B} would be λ^{ref}, and the additional feature would be mutable references, but again, this is a general process that could apply to other features.

The compiler writer introduces a linking-types extension to capture the inexpressible features for her \mathcal{A} programmers. She implements a type checker for the fully elaborated linking types and extends her fully abstract compiler to handle the extended \mathcal{A}^κ types.

Discussion • While the linking types will in general be a new type system, no impact is seen on type inference, because linking types are never inferred: first the program will have source types inferred, and then all source types will be lifted to the linking types, using the programmer-specified annotations where present and the default κ^+ embedding where annotations are absent.

Day 3: When can components in two languages be linked? Happily able to link with other languages, the \mathcal{A} programmer uses the tooling associated with the \mathcal{A} and \mathcal{B} compilers to determine when a \mathcal{B} component can be used at a linking point. The tool uses the compiler to translate the \mathcal{B} component’s type $\tau_\mathcal{B}$ to an \mathcal{L} type $\tau_\mathcal{L}$ and then attempts to back-translate
τ_\mathcal{C} to an \mathcal{A} type τ_\mathcal{A} by inverting the \mathcal{A} compiler’s type translation. Should this succeed, the component can be used at the type τ_\mathcal{A}. This functionality allows the programmer to easily work on components in both \mathcal{A} and \mathcal{B} at once while getting cross-language type errors if the interfaces do not match. In the example used earlier in the paper, such a type error showed up when trying to link the \lambda^{ref} counter library with the \lambda client that had not been annotated.

Discussion • This functionality depends critically on the type-directed nature of our compilers and the presence of types in the low-level intermediate language \mathcal{L}, where the types become the medium through which we can provide useful static feedback to the programmer. • While linking these components together relies upon shared calling conventions, this is true of any linking. Currently, cross-language linking often relies upon C calling conventions.

Day 4: Backwards compatibility for programmers At the same time, another programmer continues to use \mathcal{A}, unaware of the \mathcal{A}^{κ} extension introduced in Day 2, since linking types are optional annotations. At lunch, she learns about linking types and realizes that the \mathcal{C} language she uses could benefit from the \mathcal{L} linking ecosystem. She asks the compiler writer for a C-to-\mathcal{L} compiler.

Discussion • Linking types are entirely opt-in—a programmer can use a language that has been extended with them and benefit from the compiler tool-chain without knowing anything about them. Only when she wants to link with code that could violate her source-level reasoning does she need to deal with linking types. • FFIs are usually considered “advanced material” in language documentation primarily due to the difficulty of using them safely. Since linking types enable safe cross-language linking, we hope that linking-type FFIs will not be considered such an advanced topic.

Day 5: Backwards compatibility for language designers Never a dull day for the compiler writer: she starts implementing a fully abstract compiler from \mathcal{C} to \mathcal{L}, but realizes that \mathcal{L} is not rich enough to capture the properties needed. She extends \mathcal{L} to \mathcal{L}^{∗}, and proves fully abstract the translation from \mathcal{L} to \mathcal{L}^{∗}. Since full abstraction proofs compose, this means that she immediately has a fully abstract compiler from \mathcal{A}^{κ} to \mathcal{L}^{∗}. She then implements a fully abstract compiler from \mathcal{C} to \mathcal{L}^{∗}. Programmers can then link \mathcal{A}^{κ} components and \mathcal{C} components provided that the former do not use \mathcal{C} features that cannot be expressed in \mathcal{A}^{κ}. Luckily for the compiler writer, the proofs mean that the behavior of \mathcal{A}^{κ}, even in the presence of linking, was fully specified before and remains so. Hence, \mathcal{A} and \mathcal{A}^{κ} programmers need not even know about the change from \mathcal{L} to \mathcal{L}^{∗}.

Discussion • While implementing fully abstract compilers is nontrivial, the linking-types strategy permits a gradual evolution, not requiring redundant re-implementation and re-proof whenever changes to the target language are made. • More generally, the proofs of full abstraction mean that the compiler and the target are irrelevant for programmers—behavior is entirely specified at the level of the (possibly extended by linking types) source.

5 Research Plan and Challenges

We are currently studying the use of linking types to facilitate building multi-language programs that may consist of components from the following: an idealized ML (essentially System F with references); a simple linear language; a language with first-class control; and a terminating language. We plan to develop a richly typed target based on Levy’s call-by-push-value (CBPV) [21] that can support fully abstract compilation from our linking-types-extended languages. Zdancewic (personal communication on Vellvm2) has recently demonstrated a machine equivalence between a variant of CBPV and an LLVM-like SSA-based IR so this provides a path from our current intended target to a richly typed LLVM.
One critical aspect of such a type system is that it should be able to identify when a component is free of a given effect, even though the component may use that effect internally. For instance, a component that throws exceptions internally but handles them all should be assigned an exception-free type. We expect to draw inspiration from the effect-masking in the Koka language [18], where mutable references that never escape do not cause a computation to be marked as effectful.

Realizing such a multi-language programming platform involves a number of challenges. First, implementing fully abstract compilers is nontrivial, though there has been significant recent progress by both our group and others that we expect to draw upon [2, 3, 10, 7, 24, 25]. Second, low-level languages such as LLVM and assembly are typically non-compositional which makes it hard to support high-level compositional reasoning. In recent work, we have designed a compositional typed assembly language that we think offers a blueprint for designing other low-level typed IRs [26, 27]. Finally, we have only begun investigating how to combine different linking-types extensions. The linking-types extensions we are considering are based on type-and-effect systems, so we believe we can create a lattice of these extensions analogous to an effect lattice.

6 Conclusion

Large software systems are written using combinations of many languages. But while some languages provide powerful tools for reasoning in the language, none support reasoning across multiple languages. Indeed, the abstractions that languages purport to present do not actually cohere because they do not allow the programmer to reason solely about the code she writes. Instead, the programmer is forced to think about the details of particular compilers and low-level implementations, and to reason about the target code that her compiler generates.

With linking types, we propose that language designers incorporate linking into their language designs and provide programmers a means to specify linking with behavior and types inexpressible in their language. There are many challenges in how to design linking types, depending on what features exist in the languages, but only through accepting this challenge can we reach what has long been promised—an ecosystem of languages, each suited to a particular task yet stitched together seamlessly into a single large software project.

Acknowledgements The authors are grateful to Matthias Felleisen for valuable discussion and feedback on linking types. This research is supported in part by the NSF (grants CCF-1453796 and CCF-1422133) and a Google Faculty Research Award.

References

15 Chung-Kil Hur and Derek Dreyer. A Kripke logical relation between ML and assembly. In ACM Symposium on Principles of Programming Languages (POPL), Austin, Texas, January 2011.
17 Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. CakeML : A verified implementation of ML. In ACM Symposium on Principles of Programming Languages (POPL), San Diego, California, January 2014.
21 Paul Blain Levy. Call-by-Push-Value. Ph. D. dissertation, Queen Mary, University of

