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1 Typed assembly language: T

NOTE: Throughout this technical appendix, we write ret end{7; o} {r,} instead of the haltr,o {r,}
that appears in the accompanying paper. We apologize for any confusion caused by the slight difference in
presentation.

1.1 Syntax and Semantics

T = « | unit | int | 3a.7 | pa.T | ref (7,...,7) | box

Y u=V[Al{x;o} | {1y, T)

q =r|i|e€]|end{r;o}

w s=7]o|q

e == (I,H)

v = (retend{r;o}{r},")

E := (Eg-)

E;r =[]

r n=rl|r2|- |7 |ra

h = code[Al{x;0}2I | (w,..., W)

w == () | n| £ | pack(r,w)asJa.T | fold,a.r W | Ww]

u == w | r | pack(r,u) asJa.7 | fold,q.r u | ufw]

I :=u4l|jmpu| callu{o,q} | retr{r} | reti{r} | retend{r;o} {r}
L = aoprq,rs,u | bnzr,u | ldrg,rs[i] | strq[i],rs | rallocrg,n | ballocrg,n | mvrg,u

| unpack (@, rq) u | unfoldrg,u | sallocn | sfreen | sldrq,i | ssti,rs

aop ::= add | sub | mult

H :=.|H{¢—h

R :=-|R,r—w

S u=mnil|w::S

M := (H,R,S:0)

U o= | ULV

v = ref | box

A = | Aa|AC]Ae

X = | xr:T

o :==C(|e|T:o

Note that we define E[e]—plugging an evaluation context E with a component e—as follows:

(Er, )[(LH)] € (E[1],H)



1.1.1 Return Marker Metafunctions

The metafunctions ret-type and ret-addr-type follow the return marker in order to look up the type returned
by a component, or the type of the return address, respectively.

In the case where the return marker is r or i, ret-type is somewhat redundant since the result of ret-type
is contained in the result of ret-addr-type. But when the return marker is end{7; o}, there is no actual
return address, so only ret-type is defined. Both metafunctions are used throughout the type system.

ret-type(r, x,0) = 7;0’ if x(r) =boxV[].{r': 150’}
ret-type(i, x,0) = 7; 07 if (i) = box V[].{r’: 750’}
ret-type(end{r;0'},x,0) = 7;0’

ret-addr-type(r, x, o) = V[].{r": 73 0/ }¢ if x(r) = box V[].{r': 75 6’}
ret-addr-type(i, x, o) = V[].{r': 750/} if o(i) = box V[.{r': 750’}

1.1.2 Well-Formed Type

ac A A,abkT A,abT Al (T0y..sTn) AF

AFa A F unit A Fint AF Ja.T AF po.t At ref (15, Tn) A F box 1

1.1.3 Well-Formed Heap Value Type

The rule for the code block type uses a judgment for well-formed return markers (presented next). Note
that the external type environment A and the formal type arguments A’ are kept separate in that premise.

A, AT x AA o A[A";x;0Fq AFm AbF Ty
A FV[A]{x; o} At (ToyeesTn)

1.1.4 Well-Formed Return Marker ’A[A’]; x;o F q‘

A code block is not allowed to abstract over its own return marker. Accordingly, this judgment accepts a
type variable environment in two pieces, A and A’. A return marker variable € is only well-formed if €
appears in the outer A. Other return markers are well-formed if ret-type produces a type and stack type
that are well formed under the combined type variable environment A, A’.

When this judgment is called by the well-formed heap type judgment (see Section 1.1.3 above), the outer
A is the set of type variables in scope outside the code type, while the inner A’ contains the formal type
parameters. The latter may not bind an € in this position.

ret-type(q, x,0) = 7; 0’ AA T A, Ao’ ecA
AlAx;0q A[AT;x;o ke
1.1.5 Well-Formed Register File Type
AFx AFT
Al - AFx,r:T
1.1.6 Well-Formed Stack Type
¢eA AFT AFo
AF( A F nil AFT:io



1.1.7 Register File Subtyping | A F x1 < x2

AFx,x
AF(x,x)<x

1.1.8 Well-Typed Heap Fragment | W - H: ¥’

dom(\Il) N dom(\Il’) = (D ‘Il/ = Z1 H Vlwla e e ,en H V“Tl’n
2 SRR ") W, 0 +hy:Ylpy - O, 0 Fhy Yoy,
\I’l_{ﬁll—)hl,...,fnl—)hn};l:[l/

1.1.9 Well-Typed Register File | W | R:y
UFR:x U -Fw:T

U UFR,r— w:x,r:7

1.1.10 Well-Typed Stack

U, .Fw:T UhkS:o
Wt nil:e Uhw::S:tio0

1.1.11 Well-Typed Memory ‘ FM: (P,x,0) ‘

‘FH: ¥ TFR:x UFS:o
F(H, R, S): (¥, x;0)

1.1.12 Well-Typed Component ‘\I’; A;x;o;qbF e:‘r;a"

UI-H: ¥ boxheap(¥’) ret-type(q, x,0) = 7;0’ (T, 0'); A;x;05q -1
;A x;05qF (LH): 707

boxheap (W) def V(€:¥ ) € ¥. v =box



1.1.13 Well-Typed Heap Value | ¥ I- h: V)

-FV[A].{x; 0} U, A;x;0;qF 1T ;.- wo:To ;b w7y
W I code[A]{x; o }.I: bOXV[A].{x; o}4 U E (Woy oo s Wn):(T0se v vy Tn)
1.1.14 Well-Typed Word Value
0:7% ) e W £:P%h e W
U; A F ():unit U:AFn:int W:AF £:ref ¢ U:AF £:box
U AFw:T[T' /] ;A Fw:T[pa.T/a]
¥; A + pack(7’,w) as Ja.7: Ja.T W; A+ fold,o.r W: po.T

¥; A+ w:boxV]a, A’]l.{x; o} AT
U; A+ wlr]:box V[A].{x[r/a]; o[r/a]}alT/]

U: A Fw:box V[, A'].{x;o}? AFo’
U; A+ wlo’]:box V[A'].{x[co" /¢]; o[o’ /] ol /<]

¥; Al w:iboxVie, Al{x;0}* ftv(q) CA  AFV[A]{x[q/e];olq /e]}U/
U; A F wlq']:box V[A'].{x[d’/€]; o[q’/ €]}l /<]

1.1.15 Well-Typed Small Value

U AFw:T r:TEx U A;x Fuit[r’/a]
U A;xEw:T U A;xkr:r W: A;x F pack(r’,u) as Ja.7: Jav.T

U A;x Fu:irt[pa.t/a] W; A;x Fu:box V[a, A’].{x; o} AT
¥ A;x Ffoldya.r ut pot U; A; x F uf[r]:box V[A'].{x[r/a]; o[r/a]}alT/]

W; A;x Fu:box V[¢, A'l.{x";0}2 AFo’
W; A; x F ufo’]:box V[A']{x'[¢" /¢]; o[o” /¢] }le /€]

W; Asx Fuibox Ve, A'l{x’;0}"  ftv(d) CA  ARVAT{X[d/e];old /eyl

U; A; x Fulq]:box V[A]{xX[d /e]; o[q /€]yl /]



1.1.16 Well-Typed Instruction Sequence | ¥; A;x;o0;qF I‘

As a side-condition on this judgment, the environment q must not be € (This can be written -[A]; x; 0 F q).
This argument gives the position of the return address, and a component never abstracts over its own return
address.

The rule for sequencing instructions is straightforward: we use the postconditions of the initial instruction
¢ as preconditions to type check the remaining instructions.

VA oake= ALxolidl ALY 0d R
W Ax;o5q k41

The return instruction typechecks if the indicated point to return to matches the return marker in the
environment, and if the register containing the result has the right type. Note that our type system does
not permit returns to an address stored on the stack.

x(t) = box V[L.{'s 73030 x(') =7 X(x) = 7
W; A;x;o;r-retr{r'} U; A;x;o;end{T;0} F retend{r;0} {r}

The jump instruction is used to continue to the next code block within a component, or equivalently, to
make a tail call. This requires that the code block we jump to share the current return marker, and that its
preconditions are consistent with the current types of the register file and stack.

U As;x Furbox V[ {x’;0} AFx<X [Alix;otq
¥ A;x;05q - jmpu

To call a subroutine, we are required to protect the current return address by storing it in the tail of
the stack that is parametrically hidden from the subroutine. The type rule compares the caller’s view of the
stack at the time the call is made, o, to the subroutine’s view at the time of the call, &. It also looks at the
subroutine’s view at return time, 6. At both points, the subroutine’s view contains an abstract stack tail ¢
that must be instantiated by the caller’s stack tail type og. The return marker of the caller must be some
i that points far enough into o that the return address is in og. At return time, the part of the stack that
was not hidden from the subroutine could have changed length, so the return marker after the subroutine,
which instantiates the subroutine’s type variable €, must accordingly change.

We also have a type rule for the case of calling a subroutine from the top level, when there is no return
address and the return marker is end{7;o*}. This case works the same way, except that there is no need
to worry about lengths of stacks.

We use the shorthand A x \ q in the following typing rules to ensure that, in the case that q is some
register r in the domain of , then x without the mapping for r should be well formed under A.

At x\i ARy
AFx\r def Ak x if r ¢ dom(x)
A"Xl,r:T,Xz\I‘ déf A|_X17X2

W; A;x Fu:box V[, €].{x; 5} AFx\q ret—addr—type(q,?z, &) =V[.{r:7T;6"}¢ AbFT
At é'loo/Cl  AFRV[{R[oo/Clli+k—]/€l; &[o0/Clli+k—i/e]}* Ak x < X[oo/C]li+k—j/€]
O =Tp:i--:Tji0g G=T1pu--uTn( j<i LR FETRERETE AENe
U; A;x;0;ik callu{og,i+k—j}

W; A;x Fu:box V[(¢, €].{X;5}4
AFx\da  ret-addr-type(d, x,6) = box V[].{r: 756"} AFT  AFé&'oo/(]
A V0.8l Clend{r*s )/ Firo/Clend{r*5a"} /)0 _A - x < Siro/Clend (s} /4
o=Tuo9 O6=T: 6 =1

U; A;x;o;end{7*;0"} F callu{og,end{7*;0*}}




1.1.17 Well-Typed Instruction | ¥; A;x;o;qF = A’;x";07;q"

As a side-condition on this judgment, the environment g must not be e.
This judgment uses the following two metafunctions:

P 4 . i—n q=i>n
=i
inc(q,n) = e . dec(q,n) = < undefined gq=i<n
q otherwise .
q otherwise
Wi Aj;x F riest : int
W A;x Frg:int U A;x Fu:int qQ#rg W; A;x Fu:box V[].{x'; o }4 AFx <y
U; A;x;0;9F aop ra, rs, u = Ajx[ra:int];0;q Ui A;X; 059 bnzreest, u = Ajx; 059
W A;x Frg:ref (1,00, ) W A;x Frs:box (1o, ..y Th)
0<i<n q#rq 0<i<n qg#rq
U; A;x;05qF ldrg, il = Ajx[ra:7i);05q U A;x;05qF ldrg, rs[i] = A;x[ra:1i);05q

W A;x Frg:ref (1o,..., ) 0<i<nmn U A;xbFrg:T
U; A;x;0;5q F strali], rs = A;x([ra:ref (1o,...,)];05q

ln(m) =n  a#ra on() =n s ra
X' =x[ra:ref (T)] g =dec(q,n) X' =x[ra:box (7)] g’ =dec(q,n)
W: A;x;T :: 0;qF rallocrg,n = A;x’;0;q" W A;x;T :: 0;q Fballocrg,n = A;x;0:q"
;A xFuir  gq#ra  u#q x(rs) =7
U A;x;o;qFnvrg,u= A;x[rq: 7];059 U A;x;0;rs Fmvrg,rs = A;x[ra: 7];05ra

U A;x Fu:da.T q#rq
W: A; x;0;qF unpack (@, rq) u= A, a;x[ra: 7];0;9

U A;x Fu:po.t q#rg

W: A;x;0;qFunfoldrg,u = A; x[rq: T[pa.7/a]]; 0549

o’ =unit :: --." :;: unit 1 o q’ = inc(q,n) O=Tg:i+ " iTp_1 10 q’ = dec(q, n)
P:A;x;0;qF sallocn = A;x;0';q W A;x;0;qF sfreen = A;x;0';q
o=Tp:-cuTo q #rg o=Tp:-uTio
Wi A;x;05qF sldrg,i = A;x[ra: 7i];059 Ui A;x;05iF sldra,i= Aj;x[ra: i];0;ra
\Il;x;Al—rs:T' O =Tg:i+++TiOg \Ilgx;Al—rs:T' O =Tg:i+++3T;i0Og
o=ty T o q#i oc'=1gu-r Ty T o
U A;x;o;qF ssti,rg = A;x;0';q W A;x;0;rs Fssti,rg = A;x;o’;i



1.1.18 Reduction Relation

1.1.19 Instruction Sequence Reduction Relation | M| I)— (M |T)

((H,R,S) | aop rq,rs, u; I) —((H,R[rq — &(aop, R(rs),R(n))],S) | I)

((H,R,S) | bnzr, u; I) —{((H,R,S) | I) ifR(r)=0

((H,R,S) | bnzr,u; I) —((H, R, S) | I/[E/AD fR(r)=n,n#0
where R(u) = £[w] and H(£) = code[A]{x; o }2.I’

((H,R,S) [1drg, rs[i]; I) —((H, R[rq — w;], S) | I)

where R(rs) = € and H(£) = (W, ..., Wiyeuny, Wy)

((H,R,S) | strqli], rs; I) — ((H[f = (wo,...,W,...,wn)][, R, S) | I)
where R(rs) = w/,R(rq) = £,and H(£) = (Wo, ...y Wiy.on, Wy)

(H,R,w :: S) | rallocrq, n; I)— ((H[¢ — (W)], R[rqa — £],S) | I) if £ ¢ dom(H),len(w) =n

(
((H,R,w :: S) | ballocrq, n; I)— ((H[¢ — (W)],R[rqa — £€],S) | I) if £ ¢ dom(H),len(w) =n
((H,R,S) |mvrg,u;I) —((H,R[rq — R(u)],S) | I)

(

(H,R,S) | unpack (o, rq) w3 I) —((H, R[rq — w],S) | I[7"/a])

where R(u) = pack(r’,w) as Ja.7

((H,R,S) | unfoldrg, u; I) —{((H,R[rqa — W], S) | I) where R(u) = fold,,, » w
((H,R,S) | sallocn;I) —((H,R,() :: )| I) len(()) =n
(H,R,w :: S) | sfreen;I) —{((H,R,S) | I) len(w) =n
((H,R,S) | sldrq,i;I) —{((H,R[rqa — w;],S) | I) where S = wg -+ 12wy 1t Sp
((H,R,S) | ssti,rgI) —{((H,R,S’) | T)

where R(rg) = w’,

S=wg:--+::wj::Sg, and S’ =wgqg ::---:: W 1z Sg,
((H,R,S) | jmpu) —((H, R, S) | I[w/A])

where R(u) = £[w] and H(£) = code[A]{x; o }9.I
((H,R,S) | callu{s, q}) —{(H,R,S) | I[w/Al]lo/C][a/€])

where R(u) = £[w] and H(£) = code[A, ¢, €] {x; o }o.I
(H,R,S) |retr{r'}) —((H, R, S) | I[w/A])

where R(r) = £[w] and H(£) = code[A]{x; o }.I

where
1?(w) W d(add,ny,nz) =mny +n,
I?(r) - RA(r) d(sub,ny,na) =mn; —no
li{(u[w]) - (R(u))[wl 0(mul,nq,ne) =ng*ny
R(pack(7’,u) asJa.7) = pack(r’,R(u)) asJa.7
R(fold,,q. u) = fold 0.~ (R(1))



1.1.20 Component Reduction Relation ‘ (M| e) — (M |e)

For purposes of our step-indexed logical relation, we consider the reduction rule that loads heap values from
a component’s heap fragment into the main program heap to take 0 reduction steps.

((H,R,S) | (L, (¢ = b, H'))) —° (L, ¢ = h[¢'/€), R, S) | (I[¢'/€, H'[¢'/€])) € ¢ dom(H)

(M|TD)— (M| T')
(M (L)) — (M [ (T, -))

1.2 Contexts and Contextual Equivalence
C := (CI,H) | (I, CH)

CI = [] | L3 CI

Chg :=Cqg,f— h | H,£ — code[A]{x;0}9.Cy

1.2.1 Plug Function
(Cr, B)[(T, H')] = (C4[1], (H, H'))
(I, CH)[(II? H,)] =(, (CH[I/]7 H,))

[ =1
(5 CO = 43 Cat]

(Cu, £ — h)[I] = (Cull]),£—h
(H, £ — code[A]{x;0c}9.Cy)[I] = H, £ — code[A]{x; o }9.(Cy[I])

1.2.2 Well-Typed Context

FC: (U3 A5 03a F 307) ~ (VA% X 50030 F 75 04) |

U EH: @ ret-type(q’,x',00) =501 FCr:(V;A; ;059 1507) ~ (U, ©); A x5 005d")
F(CLH): (¥ A;x;05qF 130") ~ (U5 A x 50039 F71501)

FCu: (¥ A;x;o:qk 130") ~ (¥ W) ret-type(q’,x’,00) = 15010 (¥, ¥);A'sx"500:q" F 1
F(LCu): (¥;A;x50;qF 130") ~ (VA x5 00;9" F 1501)

vCv  ACA AbFx'<x  rettype(q,x,o) =70’
(T A x o5q b m07) > (B A x5 05.q)

VA x5 005d Fe= AYix" 0159”7 FCri (U A5y osq b m0) ~ (85 A" X 04597)
FoCri (U A x; 059 1507) ~ (U5 A x5 00;9)

H=4; — hy,..., £y — h, H =0 —h,....0 — 1
W= {0, s, £ POV [AT X 00} € ) E b ey
\If’,‘Ill_hlil’l'l/)l \I//,\I"_hn;l/"r(pn '_CI(lII’A5X7an|_T7UI)W((\I’,,\I/),Al’xl7g'o,ql)

FH, 2 — code[A'|{x;00}¥.CL,H : (U; A; x;0;q F 7507) ~ (U F W)




1.2.3 Contextual Equivalence

~ def
Ui Aix;oiq ke 7 epi T 6 =

U A;x;o5qker:ma AU A xoqb e 6 A

YO, M,V X' o', 5.
OV A xo3qk 756) ~ (x5 0%d B rél) A B M (W, X 0)
= (M [Clea]) L <= (M| Cle2]) 1)

1.2.4 CIU Equivalence

i ~ def
U:A;x;o;qb e = ey =

U Asx;osqber:m 6 AU Asxso;qbes:iT; 60 A

Yo, E, M,V o, 7', 6.
FOA N FEN(Yx;o;qbT6) > (Vssxsosd B A EMA(Y ) x, o)
= (M| E[é(e1)]) L <= (M | E[0(e2)]) |)

10



1.3 Logical Relation

Worlds and Auxiliary Definitions Worlds consist of a sequence of islands that describe the current
state of the memories (and how they are related) of the two computations we wish to relate. The essential
idea here is that the islands 6 in the sequence © will specify constraints on disjoint parts of memory. We
obtain constraints on the entire memory via a disjoint union of the memories specified by the islands.

Therefore, we begin with some simple definitions for memory objects that we will make use of in islands.
We need to be able to lift various pieces of memory to a full program memory M = (H, R, S). In many
cases, we may not want to impose a constraint on the register file and stack, so we allow L to appear in
those positions. Since disjoint heap fragments can be merged, the heap can be left unconstrained just by
using an empty heap.

O AhLL
Regs, — {R}U{L} HI = (H, 1, 1)

Stack, = {S}U{L} RI ¥ ({},R, 1)
ST < ({},L,9)

A world W consists of a step index k, a pair of heap types ¥; and ¥o, and a sequence © of islands 6.
Each island expresses invariants on certain parts of memory by encoding a state transition system and a
memory relation MR that establishes which pairs of memories are acceptable in each state. (See Dreyer et
al. [2] for details.)

The first three islands in © are distinguished: they track the register file, the stack, and the immutable
contents of the heap, respectively. We assign these islands the indices ;e ¢stk, and ipox, respectively. Further
islands can be added to a world to encode invariants about mutable data.

AW = (k, U1, 05,0) | k<n A Im>3. 0 € Island}” A

(FSreg- Oireg) = islandreg (Sreg: £) A W1k Speg- R Sreg- X1 A Vo b Speg.RoiSreg.x2) A

World,,

(Fsstk- Olistk) = islandgex (Sstk, k) A Wi b Sstk-S1:8Sstk-01 A Wa b Sgpk.So Ssik-02) A

(Fsbox- O(inox) = islandpox (Spox, k) A WIeF F spo Hp: WPox A Wief | g H, 2 whox)}
Island, {0 =(s,56mMRDbij)| s€S A SeSet A §CSxS A TCSA

0, reflexive A 0, 7 transitive A MR € S — MemRel,, A bij € S — P(Val x Val) }

MemAtom,, & { (W, My, My) | W € World,, A M;, M, € Heap x Regs, x Stack, }

4 1 oar C© MemAtom, | Y(W, My, M) € oar. YW I W. (W', My, Ms) € opr }

MemRel,,
The transition systems for 6,z and 61 encode the current contents of each side’s register file and stack,
respectively. They may transition freely between states, since the register file and stack are fairly free in how
they can change during program execution. The states of 8}, encode the contents of the immutable part of
the heap on each side. This island is allowed to transition only by adding more immutable data to the heap.

ireg 1
Sreg ={(R1,x1,R2,x2) }
islandyeg (s, k) = (S, Sregs Sreg X Sreg, Sreg X Sregs As.{(W,s.R1[,s.Ral) | W € Worldy }, Xs.0)

istk 2
Sstk :{(81701,82,02)}
islandgi (s, k) = (S, Sstk, Sstk X Sstk, Sstk X Sstk, AS-{ (W, 5.S1[,5.S2]) | W € Worldy }, As.0)

11



Thox =3

Shox ={(H1,Hz)}

Obox ={((H, H2),(Hy, H3)) | Hi C H{ N H> C Hy}

islandpox (s, k) = (8, Sbox, Oboxs Oboxs AS-{(W, (s.Hy )T, (s.H2)[) | W € Worldg }, As.0)

Two memory objects that describe disjoint parts of memory can be merged into one compound memory
object via the ® operator.

where My, My € ({H} x Regs| x Stack,)

(HlH'JHQ,R,S) WhereR:R1 lfRziJ_,R:RzlleiL
(H1,R1,51) ® (H2,R2,S2) = S=8; ifS;=1;S=8; ifS; =1

undefined otherwise

on @@y = { (W, My ® M, My ® My) | (W, My, M) € opp A (W, M1, My) € ¢y }

These are standard operations for dealing with step indexing: we can approximate a world or relation to
a given number of steps with |-];, and we can expend a step using the > operator (read “later”).

(01, 0m) ([0 O r)

(s, 8,6, 7 MR, bij)|x < (s,8,6,m, [MR],bij)

MR, s, [MR(s)]

[on ) = {(W, My, My) € o | Wik <k}
S(k+1,01,0,,0) Y (k0,0 0],

D> Qe def {(W,e1,ea) | Wk >0 = (>W,eq,e2) € pe }
>y C o (Woo,0) | Wk >0 = (W, v1,02) € 0y }
> CE W wr, w) | Wik >0 = (W, w1,ws) € o}

Future worlds W’ of a given world W, written W’ 3 W, may differ from W in any or all of the following
ways: they may have expended steps, allocated additional memory, added new islands, or taken transitions
in existing islands. Public future worlds W’ J,,, W are similar, but must have taken public transitions
from the island states in W.

(K, 0,0, ©") 3 (k, Ty, Ty, 0) Y <k ANV DU ATYDU, A O D01

A (k0,05 0) € World A (K, W), ), ') € World
(01,...,00.,) 3 (01,...,0) m'>m A Vje{l,...,m}. 0;30;
(s',8",6', 7', MR/, bij’) 3 (s, S, 6, m, MR, bij) &f (8,0, 7', MR/, bij") = (S, 6,7, MR, bij) A (s,8) €6
w'aw ZW/.k:<W.k‘/\W/QW

def

(K, W1, 05, 0") Jpup, (K, U1, V2, 0) R <k AW DU A WDU A O Dy, [0
A (k,0q1,0,,0) € World A (K, 9,0, 0) € World

(©,,...,0,) Tpup (01,...,0m) Cm! >m A Vje{l,...,m}. 6 Dpu, 6
(s/,8, 8, 7', MR’ bij’) Jpup (8,5, 6, 7, MR, bij) = def (8,9, 7', MR/, bij') = (S, 0,7, MR,bij) A (s,8') e

Given a world W, we often need to talk about future worlds of W where the only change is that new

immutable memory has been allocated. We use this notation to capture this:
W BB (Hy, Hy) & (Wk, WU, W Wy, WUy & Wy, W.Oipox — islandpox (W (ibox)-s W (Hy, Hy), W.k)])
W - Hy iUy A WU F Hy: ¥y A boxheap(¥;) A boxheap(¥s).

12



The following are convenient shorthands for frequently-used pieces of a world:

currentMR/(6) Ly, MR(6.s) W(i) = def W.O(7)

WR1 & WO (ireg)-sR1 WS € WO(isw)-5.51  Wixs & WB(ireg)-5:x1  Woor L WO (iaei)-5.01

WRy < W.O(ieg) s Ry WSy W WO(ign).5.82  Wixz L WO(ireg)-s.x2  Wooz L W.O(ign).5.02

W, € (W, Woxa, Woy) Wby & (W0y, Woxs, W)
Atoms are well-formed worlds together with a pair of components or values that are well-typed at the
indicated type under the appropriate memory type of the world.

TermAtom,,[(q1 F 71501), (Q2 F 72; 02)] «

{(W,e1,e2) | W€ World,, A W.Uy; s Wox1;Wor;q1 Fepim;or A
WUy s Woxa; Weoa;dz Fex:i ;02 }
(le,w2)| W e World,, A WUy;-Fwy:img A Wilag; - Fwa:ita }
StackAtom,, [0, 02] & (W,S1[,S27) | WeWorld, A W¥; FSy:01 A WU F Sy:02}
HvalAtom,,[1h1, 2] % { (W, h1,h2) | WeWorld, A WUy Fhy:¥ey A Wolls b hy:Vabs }
ContAtom[(qy = 71501), (2 F 125 02)] ~ [(d) F 11507), (a5 F 755 0%)] def
{(W,E1,E2) | W € World A
FE (WY Wxy; Wosqr Emo1) ~» (Wl Woxa W d) F o) A
F By (WWa; s Woxz; Wooasaz b 7a302) v (WoWla; s Wxe; Woossas - 75;05)}
ContAtom|[(qy F 71;01), (g2 b 725 02)] def
{(W,Ey, E) | 3d,db, 11,75, 07, 0%.
(W, E\, E3) € ContAtom[(q1 F 71501), (a2 F 123 02)] ~ [(d) F711507), () F 155 05)]}

N

WvalAtom,, |71, T2] def {
{

WrvalRel[71, T2] def {pw C WvalAtom|[r1, 7o) | VW, W1, W2) € . VW I W. (W' w1, W3) € ©p}
TValRel Lo {VR (71,72, 0w) | w € WvalRel[r1, 2] }
StackRel[o 1, 0'2] = {<p3 C StackAtom|[o1, 03] }

TStackRel e {SR = (01,02,ps) | ¢s € StackRel[o1,02] }

The set D[A] ensures that an environment p mapping type variables to value relations is well-formed.

D] {0}

DA, o] Y {pla — VR]| peD[]A] A VR € TValRel }

DA ] % {p[¢— SR]| peDJA] A SR € TStackRel }

DIA ] = {pler (a1,a2)] | p€DIA] A ftv(an) =0 A fiv(az) =0}

We use p; and ps to denote the substitutions formed by mapping variables in dom p to the first and
second components, respectively, of the tuples they map to.

We also use some shorthands for referring to atoms of a particular type in terms of an environment p:

TermAtom[q - 7: o] % TermAtom[(p1(a) F 1 (7); p1(0)), (p2(a) F p2(7): p2(o7)]
WvalAtom|[7]p ' WvalAtom(p: (1), pa(7)]
HvalAtom[v)]p ' HvalAtom[py (), p2 ()]

ContAtom[q - 73 0]p ~ [q' F7';0']p = ContAtom|(pa(q) = p1(7); p1(0), (pa(a1) - p2(7); p2(0))]
/ ;

~ (e (@) i (7); pi(a”)), (pa(a’) = pa(7"); pa(0))]
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The following relation says that a memory relation pj; satisfies the constraints imposed by a memory
relation ¢, in all worlds accessible from W.

oM Ew Py o V(W,M17M2) Cou. WIW = (W7M1,M2) € Oy

Wila]p = p(e).puw

Wunit]p ={ (W, (), () € WvalAtom[unit]p }

Wlint]p = {(W,n,n) € WvalAtom[int]p }

Wl3a.T]p = { (W, pack(71,w1) as p1(Fa.7), pack(12,w2) as pa(Fa.7)) € WvalAtom|[Ta.7]p |
Jp,, € WvalRel[r1, 72]. (W, w1, ws) € W[r]pla = (71, T2, 00)] }

Wlpa.t]p ={ (W, foldp1 (pevt) Wis fOIdpg(ua.T) wsz) € WvalAtom[pa.7]p |
(W, w1, w2) € W[t [pa.7/al]p}

Wiref 4] p = { (W, €1,03) € WvalAtom|[ref ¢]p | Fi. VW' T W.

(£1,05) € W'(i).bij(W'(i).s) A
Jopr. carrentMR(W' (7)) = oy ®
{(W,{£; — hy}],{fs — hs}]) € MemAtom | (W, hy, hs) € HV[4])p}}
Wlbox (11, ..., m)]p = { (W, EL’,EZ) € WvalAtom|box (14, ..., Tn>]£/|
Y(W, My, M) € current MR(W (ipox)). W I W
— (W, My(£1), Ma(£2)) € HV[(T1s- -, m)]p}
Wibox V[A].{x; #}9lp = {(W, £2[1], £2(3]) € WvalAtom(box V[A].{x; o }p |
VW, My, Ms) € current MR(W (ipox)). W I W
= (Mi(¢1) = code[B1, Al{x1;01}%.I; A
p(X) = x1lw1/B1] A pi(o) = o1[wi/Bi] A pi(a) = ailwi/Ba] A
Ms(€2) = code[Bz2, Al{x2;02}92.I2 A
p2(x) = x2[w2/B2] A pa(0) = 03[w2/B2] A pa(q) = dz[w2/B2] A
(W, (code[A]{xa; o1} .11) o1 /B,
(code[A]{x2; 72} 13 [w3/Ba]) € HVIVIA].{x; 0 }]p) }

HV[V[A]{x;o}]p =
{(W, code[A]{p1(x); p1() }P1 (D11, code[ Al {pa(x); p2(e) }#2() 1) € HvalAtom([V[A].{x; o }]p |
YW’ I W.Vp* € D[A]. V7,0’. let p' = pUp* in 7;0" =, ret-type(q, x,0) A
current MR(W/ (ireg)) €Ew R[x]p" A currentMR(W' (isek)) Ewr S[o]p’
— (W', (pi(11),-), (p5(12),-)) € E[at7;0"]p"}

0 =, ret-type(a, x, o) & pi(T); pr(0”) = ret-type(p1(a), p1(x), pr () A
p2(T); p2(a’) = ret-type(pz(a), p2(x), p2(o))

HV[(11ye oo s ma)]p={ (W, {W11s.. oy Win), (Wa1s..., Wan)) € HvalAtom[(T1, ..., T )]p |
Vj S {1, .. .,Il}. (VV, W1j7W2j) S W[[‘I'_]]]p}
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(My, M) : W SO MWD, A F My Wedy A

(Wk>0 = (W, M, M) € @{currentMR(0) | § € W.O})

def

running(k, (M | e)) = IM' e’. (M |e) —* (M’ | ')

O={(W,er,e2) | V(My,Mz) : W. ((My | er) ] A (Mz|ez)])V
(running(W.k, (M; | 1)) A running(W.k, (Mas | e2)) }

Klakr;olp  ={(W,E1,E2) | YW, d’,r1,ra.
W' 2o W A (=, 9" =, end{T;0} V
(Fr.d’ =1 A ret-addri (W, p1(q)) = W'.R1(r) A ret-addrs(W, p2(q)) = W .Ra(r) A
ret-reg; (W', r) =r1y A ret-reg,(W',r) =12)) A
(W W' R1(r1), W .Ra(rz2)) € W[r]p A current MR(W' (is1x)) €Ew- S[o]p
— (W', Ex[(ret py(a) {r1}, )], Eal(ret pa(a’) {r2},)]) € O}

a=,d E pia)=p(d) A pa(a) = pa(d)

ret-addry (W, r) = W.R4(r) ret-addry (W, 1) = W.S (i)
ret-addra (W, r) = W.Rx(r) ret-addre (W, 1) = W.S,(i)

ret-reg; (W, r) =’ if Wox1(r) = box V[].{r': 750’ }4
ret-reg,(W,r) = r’ if Woxa(r) = box V[|.{r': 750’}

Elakriolp  ={(W,e1,e2) € TermAtom|q - 7;0]p |
VE\, By (W, E1, Ep) € K[a b miolp = (W, Ei[e], Ealea]) € O}

H[{-}] = World
HIW, £:7Fp]  =H[T]N{W € World | (W,£,£) € W[ref 4]0 }
H[W, £:Po%qp] = H[P]N{W € World | (W,£,£) € W[box 10}

Rlx]p ={(W,Ral,Ral) | V(r:7) € x. (W,Ri(r),Ra(r)) € W[r]p}

S[<lp = p(C)-ps

Sle]p ={(W,nil|,nil]) | W € World }

S[r = a]p ={(W, (w1 = S))I, (w2 2 S2)[) | (W, w1, w2) € W[r]p A (W,S1],S2]) € S[o]p}

UiAixioiqb e ~epimiol WA oiqberiTio’ A WAy oiq b eaimiol A
YW, p. W e H[P] A peD[A] A
currentMR(W (iyeg)) €Ew RlxJp A
current MR(W (istk)) €w Slo]p
— (W, p1(e1), p2(e2)) € E[a b 7507]p

15



1.3.

1 Other Logical Equivalences

To simplify the structure of the Lemmas in subsequent chapters, we define the following notions of logical
equivalence for heaps, values, and instruction sequences:

Definition 1.1 (Logical Equivalence for Heaps)
UHH mg Ho: W E W HH W A UEHo: W A V(L ) € U 0, 0 + Hy(£) ~opy Ha(£): Y

def

Uk hy &y he: Yy Z U khy:Yep A UFh:Yy A VW € H][P]. (W, hy,hs) € HV[]0

Definition 1.2 (Logical Equivalence for Values)

U, A wy %WWZITdéf\I’;Al—WllT AN W AFwe:T A

YW e H[¥]. Vp € D[A]. (W, p1(w1), p2(w2)) € W[r]p
U A;x Fuy =y u2:7'déf W A;xFup:m A A xkFu:T A
VW € H[¥]. Vp € D[A]. currentMR(W (ireg)) €w Rx]p
— (W, W.R1(p1(m1)), WRz(pa(u12))) € W[r]p

Definition 1.3 (Logical Equivalence for Instruction Sequences)

1.4
1.4.

VA xoab L~ O A oqF L A B A 059k I A
YW € H[T]. ¥p € D[A].
currentMR(W (ireg)) €w Rx]p A currentMR(W (isx)) Ew Slo]p
= (W, p1((I1,+)), p2((I2,))) € E[a F ret-type(a, x, o)]p

Basic Properties

1 Operations on Worlds

Lemma 1.4 (World Extension is Reflexive and Transitive)

For any W, W’ , W' € World, we have

1. wWaIwW

2. W Dpup W

3 i W’ IW and W I W, then W 3 W

4. if W Jpup W and W’ Jpup W, then W7y, W
Proof

1. By definition of J for worlds and islands, and by the reflexivity of transition relations § in the
definition of World.

2. By definition of Jyyp, for worlds and islands, and by the reflexivity of public transition relations
7 in the definition of World.

3. By definition of J for worlds and islands, and by the transitivity of transition relations § in the
definition of World.

4. By definition of dyyp for worlds and islands, and by the transitivity of public transition relations
7 in the definition of World.

O

Lemma 1.5 (Properties of H)

1

I (M, Ms) : Woand M{ = (Hq, L, 1), M} =(Hsy, L, 1), then
(M1 L‘!’JM{,MQ H‘JMé) :WH (H17H2).
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2. (W& (Hy, Hy)) B (H,, H)) =W B (H, W H|, Hy & H}).

3. If W € World and (W H (Hy, H2)) is defined, then (W B (Hi, H2)) I W and (W B (H1, Ha)) Jpun W.

Proof

1. By definition of W (ipex).
2. By definition of W (ipex)-
3. By definition of 3, .1, and islandpey.

Lemma 1.6 (Properties of > and 1)
For any W € World, we have

1.
2.
3.
4. W' 3 W, then W I W.

5.
Proof

sW W
>W gpub w
If (Ml,MQ) : W, then (M17M2) >W.

If W 3 W, then W 3 >W.

. By definition of > and 3, it suffices to show that |0 ]w.x—1 3 |0]w.k—1 for each island § € W.O.

But this relation is reflexive, so we are done.

2. Similar.

. Note that if W.k = 0, there is nothing to show. Otherwise, the claim follows from the definitions

of MemRel and [¢r] -

. Immediate from the definition of =
5. From the definition of 3 we have W’.k < W.k and W’ 3 W. The latter implies that W’ € World,

which gives us 0 < W'.k. Hence, 0 < W.k.
Let W = (k+1,¥y, Uy, 0). We have that:

(VV/.k7 W/.\Ifl, W’.‘I’Q, W/@> | (k’ +1,¥q, Uy, @)
We must show that:
(W' kW o, W . Uy, W.0) 3 (k,¥y,¥s, |O])

It suffices to show the following:
o W'k < (>W).k: this follows from W'.k < W.k and (>W).k = Wk — 1.
o W' . W, DU;: by (4) we have W’ J W, from which this fact is immediate.
e W'.0 1 ||O|k]w .k From above we have that W’.©" J |©]s. Furthermore, since W’.k <
(>W).k =W.k —1=k, we have that | |O]x|w'r = |©]w i so we are done.

O
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1.4.2 Properties of the Observation Relation

Lemma 1.7 (O Closed under Anti-Reduction)
Given W/ I W, if Wk < W'k + ki, Wk < W'k + kg, and

V(My, Ma) : W. (M7, M3) - W' (M | er) —=F (M7 | e}) A (My | eg) —F2 (M) | eb),

then

Proof

(W', el,e5) € O = (W,eq,e2) € O.

Let (My, M) : W. Then, by our assumption, (M; | e;) —=*1 (M] | €}) and (Ms | eg) —F2 (M} | €})
for some (Mj, M4) : W’. Since (W', e,eh) € O, we have either that (Mj | €}) | and (M} | e}) | or
that running(W'.k, (M7 | €})) and running(W'.k, (M} | €5)).

In the former case, we have (M; | e1) | and (Ms | e3) | by assumption. In the latter case, we have

running(W'.k+ k1, (M | e1)) and running(W’.k + ko, (M5 | e3)). Since we have assumptions that both
of these are more steps than needed, we have the result. O]

1.4.3 Monotonicity and Reduction

Lemma 1.8 (Monotonicity)
Let p € D[A], where A+ 7 and A F 4. If W 3 W, then

1. (Wa W15W2) € W[[T]]p - (W/awlaWZ) € WIITHP
2. (VV, hl,h2) S HVH’I/)H,O - (Wl,hhhg) S HV[[T]]p

Proof

1. Proved by induction on W’.k and on the structure of 7, simultaneously with Claim 2.

In each case, we will need to show (W' w1, wa) € WvalAtom[7]p. This amounts to showing that
W' ;- F w7 for i € {1,2}. We have by assumption that W.¥;;- - w;: 7. By definition of
world extension, W/.W; D W.U;, so this property holds.
To complete the proof, consider the possible cases of 7:

Case
Case
Case
Case
Case
Case

a Follows from p(a).l € WvalRel[p(cx).71, p(c).72], which holds by p(c) € TValRel.
unit Immediate.

int Immediate.

Jda.7’ Follows from the induction hypothesis for the type.

po.m’ Follows from the induction hypothesis for the step index.

ref @) We need to show that (W’ £q,05) € W[ref ¢]p. Let W’ J W'. By transitivity

of world extension, W” I W. Thus everything we need holds by our assumption that
(VV, El,fz) S W[[I'ef wﬂp

Case

box (T1,..., ) We need to show that (W', €1,£2) € W[box (T1,...,Ta)]p-

Let (W,M{,Mé) € current MR(W/ (ipox)) such that W O w'. By definition of islandyey,
M{ = (W' (ivox)-s-H1)[ and M} = (W' (ipox).s.Ha) . By our assumption, to show

(W, M{(€1), Mj(£2)) € HV[(T1, .., 7)]p

it suffices to find some M; and Ms such that (W, My, Ms) € current MR(W (in0x)), M71(€1) =
M (£1), and My (£2) = M}(£5), noting that W 3 W follows from W 3 W' J W.

We claim that My = (W (ibox)-s.-H1) [ and My = (W (ipox).s.Ha) | are suitable. The first
condition holds immediately by definition of islandp.y. Since W’ 3 W, we know that
W (ibox) 3 | W (ibox) lw . Thus ((Hy, Ha), (H,, H})) € Spox, that is, H; C HY and Hy C H},.
Since £1 and £5 must be in the domain of H; and Hy, we have the desired property that
Ml(ﬁl) = M{(El) and MQ(KQ) = Mé(£2)
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Case box V[A].{x; o }% Let (W, M}, M}) € currentMR(W’ (inex)) such that W 23 W’. It suffices
to find some M; and My such that (W, My, Ms) € current MR(W (in0x)), M1(£1) = M{(£1),
and My (£2) = M5(€2), noting that W 3 W. This can be done exactly as in the previous
case.

2. Proved simultaneously with Claim 1.

In both cases, we need to show that (W’ , hy, hy) € HvalAtom[)]p. This amounts to showing that
W', F h;: V) for i € {1,2}. We have by assumption that W.U; - h;:¥1). By definition of world
extension, W'. ¥, D W.¥,, so this property holds.

Consider the possible cases of 1:

Case V[A].{x;0}? We need to show that (W', hy,hy) € HV[V[A].{x;0}p. Let W"” 1
W'. By transitivity of world extension, W/ 3 W. Thus everything we need holds by our
assumption that (W, hq,hy) € HV[V[A].{x; o }]p.

Case (71,...,T) Follows from Claim 1 using the induction hypothesis for the type.

Lemma 1.9 (Monotonicity for Heaps)
If W' 3 W and W € H[¥], then W' € H[¥].

Proof

We use induction on the structure of ¥. If ¥ = {-} then there is nothing to show.

If & = W/ £:7°4) then by the induction hypothesis, W’ € H[¥’], and it remains to show that
(W', £,£) € W[ref 1](. But this follows from W € H[¥’, £: ***4)] and Lemma 1.8.

If ¥ = W’ £:5°%) then by the induction hypothesis, W’ € H[¥’], and it remains to show that
(W', £,£) € W[box 1]0. But this follows from W € H[¥’, £:P°*4)] and Lemma 1.8. O

Lemma 1.10 (Monotonicity for Evaluation Contexts)
If W' Jpup W oand if either q =, ' =, end{7;0} or ret-addri (W, p1(q)) = ret-addr;(W’, p1(q’)) and
ret-addra (W, p2(q)) = ret-addra (W', p2(q’)), then

(W,Ey,E2) € K[at m;0)p = (W', Ey, E2) € K[d' = 7;0]p.
Proof
Follows from the transitivity of Jpu1, and our hypotheses about the relationship between q and q’. [

Lemma 1.11 (£[qt 7;0]p Closed under Type-Preserving Anti-Reduction)

Let (W, eq1,e2) € TermAtom[q F 7;0]p. Given W' T W, Wk < W'k + ki, Wk < W'k + kg, and
if q =, q =, end{r;0} or if ret-addr;(W, pi(q)) = ret-addr;(W’, p1(q’)) and ret-addrs(W, p2(q)) =
ret-addra (W', p2(q’)), and if

V(M My) : Wo 3(My, My) - W' (M | er) =" (M] | eh) A (My | ea) ——F2 (My | e3),

then
(W' ey, eh) € E[d’ Fm;0]p = (W, er,e1) € E[qr m;0]p.

Proof

Let (W, E1, Es) € K[q & 7;0]p. We need to show that (W, E1[e1], Ezlez]) € O. Since (W', Ey1, Es) €
Kld' b 7;0]p by Lemma 1.10, we have (W', Ey[e}], Ealeb]) € O. By inspection of the operational
semantics and by assumption, for any (M7, Ms) : W, there is an (M{, M5) : W’ such that

(M | Erler]) —" (M7 | Erlef]) and  (My | Eafeo]) —*2 (Mj | Eales)).

The result follows by Lemma 1.7. O
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1.4.4 Substitution

The next lemma is a simple property, but its proof shows the induction structure by which properties of the
mutually-dependent parts of the logical relation can be proved.

Definition 1.12
¢ imalc|e
AR := VR | SR | QR

Lemma 1.13

[Weakening] If p[¢ — AR] € D[A, £] and € & ftv(7), € & ftv(o), € & ftv(x), € & ftv(eh), then
1. S[e]p = Slo]pls — AR]
2. Rlxlp =R[x]pl¢ — AR]
3. Wlrlp = W[r]pl¢ — AR]
4. HV[]p = HV[¥]p[§ — AR]
5. €lak mio]p=Elat T;o]p[¢ — AR]
6. Klat 7;0]p=K[at 7;0]pl¢ — ARJ.
Proof

Assume € ¢ ftv(7) and € € ftv(o). We will need to prove the following:

1. (a) (VV, Sl,S2) S S[[O'ﬂp — (VV, Sl,S2) € S[[O']]p[g — AR]
(b) (W,S1,S2) € S[o]p[¢ = AR] = (W, S1,82) € S[o]p
2. (a) (W,Rq,R2) € R[xlp = (W,R1,Rz2) € R[x]p[¢ — AR]
(b) (W,R1,R2) € R[x]pl¢ = AR] = (W,R1,R2) € R[x]p
3. (a) W, wy,wa) € W[r]p = (W, w1, ws) € W[T]p[¢ — AR]
(b) (W, w1, ws) € W[T]pl§ — AR] = (W, w1,w2) € W[T]p
4. (a) (W hy,he) € HV[Y]p = (W, hy, hs) € HV[Y]p[{ — AR]
(b) (W,hy,hs) € HV[¢]pl¢ = AR] = (W, hy,hs) € HV[Y]p
5. (a) (W,e1,ez) € &qt ;0)p = (W,e1,e2) € E[qt 7;0]pl¢ — AR]
(b) (W,e1,ez) € E[qF m;0]p[¢ — AR] = (W,eq,e2) € E[at T;0]p
6. (a) (W,Ey,Es) € K[at m;0]p = (W, E1, E2) € K[qF 7;0]p[¢ — AR]
(b) (W, Ey, Es) € K[at 7;0]pl§ = AR] = (W, Ey, E») € K[qtF 7;0]p.

We will prove all these claims simultaneously, by induction on W.k and .

1. We use an additional induction and case analysis on the structure of o.

Case ( Immediate, since £ # .

Case e Immediate.

Case 7 :: o For part (a), we have S; = wy :: S, Sy = wy 2 S, (W, w1, ws2) € W[r]p, and
(W,8,8%) € S[o]p. We need to show that (W, wq, wa) € W[T]p[¢ — AR] and (W, S!,S)) €
S[o]plé — AR]. The latter holds by the induction hypothesis for o and the former holds by
claim 3.

Part (b) is similar.
2. Follows from claim 3.
3. Consider the possible cases of 7:

Case o Immediate, since o # &.
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Case unit Immediate.

Case int Immediate.

Case da.T By the induction hypothesis for 7.
Case pa.1 By the induction hypothesis for W.k.
Case ref (11,...,m,) Follows from claim 4.
Case box (71,...,T,) Follows from claim 4.
Case box V[A].{x; o"}q, Follows from claim 4.

4. Consider the two possible cases of :

Case V[A].{x; 0’} Follows from claims 1 and 2 (using the induction hypothesis for ) and
from claim 5 (using the induction hypothesis for W.k).

Case (T1,...,Tn) Follows from claim 3 (using the induction hypothesis for 7).
5. Follows from claim 6.

6. Follows from claims 1 and 3.

Lemma 1.14 (Substitution)
Let pe D[A], a € A, AL 7/ and A,a b7, A,ak o, A,at x, A,at 1. Then

1.
2.
3.
4

6.

Slelpla = (pi(7"), p2(7"), WIT'Ip)] = Slo[7'/a]lp
RIxdplec = (po(7'), p2(7), WIT'Ip)] = RIx[7'/allp
Wilrlple = (po(77), pa(77), W' [p)l = W[/ ]]p

- HV[P]plec = (po(77), p2(77), W' p)] = HV[Y [T/ e]]p
9.

Elat 7olpla = (pr(77), p2(77), WIT'lp)] = Elalr’ /o] = 77" /al;a[7"/a]]p
Klat 75 alpla = (po(77), p2(7"), WIT'lp)] = Klal7' /el F 77" /al; o[/ a]]p.

Proof

Follows the structure of the proof of Lemma 1.13. The only case that depends on p is in claim 3, in
the case where 7 = (3. But the needed equality is immediate in this case, whether o« = 3 or not. [

Lemma 1.15 (Substitution for Stack Types)
Let pe D[A], (€A, ALt o’ and A, (H71, A, (o, A, (X, A, (). Then

1.
2.

3
4

6.

Slolpl¢ = (pi(a’), p2(a”), S[o’lp)] = Slola’/Cllp
RIxIpl¢ = (p1(a’), p2(e”), S[o’]p)] = RIx[e’/<l]p

- WITIplC = (p1(a”), p2(a’),S[e’lp)] = W[’ /C]]p
- HV[P]plC = (pi(a”), pa(
5. )

a’),8[o’lp)] = HV[[e’ /Cl]p
Elak rialpl¢ = (p1(a”), p2(a’),Slo’]p)] = Elalo’ /<] F Tl /(] oo’ /C]lp
Klat m;0]pl¢ = (p1(a”), p2(a”), S[o']p)] = Klalo' /] = (o’ /¢l oo’ /C]]p.

’

Proof

Follows the structure of the proof of Lemma 1.13. The only case that depends on p(¢) is in claim 1,
in the case where o = ¢’. But the needed equality is immediate, whether ¢ = ¢’ or not. O

Lemma 1.16 (Substitution for Return Markers)
Let p e D[A], AL q',and A,eb 7, Ayet o, Ajeb x, A,et tp. Then
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L. S[o]ple = (pr(a'), p2(a))] = Slold’/€]lp

2. Rlxlple = (pr(a’), p2(a'))] = RIx[a'/€]lp

Wirlple = (pi(a’), p2(a))] = WIr[d'/€]lp

HV[]ple = (p1(a’), p2(a’))] = HV[¥[d'/€]]p

Elak mialple = (pr(d'), p2(d'))] = Elald’/e] - 7]d /e];o[a’ /€]]p
6. Klat m;o]ple = (pi(a), p2(a"))] = Kald' /€] F [d’ /€] o[d’ /€]] p.

Proof

-~ W

(@3

Followed the structure of the proof of Lemma 1.13. There are no interesting cases. O

1.4.5 Properties of Semantic Interpretations

Lemma 1.17
If p € D[A] and A F 7, then W[r]p € WvalRel[p1(7), p2(7)].

Proof
Follows from monotonicity. O

Lemma 1.18
If p € D[A] and A F o, then S[o]p € StackRel[p1(o), p2(o)].

Proof
Proceed by induction on the structure of o.

Case ¢ From A F o we have that ( € A. Since p € D[A], it follows that S[{]p = p(¢).ps €
StackRel[p1(€), p2(¢)].

Case e In this case, S[e]p = { (W,nil[,nil[) | W € World } € StackRel[e, o] is immediate from the
definition of StackRel.

Case 7 :: o Forany (W, wy :: Sq [, wy :: Sa[) € S[7 :: o]p, we need that WU, b w; :: Sy pi(7 2 o).
From the definition of S[7 :: o]p we have (W, w1, ws) € W[r]p and (W, S1[,S2]) € S[o]p, from
which we have that W.W,; - - w;: p;(7) and W, F S;: p; (o), which gives us what we need.

O

Lemma 1.19 (Register File Subtyping Implies Inclusion)
Let p € D[A] and A F x < x’. Then R[x]p € R[x']p-

Proof

Consider arbitrary (W, My, Ms) € R[x]p. Note that M; = Rq] and My = Ra[. We must show that
(W, My, My) = (W, R1[,Ral) € R[X]p-

Consider (r : 7) € x’. We must show (W, R (r), R2(r)) € W[r]p. From the hypothesis A F x < x/,
it follows that r : 7 € x. We use the latter to instantiate (W,R1[,R2]) € R[x]p, which gives us
what we needed to show. O

Lemma 1.20 (World Updates that Respect Register-File Relation)
Let currentMR(W (ireg)) €Ew R[x]p and W’ I W.

1. If W/ (ireg) = W (ireg), then currentMR(W' (iveg)) €wr R[x]p-

2. Let W = (Wk, W.W, WWs, W.Oireg — island,eg (s, W.k)]), where
s=(WRq[ra — wi],Wixi[ra : p1(7)], WRa[rq — wa], Woxa[ra : p2(7)]). If (W w1, wa) € W[T]p,
then current MR(W' (iyeg)) €Ew+ R[x[ra : T]]p-
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Proof

1. Consider arbitrary (W, My, My) € current MR(W' (iyeg )) such that W 3 W’. We must show that

(W, My, Mz) € R[x]p-

Instantiate the first premise with (W, My, M>), noting that the latter is in current MR (W (ireg))

since W' (iveg) = W (ireg), and noting that W 3 W by transitivity of J. Hence, (W, My, Ms) €

R[x]p as we needed to show.

2. Consider arbitrary (W, M, M) € currentMR (W' (ireg)) such that W 3 W’. We must show that

(W, My, Ms) € R[x]p.- Note that M; must be of the form R;| and R; = W'.R;.

Consider arbitrary (r:7’) € x[rq : 7]. We must show that (W, R4 (r), R2(r)) € W[']p.

Case r =rg: Then 7/ = 7 and R;(r) = w;, which means that it suffices to show (W, W1, Wa) €
W]r]p. This latter is immediate from the premise (W', w1, w2) € W[7]p using monotonicity
(Lemma 1.8).

Case r # rq: Then R;(r) = W/ .Ri(r) = W.R;(r), which means that it suffices to show
(W,W.R1(r), WRa(r)) € W[7']p. Instantiate the first premise with (W, W.R1[,W.Rz|)
noting that the latter is in currentMR(W (ieg)) by the definition of island,es. Also note
that W 3 W by transitivity of J. Hence, we have that (W, W.R1 [,W.R2[) € R[x]p-
Instantiating the latter with (r:7’) € x gives us (W, W.R1(r), W.Ra(r)) € W[7']p as we
needed to show.

O
Lemma 1.21 (World Updates that Respect Stack Relation)
Let currentMR(W (istk)) €Ew S[o]p and W I W.
1. If W (igx) = W (istk), then current MR(W' (igx)) €Ewr S[o]p.
2. Let W.S1 = wyy 1 -+ w2 ST, WiSa = way i -+ it way 2SY, 0 =711 0o T, ool and

W' = (Wk, WUy, W.Wy, W.Oiseic — islandseg (s, Wk)]), where
s=(81,0',5%,0"). currentt MR(W (istx)) €w+ S[o’]p-

3. Let W/ = (W.k, WU, WUy, W.Oigy + island,eg (s, W.k)]), where
s = (wyg  ov0 i wy,  S1,TL e Ty i O,Wap oce i Wap i So,Tp ocee Ty o). If
(W', wii, wai) € W[Ti]p, then curret MR(W” (it )) €wr S 2+« + it T it o]

4. Let W.S1 = wyg = -+ it wyy = Sy, WoSe = way 2 -+ i way 2 Shy 0 =71 -+ i, ool and
W' = (Wk,W.¥q, W.¥s, W.Oligy — island,eq (s, W.k)]), where
s=(wyg s Wiy Bwy ST Ty T o wey e Wy wh  Sh T e

Tp1 =7 o). IE(W' w!,wh) € W[r']p, then currentt MR(W' (isx)) €wr S it + -+ it Taq 2 7722 o] p.
Proof

1. Consider arbitrary (W, My, Ms) € currentMR (W’ (igtx)) such that W 3 W’. We must show that
(W7 M17 MQ) € S[[Uﬂp
Instantiate the first premise with (W, My, M>), noting that the latter is in currentMR (W (isx))
since W' (ist) = W(istk), and noting that W J W by transitivity of J. Hence, (W, My, Ms) €
S[o]p as we needed to show.

2. Consider arbitrary (W, My, M) € current MR (W (igtx)) such that W 2 W’. We must show that
(W, My, M) € S[o’]p. Note that M; must be of the form S!| and S! = W’.S;. The desired result
follows directly from monotonicity (Lemma 1.8) after unfolding current MR (W (istk)) €w S[o]p.

3. Consider arbitrary (W, My, Ms) € currentMR(W” (igic)) such that W 23 W’. We must show that
(W, My, M) € S[ry 2 -+ 1 7y 2 0]p. Note that M; must be of the form wjy -+ it Wy it S5
and wjp i1 ce- it Wi 12 S5 = W’.Sj. The desired result follows directly from monotonicity (Lemma 1.8)
after unfolding current MR(W (istk)) €w S[71 i -+ it Ty it o]p and premise (W, wy;, woi) €
W[ri]p.
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4. Let ¢/ = 71 2 --- it 7y iz 0. Consider arbitrary 1 < k < |¢/| such that such that (¢’ (k) = 7.
We must show that (W7W’.Sl(k),W’.S2(k)) € W[r]p.
Case k = n:  Then 7/ = 7 and W'.S;j(k) = wj, which means that it suffices to show
(W,w’l,wé) € W[r']p. This latter is immediate from the premise (W', wy,ws) € W[r]p
using monotonicity (Lemma 1.8).
Case k # n: Then W'.S;(k) = W.S;(k), which means that it suffices to show (W, W.S1(k), W.S2(k)) €
W][rk]p. Instantiate the first premise with (f/[v/, W.S1],W.S21) noting that the latter is in
currentMR(W (iyeg)) by the definition of island,es. Also note that W 3 W by transitivity
of J. Hence, we have that (W,VV.Sl [,W.Sa[) € Rlo]p. Instantiating the latter with
(1) = o (k) gives us (W, W.S1(k),W.S2(k)) € W[ri]p as we needed to show.
O
Lemma 1.22 (Heap Interpretation Extension with Boxheap)
If W e H[P], ¥+ Hy =g Hy:¥’, and boxheap(P’), then W B (Hy, Hy) € H[P, ¥’].
Proof

By induction on W.k.
To show W B (H,Hs) € H[¥, ¥'], it suffices to show

V(L ap) e (v, W), (WH (Hy,Hy), 4, 0) € W[v 4]0

where v is box or ref.

Consider arbitrary (€ :* 1) € (¥, ®’). If £ € dom(¥), for any value of W.k, it follows from the
first premise that (W, £,£) € W[v ¢]0. By Lemma 1.5 we have that W B (H;,Hy) J W, so by
monotonicity we have (W B (Hy,Hs), £, £) € W[v ]0.

Therefore, it remains for us to show that if £ € dom(¥’) then (W B (H;,Hs,), £, £) € W[box v]0.
Case W.k = 0: Consider arbitrary (W,MhMg) € currentMR((W B (Hy, H2))(ibox)) such that

= (WH(Hq,H,)). But the latter implies W .k < W.k = 0 which leads to a contradiction since
W € World which requires that W.k > 0. So we are done.

Case W.k=n+1 for n > 0: By the induction hypothesis we know that the lemma we wish to prove
holds for any W such that W.k = n. We must prove it for any W such that W.k =n + 1.
We have that £ € dom(¥’) and must show that (W 8 (Hy, Hs), £, £) € W[box ]0.

Consider arbitrary (W,Ml,Mg) € currentMR((W B (Hy,H2))(ibox)) such that W I (W B
(Hq,Hs)). Note that it must be the case that My = (W (ipox).s.H1WH1)[ and My = (W (ipox).s. HaW
Hs)[. Also, since £ € dom(¥’), from the second premise it follows that £ € dom(H;) and
£ € dom(H;). Regardless of whether ) is a code type or tuple type, it suffices to show:

(W, My(£), Ma(£)) € HV[]0

= (W, H.(£),H2(£)) € HV[]0

From the second premise, since (£ :°°* 1)) € W', it follows that:
O, O+ Hy (£) ~opy Ha(£): POXgp, (1)

Since >W € H[P] by heap monototonicity (Lemma 1.9) and since (>W).k = n, by the induction
hypothesis we have that (>W B (Hq,Hz)) € H[¥,¥’]. Thus, we can instantiate (1) with
>W B (Hy,H2), which allows us to conclude that

(W H (Hy,Hs),H (), H2(£)) € HV[v]0

Now, since W 3 (WH (Hq,Hs)), we can use by Lemma 1.6 to conclude i >(WH (Hq, Hy)).
Hence, by monotonicity, we have (W, H;(€), H2(£)) € HV[¢]0 as we needed to show.

O
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1.5 Compatibility Lemmas

Lemma 1.23 (Component)
If O+ Hy =~y Hy: W' boxheap(¥’), ret-type(q, x, o) = 7;0’, and (¥, U’'); A;x;0;qF I; &~ I, then
U A;x;05q b (In, Hy) = (I2, Hz) i 7507

Proof

From the premises, we have that ¥; A;x;o;qF (I, H;): ;07

Consider arbitrary W and p such that W € H[¥], p € D[A], currentMR(W (ireg)) €w R[x]p, and
currentt MR(W (istx)) €Ew S[o]p. We need to show that

(W, p1((11, Hy)), p2((I2, Hz))) € E[a - 750 ]p

or equivalently, noting that the typing rules for heap fragments ensure they have no free type variables,

(W, (p1(I1), Hy), (p1(I2), H)) € E[q - 750"]p

In the following, let 7; o = ret-type(q, x, o).

We will use Lemma 1.11 to complete the proof, so we start by establishing the premises of that lemma.

We claim that (W, (p1(I1), H1), (p1(I2), H2)) € TermAtom[q F 7y; 0:]p. To establish this, we
must show:
Wi Woxs; Weoss pia) B (pi(Li), Hi) : pi(72); pi(or)

Applying the typing rule, we see we need to show that
W.w; - H;: ¥’ and (W, O - Woxy; Weos; pi(a) F pi(Lh)

We know that ¥ C W.¥; (from W € H[¥]), x € W.x; (from current MR(W (ireg)) €w R[x]p),
and o C W.o; (from currentMR(W (istk)) €Ew S[ofp). Combining these with the premise
(T, ¥"); A;x;0;q F I yields what we need.

Let H) = Hy[¢’/¢] and H), = Hy[¢’/¢], where ¢/ ¢ (dom(W.¥;) U dom(W.¥5)) and ¢ are
mutually disjoint. Let " = ¥’[¢/ /¢]. Note that ¥ - H!: ¥" and boxheap(¥").

Let W' = W @ (H/, HY).

Let Hp1 = W(ipox).s.H1 and Hpa = W(ibox).s.Ha. Note that W (ihex).s = (Hp1 W H, Hyo W
Note that W’ € World.

By Lemma 1.5, we have that W’ Jp, W

Consider arbitrary (M, Ma) : W. Let M; = (Hu, Ry, S;). Note that dom(Hyy;) = dom(W. ),
which implies £/ ¢ dom(Hy;). Also note that

(i, Ri, Si) | (pi(Ti), Hi)) —0 .. 70 ((Ha, HY), Ri, Si) | (pa(T)[€/4],-))
Let M; = ((Hyii, H!), Ry, S;). From our choice of W', it follows that
(>W' Hp1 WH,, Hye W HY) € currentMR (W (ibox))

which together with (M7, Ms) : W is sufficient to show (Mj, M4) : W’.
Note that W.k < W'.k.

Note that q # €, which follows from the first hypothesis since it is a side condition of the
component typing rules.
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e Next, from our last hypothesis, by alpha-renaming locations in dom(¥”) to dom(¥")—which we
can do since £/ ¢ ¥, a fact that follows from ¢/ ¢ W.U; U W.Uy and W € H[¥]—we have the
following:

(T, 9"); Asx;o5q - 1[0 /€] ~1 L[ /€]

We instantiate the above with W’ and p. Note that W’ € H[¥, ¥”] by Lemma 1.22; p € D[A]
from above; currentMR(W(ireg)) Ewr R[x]p by Lemma 1.20 since W' (ireg) = W (ireg); and
currentMR(W' (it )) €wr S[o]p by Lemma 1.21 since W (i) = W (istx)-

Thus, we can conclude that:

(W' (pr (L) (€ /€], ), (p2(I2)[€7 /4], -)) € E[q - ret-type(q, x, o)]p-

Now, the result follows by Lemma 1.11.
O

Lemma 1.24 (Heap Fragment)
Let « Fapy, oovy oo Fapy and W/ = £y : Y21y, ..., £y Y21py, such that dom(¥) N dom(¥’) = @. If for each
i, We have ‘I’, QA hq; =~y hZiZVi’(jJi, then W El — hll, R hi, ~yg El — h21, .. .En — hznZ\I’/.

Proof

From W, W’ F hy; =y hoj: Vi, we have W, W/ | hq;: Vi and W, U/ F ho;: Yiep;. This means that
Wkl — hyp,... 8y — by, P for i € {1,2}. Now choose arbitrary ¢; — 1; € ¥/. We must show
W, W' = Hy(4;) ~p Ho(£;):Yiah,;, where H; = £4 +— h;iy, £5.... But note that Hy (#;) is hy;, and from
the hypothesis we know that W, W’ - hy; /%y, hoi: Vi1, so the result is immediate. O]

Lemma 1.25 (Code Block)
If - FV[A]l.{x;0}% and ¥; A;x;0;qF I; = I, then
P - code[A]{x; 0}9.1; =y, code[A]{x;o}9I,: boxV[A].{x; o}

Proof
By our hypothesis, ¥; A;x;0;qF 11 and ¥; A; x;0;qF I, so we have
W | code[A]{x;0}9.1;: bOXV[A].{X; c}® and VUt code[Al{x;o}%Ia: bOXV[A].{X; o}a.
Let W € H[¥]. We need to show that

(W, code[A]{x; 0}9.11,code[A]{x; o }2I5) € HV][V[A].{x; o }1]0.

Let W 3 W, p € D[A] such that current MR(W'(ireg)) Ewr R[x]p and currentMR(W' (istk)) Ewr
S[o]p. We need to show that (W', (p1(I1), ), (p2(I2),-)) € E[q b ret-type(q, x, o)]p.

By Lemma 1.9, W’ € H[®]. We can instantiate our hypothesis with W’ and p to get the result. [
Lemma 1.26 (Tuple)

If for each i, we have W; - = wy; a2y Woi: 7, then W F (Wig, ... Win) Rhy (W20, ooy Wan) Y (70, 0oy Tn).
Proof
Clearly, ¥ F (W1gy. .y Win):Y(T0y.+.sTn) and ¥ F (Wigy .-« s Win): ¥ (705« + s Tn)-

Let W € H[®]. We need to show that (W, (w1io,..., Win), (W20, ..., Wan)) € HV[(T0,. .., Ta)]0.
But this only requires that for each i, (W, wy;, wa;) € W[n:]0, and this holds by our hypothesis. [

Lemma 1.27 (Unit)
U: A+ () =y (): unit.

Proof

Immediate, by definition of W[unit]p. O
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Lemma 1.28 (Integer)
¥: A+ n = n:int.

Proof
Immediate, by definition of W[int]p. O

Lemma 1.29 (Mutable Location)
If £:7%f¢p € W, then ¥; A F £ =, £:ref 9.

Proof

By our hypothesis, ¥;- - £:ref ¢p. Let W € H[¥] and p € D[A]. We need to show that (W, ¢,£) €
W]ref 4] p. We know that ftv(¢)) = 0, so by Lemma 1.13, W[ref ¢]p = W[ref 1]0. By definition of
H[P], (W,£,£) € W[ref 10, so we are done. O

Lemma 1.30 (Immutable Location)
If £:P°%) € W, then W; A F £ =, £:box ).

Proof

By our hypothesis, ¥;- F £:box . Let W € H[¥] and p € D[A]. We need to show that (W, £,£) €
W]box 1] p. We know that ftv(z)) = @, so by Lemma 1.13, W[box 1]p = W[box 1]0. By definition
of H[®], (W, £,£) € W[box 1], so we are done. O

Lemma 1.31 (Pack)
If ;A Fwy my wa: T[T /], then ¥; A + pack(r’,w1) as Ja.T = pack(r’,w3) as Ja.7: Ja.T.

Proof

We have ¥; A + pack(r’,w;) as Ja.7: Ja.7 and ¥; A + pack(r’,wy) as Ja.7: .7 by our hy-
pothesis and the typing rules.

Let W € H[¥] and p € D[A]. We need to show that
(W, p1(pack (7’ ,w1) as a.7), pa(pack(7’,wy) as Ja.7)) € W[Ia.7]p.
By our hypothesis, (W, w1, w2) € W[r[7'/a]]p. By Lemma 1.14,
Wlr[r'/allp = Wr]ple = (pr(77), p2(77), W] [p)].
Thus we can complete the proof by supplying W[r']p as the relation required by W[3a.7]p. O

Lemma 1.32 (Fold)
If ;A F wy &y wo:T[pa.T/a], then ¥; A+ fold,,q.r W1 &y, fold,q.» Wa: po.T.

Proof

We have W; A = fold .- w1t po.7 and W; A = fold .- W : .7 by our hypothesis and the typing
rules.

Let W € H[¥] and p € D[A]. We need to show that
(W, pr(w1), p2(w2)) € W[r[pa.T/a]]p.

By our hypothesis, (W, p1(w1), p2(w2)) € W[r[pa.m/a]]p. The result follows by monotonicity. [

Lemma 1.33 (Word Type Application)
If ;A Fwy Ry wo:box Vo, A’].{x;0}? and A F 7, then

W; A b wy ]~ walr]: box VA {x[r/al; olr/a] }ol7/o.

Proof
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From the hypotheses, we have ¥; A - w;i[7]: box V[A'].{x[r/a]; o[t /a]}a7/ for i =1, i = 2.
Let W € H[¥] and p € D[A]. We need to show that
(W, pr(w[7]), p2(w2[r])) € WIbox V[A'].{x[r/al; o[r/a]}97/*]]p.

Let (’V[77 M, Ms) € current MR (W (ipox)) such that W 3 W. Instantiating the first hypothesis with W
and p, noting that W € H[¥] and p € D[A], we have that

(W, p1(w1), p2(w2)) € W[box V[ar, A’].{x; o }]p.

Hence, there must be some ¢; and w; such that p;(w;) = f¢;[w;]. Instantiating the above with
(W, My, My) € current MR(W (ibox)), noting that W 3 W, we have that M;(¢;) = code[3;, o, A {xi; o3 }4.1;,
pi(x) = xilwi/Bil, pi(o) = ailwi/Bil, pi(a) = qilwi/Bi], and

(W, (code[ar, A[{x1; 01}%.T1) [w1/B1], (code[ar, A'[{x2; 72}92.13) [w2/B2])
e WV [Vla, Al {xs o} (2)

From the above equalities, we can conclude p;(x[7/a]) = xi[wi/Billpi(T)/al, pi(o[T/a]) = oi[wi/Billpi(T) /],
and p;(q[T/a]) = qi[wi/Bi][pi(T)/].

It remains to show that

(W, (code[A[{x13 01} % T1) [w1/Ba][p1(7) /@], (code[A[{xz; 02} 12) [wa/B2] [p2(T) /)
€ HVV[A)x[r/a]; o[ /a]}al7/]p.

Let W 3 W, p* € D[A'], p/ = pU p* such that current MR(W/ (ireg)) €Ewr R[x[7/c]]p’ and
current MR(W' (igtx)) €Ewr S[o[T/a]]p’. We need to show that

(W', pi(Tifws/Ballpa(7) /), ps(T2[w2/Bzllp2(7) /) € Elalr/a] F ret-type(q[r /al, x[T /al,o[r/a])]p'.

Next, we instantiate (5) with W/, pT = p*[a = (p1(7), p2(7), W[T]p)], and 7/; sigma’ = ret-type(q, X, o),
noting that W’ 3 W and p! € Dev, A’], the latter since W[r]p € WvalRel[p (), p2(7)] by Lemma
L17. Let p”" = pUp'. Note that p" = p'[ac = (p1(7), p2(7), WT]p)] = o'l = (04 (1), pi(7), W[ )]
Using Lemma 1.14 we have that R[x[7/a]]p’ = R[x]p"” and S[o[T/a]]p’ = R[o]p”. Therefore, note
that current MR (W' (ireg)) €Ewr R[x]p"” and current MR(W' (i) €Ew S[o]p”. Hence, it follows that

(W', p}(Li[w1/Ba]), ph(T2[w2/B2)) € Elat /50']p".

Note that the above is equivalent to
(W', pi(Tilw1/Ba]lp1(T) /), p3(I2[w2/Bz][p2(T) /) € E[a k- 7'50"]p".
By Lemma 1.14, we have that
(W, pi(I1[w1/Ba]lpa(T) /), p3(T2[w2/B2]lp2(7) /) € Elalr/a] b 7'[r/a]; o' [/ ]]p'.

Finally, note that by the definition of ret-type, since ret-type(q, x, o) = 7/; o’, it follows that
ret-type(q[T/a], x[7/a],o[T/a]) = 7'[r /a]; o’[T /a], which allows us to conclude:

(W', pi(Mifws/Ballp1(7)/ ), ps(T2[w2/Bellp2(7) /) € Elalr/a] F ret-type(q[r /a], x[r /a],o[r/a])]/'.
O

Lemma 1.34 (Stack Type Application)
If ;A Fwy my wa:box V[¢, A’].{x;0}? and A F o', then

W; A b wi o] o walo’]:box V[A']. {x[o” /C; oo /] )l 4.
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Proof
From the hypotheses, we have : A F w;[o”]: box V[A].{x[c"/¢]; o[o”’ /¢]}ale’ /¢ for i = 1,4 = 2.
Let W € H[¥] and p € D[A]. We need to show that
(W, p1(w[o"]), p2(w2[o"])) € Wbox V[A']{x[o" /¢]; oo’ /¢]} 7 /.

Let (W, My, My) € currentMR(W (inox)) such that W = W. Instantiating the first hypothesis with W
and p, noting that W € H[¥] and p € D[A], we have that

(W, p1(w1), p2(w2)) € W[box V[(, A’].{x; o }]p.

Hence, there must be some ¢; and w; such that p;(w;) = ¢;[w;]. Instantiating the above with
(W, My, Ms) € current MR(W (iboy)), noting that W 3 W, we have that M;(¢;) = code[3;, ¢, A'[{x;; o3 } 4.1,
pi(x) = xilwi/Bil; pi(o) = ailwi/Bil, pi(q) = qilwi/Bi], and

(W, (code[¢, A']{x1; 01}9.11) [w1/B1], (code[C, A’} {x2; 02}92.12)[w2/Bx2])
€ HV[V[C, Al {xs o} ]p. (3)

From the above equalities, we can conclude p;(x[o’/¢]) = xilwi/Bi][pi (") /<], pi(a|o’ /C]) = aiw;i/Bi][pi () /<],
and p;(q[o’/¢]) = qi[wi/Bi][pi(a”) /<]

It remains to show that

(W, (code[A") {x1; o1} T1)[w1 /Bl [p1 (o) /¢, (code[ Al {xz3 02} .T) (w2 /Bal [p2(0”) /<))
e HVIVIA L {xlo’ /¢ oo’ /¢l /] .

Let W/ 3 W, p* € D[A'], p/ = pU p* such that currentt MR(W' (ireg)) €wr R[x[o’/C]]p" and
current MR(W” (it )) €@wr S[o[o’ /¢]]p’. We need to show that

(W', pi (T [w1/Ba]lp1(a”) /C1), p5(T2[w2 /B2l P2 (") /1)) € E[alo’ /] F ret-type(alo’ /<], x[o” /<], oo’ /CT)]p".

Next, we instantiate (6) with W', 7/; 6/ = ret-type(q, x, o), and pl = p*[¢ = (p1(a”), p2(a’),S[o']p)],
noting that W’ 3 W and p' € D[¢, A’], the latter since S[o”’]p € StackRel[p; (o), p2(o’)] by Lemma
1.18. Let p"" = pUp'. Note that p” = p'[¢ = (p1(a”), p2(c”), S[o"]p)] = p'[C = (P (0”), po(0”), S[o']0)].
Using Lemma 1.15 we have that R[x[o”/C]]p" = R[x]p" and S[o[c’/{]]p" = R[o]p”. Therefore,
note that currentMR(W'(i1eq)) Ewr R[x]p” and currentMR (W' (isk)) Ewr S[o]p”. Hence, it follows
that

(W', p}(Ta [w1/B1]), ph(T2[w2/Bz])) € Elat /507 p".
Note that the above is equivalent to
(W', pi(I1[w1/Ballp1(a”) /1), p3(T2[w2/Bz]lp2(0”) /C]) € Elat"50"]p".
By Lemma 1.15, we have that
W', pi (L [w1/Ballp1(a”) /1), p3(T2[wa/Be]lp2(0”) /<)) € Elalo’ /¢ F 7o’ /€] 0 [0 /<10

Finally, note that by the definition of ret-type, since ret-type(q, x, o) = 7’; 0", it follows that
ret-type(alo’ /¢], x[o’ /], oo’ /¢]) = 7'[o’ /]; 0 [0 /€], which allows us to conclude:

(W', pi (T [w1/Ba]lpa(a”) /C1), p5(T2]w2 /B2l [p2 (") /1)) € Elalo’ /] F ret-type(alo’ /¢, x[o” /<], oo’ /<)o"
O
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Lemma 1.35 (Return Marker Type Application)
If U; A wy ~y wa:box Ve, Al.{x;o}9, ftv(q’) € A, and A F V[A’].{x[d’/€]; o[a’ /€] }39 /€], then

U5 A F wilq'] ~o wala']:box VA]{x[d/€]; ola’ /e]}ol9 /<.
Proof
From the hypotheses, we have ;A F w;[q']: box V[A/].{x[q’/€]; o[’ /e]}ala /e for i =1, i = 2.
Let W € H[®] and p € D[A]. We need to show that
(W, p1(w1[a']), pa(w2[q'])) € Wlbox V[A'].{x[d/e]; o’[q’ /€| }la/]p.

Let (’V[77 My, Ms) € current MR(W (ipox)) such that W 3 W. Instantiating the first hypothesis with W
and p, noting that W € H[¥] and p € D[A], we have that
(W, p1(w1), pa(w2)) € W[box Ve, A'].{x; 7 }]p.

Hence, there must be some ¢; and w; such that p;(w;) = f¢;[w;]. Instantiating the above with
(W, My, Ms) € currentMR(W (inox)), noting that W 33 W, we have that M;(¢;) = code[3:, e, A']{x;; o3 } 415,
pi(x) = xilwi/Bil, pi(o) = ai[wi/Bi], pi(a) = ai[wi/Bi], and

(W, (codele, A'|{xa; o1 }9 11 [ws /B1], (codele, A"{xz; 72192 1) [wz/Ba])
e HVIVle, A {x; o}lp. (4)

From the above equalities, we can conclude p;(x[q’/€]) = xi[wi/Bi][pi(a") /€], pi(a|d’ /€]) = aiwi/Bi][pi(d’) /€],
and p;(q[q’/€]) = ai[wi/Bi][pi(d”) /€]

It remains to show that

(W, (code[A"]{x13; o1} % .T1)[w1/B1][p1(a') /€], (code[A"]{x2; 72} %2 12) [w2/Bs][p2(a') /€])
e HV[V[A'].{x[d/€]; o[d /€] }29/]]p.

Let W 3 W, p* € DI[A’], ¢/ = p U p* such that curretMR(W'(ires)) €Ews Rx[a’/€l]p’ and
current MR(W' (istx)) €wr S[o[a’/€]]p’. We need to show that

(W', pi(Ta[w1/Ba]lp () /€]), p5(T2[w2/B2][p2(a") /€])) € E[ala’/€] - ret-type(ala’/e], x[a'/e], o[’ /€])]p".

Next, we instantiate (7) with W', 7/; 0"/ = ret-type(q, x, o), and p' = p*[e = (p1(q’), p2(q’))], noting
that W' J W and p' € Dle, A’], the latter since the hypothesis specifies ftv(q’) € A and thus
fto(pi(a')) =0 . Let p” = pUpl. Note that p” = p'le = (p1(a'), p2(a'))] = p'[e = (pi(a’), po(a’))].
Using Lemma 1.16 we have that R[x[a’/€]]p’ = Rx]p” and S[o[d’/€]]p’ = R]o]p”. Therefore, note
that currentMR (W' (ireg)) €Ewr R[x]p” and current MR(W' (i) €Ew S[o]p”. Hence, it follows that

(W', pJ{(Il[wl/ﬁl]), p;(lz[b)z/ﬁz])) €&lak 7';0')p", where /50" = ret-type(q, x, o).

Note that the above is equivalent to
(W, pi(I1[w1/Ba]lpr(a’)/€]), p3(T2[w2/B2]lp2(a") /€])) € Elat7";0"]p".
By Lemma 1.16, we have that
(W', pi(Iilw1/B1]lpr(a’)/€]), p5(X2w2/B2][p2(a") /€])) € Elald’ /€] = 7'[d' /e]; o’ [a’ /€]lp.

Finally, note that by the definition of ret-type, since ret-type(q, x, o) = 7/; o’ it follows that
ret-type(alq’ /€], x[a’ /€], o[d"/€]) = 7'[d" /€]; 0" [a" /€], which allows us to conclude:

(W', pi (T [w1/Ba]lp () /€]), p5(T2[w2/B2][p2(a") /€])) € E[ala’/€] - ret-type(ala’/e], x[a'/e], o[’ /€])]p".
O
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Lemma 1.36 (Word Value)
IfW,AFwy ~y wo:T, then U; A x Fwy &y wo:T.

Proof

We need to first show that W; A; x - wq:7 and W; A; x Fwa: 7.

From the hypothesis, we know that ¥; A F wy:7 and ¥; A F wy:7, and the typing rule for small
values yields the above.

Next, consider arbitrary W € H[¥] and p € D[A] such that currentMR(W (ireg)) €Ew R[x]p. We
need to show that (W, W.Rq (p1(w1)), W.Ra(p2(w2))) € W[r]p.

Instantiating the hypothesis with W and p, noting that W € H[P] and p € D[A], we have that
(W, p1(w1), p2(w2)) € W[r]p. Note that wy and wo are not registers, which means that p;(w;) are
not registers. Hence, W.R;(p;(w;)) = pi(w;), which means our proof obligation is immediate from
(W, p1(w1), p2(w2)) € W[r]p. O

Lemma 1.37 (Register)
Ifr:7 € x, then ¥; A; x Fra,r:7.

Proof
Consider arbitrary W € H[¥] and p € D[A] such that currentt MR (W (ireg)) €Ew R[x]p-
We know p;(r) = r, which means we must show
(W, W.R4(r), Ra(r)) = (W, W.R4(r), Rz(r)) € W[r]p
Since current MR(W (ireg)) €Ew R[x]p and r: 7 € X, the definition of Rx]p yields the result. O

Lemma 1.38 (Pack)
If O; A;x b ug &=y ug: 7[7"/a], then ¥; A; x F pack(r’,uy) as Ja.7 =, pack({r’,uz) as Ja.7: Jax. 7.

Proof

We have ¥; A; x F pack(7’,u;) as Ja.7: .7 and ¥; A;x F pack(7’,uz) as Ja.7: Ja.7 by our
hypothesis and the typing rules.

Let W € H[¥] and p € D[A], where current MR(W (ireg)) €w R[x]p. We need to show that
(W, W.R1 (p1(pack(7’,uy) as Ja.7)), W.Ra (p2 (pack(7/,uz) as Ja.7))) € W[3a.7]p
which is equivalent to

(W, p1(pack(r',W.R1 (u;)) as Ja.7)), p2(pack(r’,W.Rz(u3)) as Ja.7))) € W[3a.7]p.

By instantiating our hypothesis with W and p, we have that (W, W.R (uy), W.Ra(uz)) € W[z [ /a]]p.
By Lemma 1.14,
WIr[r'/allp = Wlrlple = (p1(77), pa(77), W '1p)]-

By Lemma 1.17, W[r']p € WvalRel[p1(7'), p2(7")]. Thus we can complete the proof by supplying
WI[r']p as the relation required by W[Ja.7]p.

O

Lemma 1.39 (Fold)
If O; A;x Fuy =y up:T[pa.T/a], then ¥; A; x F fold,q.r ur =y fold,q.r uz: po.r.

Proof
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We have W; A;x F fold,q.» ur: pa.m and W5 A;x = fold, .- uz: po.m by our hypothesis and the
typing rules.

Let W € H[¥] and p € D[A] where currentMR (W (ireg)) €Ew R[x]p-
We need to show that

(W, W.R1 (p1(fold .~ 11)), W.Ra(p2(fold e~ u2))) € W]pa.T]p.

This proof goal is equivalent to
(VV, fOldpl(,u.a.T) WRl(pl (ul))7 fOldpz(/_La.'r) WRZ(p2(u2))) € W[[MCXT]]p

To establish this goal, it is sufficient to establish the following subgoal,

(W, W-R1(p1 (1)), W-R2(p2(u2))) € SW[r[pev.m/a]]p.

Using W and p from unrolling our hypothesis, ¥; A; x b uy &, uz: 7[pa.7/a] we obtain

(W, W.Ry(p1(u1)), W.R2(p2(uz))) € W[r[pov.m /] p.

We derive the desired subgoal from the above conclusion and lemmas 1.6 and 1.8.

Lemma 1.40 (Word Type Application)
If U5 A x b ug &=y ug:box Ve, A’].{x;0}? and A F 7, then

W: A; x Fuy[1] =y uz[7]:box V[A'].{x[T/a]; [T /a]}al7/l,
Proof
From the hypotheses, we have W; A; x F u;[7]: box V[A'].{x[r/a];o[r/a]}al7/ for i =1, i =2.

Let W € H[¥] and p € D[A], where current MR(W (ireg)) €Ew R[x]p-
We need to show that

(W, Ra(p1(us[7])), Ru(p2(uz2[7]))) € W[box VIA']{x[r/al; o[ /a]}7/I]p.

Let (W, My, My) € currentMR(W (ibox)) such that W 3 W. Instantiating the first hypothesis with W
and p, noting that W € H[¥] and p € D[A], we have that

(W, Ra (o1 (w1)), Ra (p2(u2))) € Wbox Ve, A'].{x; o }]p.

Hence, there must be some #; and w; such that f{i(pi(ui)) = Vl;[w;]. Instantiating the above with
(W, My, Ms) € currentMR(W (inox)), noting that W 3 W, we have that M;(¢;) = code[3;, a, A’ { x5 03 } .1,
pi(x) = xilwi/Bil, pi(a) = ai[wi/Bi], pi(a) = ai[wi/Bi], and

(W, (code[ar, A[{x1; 01}9".11) [w1/B1], (code[ar, A'[{x2; 72}92.13) [w2/B2])
e WV [Vla, Al {x; o }p. (5)

From the above equalities, we can conclude p;(x[7/a]) = xi|wi/Bi][pi(T) /], pi(o[T/a]) = oiwi/Bi][pi(T) /],
and pi(a[7/a]) = ailwi/Billpi(7) /.
It remains to show that

(W, (code[A[{x1; o1} % T1) [w1/B1][p1(7) /e, (code[A{x2; 72} 13) [w2/Bz][p2(7) /a])
€ HV[VI[A']{x[T/a]; U[T/a]}q[‘r/a]]]p'
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Let W 3 W, p* € D[A'], p/ = pU p* such that current MR(W/ (ireg)) €Ewr R[x[7/c]]p’ and
current MR(W” (igtx)) €wr S[o[T/a]]p’. We need to show that

(W', pi(Iu[w1/Ba]lpa(7) /), p5(T2[w2/B2][p2(T) /) € E[alr/a] k- ret-type(a[r/al, x[7/a], o[ /a])]p’

Next, we instantiate (5) with W', 7/; 0" = ret-type(q, x, o) and pl = p*la = (pi(7), pa(7), W[T]p)],
noting that W’ J W and that pi € Do, A’], the latter since W[t]p € WvalRel[p1(7), p2(T)]
by Lemma 1.17. Let p” = pU pf. Note that p" = p'la — (pi(7), pa(7), W[T]p)] = ’[a —
(p1(7), p5(T), W[T]p")]- Using Lemma 1.14 we have that R[x[r/a]]p’ = R[[)d]p" and S[o[r/a]]p’ =
Rlo]p”. Therefore, note that currentMR(W'(ireg)) Ewr R[x]p” and currentMR(W'(istk)) Ewr
Slo]lp”. Hence, it follows that

(W', pl (T [w1/B1]), ph(Ta[w2/Bz])) € Elat /5070
Note that the above is equivalent to
(W', pi(Ii[wi/Ballpa (1) /), ps (T2 [w2/B2l[p2(T) /) € E[at'507]p".
By Lemma 1.14, we have that
(W', pi (w1 /Ballpa () /al), p3(Ta[w2/Bal[p2(T) /) € Elalr/a] - 7'[T/al; 0’ [r/a]lp'.

Finally, note that by the definition of ret-type, since ret-type(q, x, o) = 7/; o’, it follows that
ret-type(a[t/a], x[7/a], ot /a]) = 7'[T/a]; o' [T /], which allows us to conclude:

(W', pi(Iifwi/Ballpa(7)/ ), ps(T2[w2/Be]lp2(7) /al)) € Elalr/a] F ret-type(q[r/a], x[T /a], o [T /a])]
O

Lemma 1.41 (Stack Type Application)
If W; A;x b ug sy uz:box V[, A']l.{x;0}% and A F ¢/, then

W A; x F uy[o’] =y uz[o’]:box V[A'].{x[o’ /¢]; o[o’ /¢] Fale’ /4],
Proof

From the hypotheses, we have ¥; A; x b u;[o”]: box V[A].{x[c" /¢]; o[o’ /¢] e’/ for i =1, = 2.
Let W € H[¥] and p € D[A], where currentMR(W (ireg)) Ew R[x]p-
We need to show that

(W, Ra(p1(wa[0"])), Ra(p2(uz[07]))) € Wbox V[A']{x[o" /¢]; olo”’ /¢ 37 /]p.

Let (W, My, My) € current MR (W (ip0x)) such that W 3 W. Instantiating the first hypothesis with W
and p, noting that W € H[¥] and p € D[A], we have that

(W, R (p1(w1)), Ra (p2(u2))) € W[box V[, A'].{x; 0 }]p.

Hence, there must be some ¢; and w; such that Rl(pz(ul)) = {;[w;]. Instantiating the above with
(W, Mj, Ms) € currentMR(W (inox ) ), noting that W 3 W, we have that M; (&) = code[B;, ¢, A'{xi; o3 } 915,
pi(x) = xilwi/Bi], pi(0) = oi[wi/Bi], pi(a) = ai[wi/Bi], and

(Wv (code[¢, A'[{x1; 01} .11)[w1/B1], (code[(, A']{xz2; 02}92.12)[w2/B2])
€ HV[VIC, Al {x; o }]p. (6)

From the above equalities, we can conclude p;(x[o’/¢]) = xi[wi/Bi][pi (") /<], pila[a’ /¢]) = ai[w:/Bi][pi(a”) /<],
and p;(q[o’/¢]) = aiwi/Bi][pi(a”) /<]
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It remains to show that

(W, (code[A"]{x13 o1} T1)[w1/B1][p1(0”) /<], (code[A']{xz; 02}92.1) [w2 /B2 [p2(c”) /C])
e HV[V[A'){x[o" /¢)s oo’ /¢]yale /] p.

Let W 3 W, p* € D[A'], p/ = pU p* such that currentt MR(W' (ireg)) €wr R[x[o’/C]]p" and
currentt MR(W” (igtx)) €w S[o[o’/¢]]p’. We need to show that

(W', pi (L [w1/Ba]lp1 (o) /C]), P5(T2[w2/ B2][p2(0") /<)) € Elalo’ /<] = ret-type(a[o’ /<], x[o" /<], oo’ /CI1P.

Next, we instantiate (6) with W', 7/; 0" = ret-type(q, x, o), and pf = p*[¢ = (p1(a”), p2(c”),S[o"]p)];
noting that W’ 3 W and p' € D[, A’], the latter since S[o’]p € StackRel[p1(c”), p2(o”’)] by Lemma
1.18. Let p” = pUp. Note that p” = p'[¢ = (p1(c”), p2(0”),S[e"]p)] = p'[C = (P ("), po (&), S[o"]p")].
Using Lemma 1.15 we have that R[x[o’/C]]p’ = Rx]p" and S[o[c’/¢]]p’ = Rle]p”. Therefore,
note that current MR (W' (ireg)) €Ew+ R[x]p"” and currentMR (W' (istx)) €Ew S[o]p”. Hence, it follows
that

(W', pl (11w /B1]), ph(Lz[w2/B2])) € E[at 7/50"]p", where 7/; 0" = ret-type(q, x, o).

Note that the above is equivalent to
(W, pi(I1[w1/B1]lp1(0") /C]), p5(I2]w2/Be]lp2(0") /C])) € E[a - T'50"]p".
By Lemma 1.15, we have that
(W', pi(Iiw1/B1]lp1(0’) /C]), 5 (I2]w2/B2][p2(c”) /C])) € Elale’ /¢ - 7'[0” /¢]; 0 [0 /CT1P -

Finally, note that by the definition of ret-type, since ret-type(q, x, o) = 7’; 0", it follows that
ret-type(alo’ /], x|’ /¢, oo’ /¢]) = 7'[o’ /{]; 0" [0 /€], which allows us to conclude:

(W', pi (L1 [w1/Ba]lp1 (o) /C]), P5 (T2 [wa/ B2][p2(0") /C1)) € Elalo’ /<] F ret-type(a[o’ /<], x[o” /<], oo’ /CI)1P-
O

Lemma 1.42 (Return Marker Type Application)
If O; A;x F ug =, uz:box Ve, A'].{x;0}9, ftv(q’) C A, and A F V[A'].{x[d/€]; o[q’ €]} /€] then

W5 Asx F i [a'] = uzlq]: box VIA']{x[a'/el; oq /e yla'/9.
Proof
From the hypotheses, we have ¥: A; x F u;[q’]: box V[A'].{x[d/e]; o[d /€]y /] for i =1, i = 2.
Let W € H[¥] and p € D[A], where currentMR(W (ireg)) €Ew R[x]p-
We need to show that
(W, Ra(p1(wa[a])), Ru(p2(uz[a']))) € Wlbox V[A'].{x[d'/e]; o[d’ /€] }14/I]p.

Let (W, My, My) € currentMR(W (ibox)) such that W 3 W. Instantiating the first hypothesis with W
and p, noting that W € H[¥] and p € D[A], we have that

(W, Ra (o1 (w1)), Ra (p2(u2))) € Wbox Ve, A'].{x; o}9]p.

Hence, there must be some #; and w; such that f{l(pi(ui)) = 4;[w;]. Instantiating the above with
(W, My, Ms) € current MR(W (ipoy)), noting that W 3 W, we have that M;(4;) = code[B;, €, A]{xi; o3 } .15,
pi(x) = xilwi/Bi], pi(o) = ai[wi/Bi], pi(a) = ai[wi/Bi], and

(W, (codele, A'l{x1; o1} 11) [w1 /B1], (code[e, A'){x2; 03 }9.12) [w3/B5])
€ HV[V[e, Al {x; o }p. (7)
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From the above equalities, we can conclude p;(x[q’/€]) = xi[wi/Billpi(d’) /€], pi(o|d’/€]) = oi[wi/Bil[pi(d’) /€],
and p;(q[d’/€]) = qi[wi/Bi][pi(d") /€]

It remains to show that

(Wv (code[A{x1; 01} .11)[w1/B1][p1(q’) /€], (code[A’[{x2; 02}92.12)[w2/B2][p2(d) /€])
e HV[V[A'].{x[d/e]; o[d /€] }29/]]p.

Let W 3 W, p* € D[A'], p/ = pU p* such that currett MR(W' (ireg)) €wr R[x[d'/€]]p’ and
current MR(W” (igtx)) €wr S[o[a’/€]]p’. We need to show that

(W', pi(L1[w1/Ba]lp1(a’) /€]), p3(T2[w2/B2][p2(q') /€])) € Elala’/€] - ret-type(ala’/e], x[q' /€], ola’/€])]p".

Next, we instantiate (7) with W', 7/; 0’ = ret-type(q, x, o), and p' = p*[e = (p1(d’), p2(q’))], noting
that W/ 3 W and p' € D[e, A’], the latter since the hypothesis specifies ftv(q’) € A and thus
fto(pi(a’)) =0 . Let p” = pUp'. Note that p” = p'[e = (p1(a’), p2(a’))] = p'e = (p1(d"), pr(a))]-
Using Lemma 1.16 we have that R[x[d'/€]]p’ = R[x]p” and S[o[ad’/€]]p’ = R[o]p”. Therefore, note
that currentMR (W' (iveg)) €Ew+ R[x]p” and current MR(W'(isx)) €Ew S[o]p”. Hence, it follows that

(W', pJ{ (I [w1/B1]), pz(lz[wz/ﬁz])) €&lak 7';0')p", where /50" = ret-type(q, x, o).
Note that the above is equivalent to

(W', pi(Tufws/Ballpr (') /€]), 5 (T2[w2/B2]lp2(a’) /€])) € Elat 7"507]p".

By Lemma 1.16, we have that

(W', pi(Li[w1/Ballpr(d') /€]), ps(L2[wz2/Ballp2(d’) /€])) € Elald’ /el - 7'[d /el; o’ [d /el]p'-
Finally, note that by the definition of ret-type, since ret-type(q, x, o) = 7/; 0", it follows that
ret-type(alq’ /€], x[a’ /€], o[d" /€]) = 7'[d" /€]; 0" [d" /€], which allows us to conclude:
(W', pi (M1 [w1/Billpa(a’) /€)), ps (L2 [w2/Bz]lp2(a') /€])) € Elald’ /€] F ret-type(ald’/e], x[d' /€], old’ /€l)]p'-
O
Lemma 1.43 (Arithmetic Operation)

If W; A;x b orgy &y rea:int, O; A;x F ug &, uz:int, q # rq, and ¥; A; x[rq: int];o;q - I3 =g I, then
¥; A;x;05q - aop ra, rs1, 13 11 &1 aop rq, rsz, uz; L.

Proof

Inspecting =, we see that ¥; A; x;0;q b aop ra, re, u;; I; for i € {1,2}.

Now choose arbitrary W € H[¥] and p € D[A] such that currentMR(W (ireg)) Ew R[x]p and
currentMR(W (is1x)) €w S[o]p.

We need to show (W, py((aop ra, rs1, uis Ly, +)), pa((aop ra, rsz, uz; Iz, +))) € E[q - ret-type(q, x, o)]p,

Noting that u; is either an integer or a register pointing to one, we can push the substitution in to
yield the following obligation:

(VV, (aop r'q,rsi, U135 01 (11)7 ))7 (aop I'q, sz, U2; p2(12)a ))) € gﬂq = ret'type(qa X 0')1],0-

Note that if W.k = 0 then we are done, since for any evaluation contexts E; and memories M;, we can
immediately show that running(0, (M; | E;[e;i])).

In the following, assume W.k > 0 and let 7,; o, = ret-type(q, x, o).

We will prove this by appealing to Lemma 1.11 with an empty heap fragment. In order to do this, we
show the following:
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e First, we must show that the above triple is in TermAtom|[q F ret-type(q, x, o)]p.

Since W is drawn from H[¥]p, we know it is in World, which means what we have left to show
is that:
WUy Woxa; Wooas pi(a) F pi(er) = pr(ret-type(q, x, o)) and

WWg; s Woxa; Woz; p2(q) - pa(er) : pa(ret-type(q, x, o))

where p1(e1) and pa(ez) are the two components under consideration.

From the typing judgement for components, we see that we need to show that
Wy Woxy; Weo; p1(q) F aop ra, rs1, ug; p1(I1) and similarly for the second case.

From the hypothesis, we know ¥; -; x; 0; p1(q) F aop rq, rs1, us; p1(I1). From the fact that W €
H[®], we know that W.Uy is a superset of ¥, and similarly from currentMR(W (ireg)) €Ew R[x]p
we know that W.R; contains well typed bindings for everything in x, and since W is a world, this
means W.x1 is a superset of x. Similarly, from currentMR(W (istx)) €w S[o]p we know that
W.o1 is a superset of o, and combining all of these, via weakening, we get what we need.

o Next, we must choose a W', where W’ J,u, W and Wk < W'.k+ ki, W.k + ko, where k; and ko
will be determined later.

Let s = (W.R1[ra — 6(aop, W.Rq (rs1), W.R1 (u1))], Woxa[ra : int],
W.Ra[rq — d(aop, WRa(rs2), W.Ra(u2))], W.xz[rq : int]) and

W' = (Wk,WW, Wy, W.O[ireg — Island,eq (s, W.E)]).

Since s.R; : s.xi, W’ € World and the rest is unchanged, W’ J,,, W.

e Further, we must show that the return address (if it is not end{7; o'}) is unchanged in W”’. Since
q is the same, the only way that it could have changed would be if it were a memory location
that changed, but the only change to memory is rq and from the hypothesis q # rq.

e Finally, consider arbitrary My, My : W, where (H;, R;,S;) = M;.

From (M, Ms) : W, since W.k > 0, we have (W, My, Ms) € @{ currentMR(0) | 6 € W.© }.

From the latter, we have the following fact for island t,eg: (W, R1[,R2]) € current MR(W (ireg) ).
From the latter it follows that R; = W.R;.

The reduction relation tells us that

(Hi, Ri, Si) | a0p ra, rsi ui; pi(15)) +—" {(Hi, Rifra = 8(aop, Ri(rsi), Ri(w))], Si) | pi(1)
Let M/ = (H;, Ri[ra +— d(aop, Ri(rsi), Ri(u;))], Si). Based on the definition of W', we can see
that (M7, M%) : W'. Note that k1 = ko = 1, and thus Wk < W'.k + ;.

We now instantiate the hypothesis with W’ and p. By Lemma 1.9, W’ is in H[¥] and p € D[A].
From Lemma 1.21, since W (is) = W' (i5tx), currentMR(W' (is1)) € W[sigma]p.

Using Lemma 1.20, we claim that currentMR (W (ireg)) €w R[X[rq : int]p. In order to show this,
we need that (W', 8(aop, Ry (rs1), Ri(u1)), (aop, Ry(rs2), Ri(ug))) € Wint]p.

Note that from the first two hypothesis, (W, W.R1(u1), W.Ra(uz)) € Wlint]p, which means
W.R;(u;) is an integer, and similarly for W.R;(rs;). This means that d(aop, W.R;(rs;), W.R;(u;))
is also an integer, and thus we can conclude:

(W, 8(aop, W.Ry(rs1), W.Ry (1)), 8(aop, W.Ry(rs2), W.Ra(us2))) € Wint]p

By monotonicity, it follows that:

(W', 6(aop, W' .Ry(rs1), W'.R; (u1)),6(aop, W' .Ra(rs2), W,.RQ(UQ))) € W[int]p,

With that, we can conclude that (W', p1((I1,-)), p2((I2,-))) € E[aq F ret-type(q, x[ra : int], o)]p.
Since we know that rq # ¢, ret-type(q, x[rq : int], o) = ret-type(q, x, o) and thus we can use
Lemma 1.11 to get the result.

O
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Lemma 1.44 (Branch)
If O;A;x Fry &y roiint, U5 A;x F ug =y ua:box V[[.{x’;50}9, A F x < x/, and ;A;x;0;q9 -
I; =y Iy, then ¥; A;x;0;qF bnzry,uy;l; &y bnzra, ug; Is.

Proof
Clearly, ¥; A;x;0;qF bnzry,u;l; and W; A;x;0;qF bnzry, uy; Iy follow from the premises.

Consider arbitrary W and p such that W € H[¥], p € D[A], currentMR(W (ireg)) €Ew R[x]p, and
currentMR(W (istk)) €Ew S[o]p. We need to show that

(W, p1((bnzry,uy; 14, +)), p2((bnz rz, uz; Iz,+))) = W, (bnzry, p1(u1); 11, -), (bnz rz, p2(uz); I2,+)) € £[q k- ret-tyy

Note that if W.k = 0 then we are done, since for any evaluation contexts E; and memories M;, we can
immediately show that running(0, (M; | E;[e;i])).

In the following, assume W.k > 0 and let 7;0, = ret-type(q,x,o). From our first hypothesis,
W; A;x b ry &, ro:int. Thus W.R;(r1) = W.Ra(ry). We proceed by cases on W.R;(r1)

° WRl (7”1) =0
We will use Lemma 1.11 to complete the proof, so we start by establishing the premises of that
lemma.

— (W, (bnz 11, p1(u1); p1(I1), -), (bnz ra, pa(usz); p2(I2),-)) € TermAtom|[q F 7p;0.]p. To es-
tablish this, we must show W.U;; -; W.x;; Weoy; pi(q) b (bnz vy, pi(wi); pi(Li), ) : pi(7e); pi(oy).
The latter follows from W; A; x; o;q F bnzr;, u;; I; using the component typing rule and the
properties of W and p that we have by assumption.

— We define W/ = W. Note that W’ € World since W € world .

— W Jpup W trivially.

— Consider arbitrary M; and My such that(M;, My) : W. Let M; = (H;, Ry, S;).

From (My, M) : W, since W.k > 0, we have (>W, My, M3) € @{ currentMR(0) | 6§ € W.© }.
From the latter, we obtain a fact for island iveg: (W, R1[,R2]) € currentMR(W (ireg)).
From that it follows that R; = W.R; and, hence, R;(r;) = 0.

From the above fact and the reduction semantics we derive that

((Hi, Ry, S3) | (bnz i, ps(us); p1 (L), -)) —' (Hi, Riy Si) | (i(Ti), +))

Let M! = M; = (H;, R4, S;). Note that (M7, M3) : W' is equivalent to (M7, Ms) : W, which

holds trivially by assumption.

Note that W.k = W'.k since W'.k = W.k.

— Note that q # €, which follows from the third hypothesis. Further, since we haven’t changed
the world, we can see that the the return address does not change.

— ret-type(q, x, o) = ret-type(q, x, o) holds trivially.

current MR(W/ (ireg)) €Ewr R[x]p holds trivilaly by assumption currentMR(W)(ireg)) Ew

Rlx]p and W' = W.

— currentMR(W'(isx)) €w+ S[o]p holds trivilaly by assumption currentMR(W (istk)) Ew
Slo]p and W' =W.

Hence, we can conclude that

(W', (p1(11), (p2(I2), ) € E[a k- ret-type(a, x, o)]p

Now, the result follows by Lemma 1.11.

e W.Ri(r1)=n,n#0
We instantiate the second hypothesis, ¥; A;x F uy &, uz:boxV[.{x/;0}%. with W and
p, noting W € H[¥], p € D[A], and currentMR(W (ireg)) €w R[x]p. Thus we have that
(W, Wfil(pl(ul)),Wfiz(pg(u2))) € W[box V[].{x'; 0}%]p. From the definition of the latter,
we have that WRi(pi(ui)) = EI[E]
We will use Lemma 1.11 to complete the proof, so we start by establishing the premises of that
lemma.
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— (W, (bnz 11, p1(u1); p1(I1), -), (bnz ra, pa(usz); p2(I2),-)) € TermAtom|[q F 7p;0.]p. To es-
tablish this, we must show W.U;; -; W.x;; Weoy; pi(q) b (bnz vy, pi(wi); pi(Li), ) : pi(7e); pi(oy).
The latter follows from W; A; x; o;q F bnzr;, u;; I; using the component typing rule and the
properties of W and p that we have by assumption.

— We define W’ = >W. Note that W’ € World since W.k > 0 and W € World.

— D>W Jpup W by Lemma 1.6.

— Consider arbitrary (M, M) : W. Let M; = (H;, Ry, S;).
From (M, My) : W, since W.k > 0, we have (W, My, M) € @{ currentMR(0) | § € W.O }.
From the latter, we have two facts, one for island ¢,z and the other for island 7y,x.
First, we have that (W, R1[,Rz[) € currentMR(W (iyeq)). From the latter it follows that
R; = W.R; and, hence, R;(r;) =n,n # 0 and Ri(pi(ui)) = b;[wi].
Second, we have that there exist some Hyp; C Hy; and Hyps C Hy such that (W, Hyq |
JHpo ') € currentMR(W (ipox)). We use the latter to instantiate (W, € [w1],l2[w2]) €
Wibox V[].{x’; 0 }9]p, noting that >W 3 W, which allows us to conclude:

Hbi(&) = COde[E]{Xi; O'i}qi.I;,

pi(x') = xilwi/Bil,

pi(o) = oi[wi/Bil,

pi(a) = ai[wi/Bi], and

(W, (code[[{x1; 01} .1} ) [w1/B1]; (code[[{x2; 72} %.13)[w2/B2]) € HV[V[-{X'; o }]p

Hence, we have that R;(p;(u;)) = £[wi] and H; (&) = code|[B;]{xs; o3 }9.1/, and, from the

reduction semantics and R;(r;) = n,n # 0, we derive that

((Hi, Ry, S3) | (bnz i, ps(us); p1 (L), +)) —' ((Hi, Ray Si) | (T [wi/Bi], +))

Let M/ = M; = (H;, Ry, S;i). Note that (M7, M3) : W’ is equivalent to (M, Ms) : >W,
which follows by Lemma 1.6.

— Note that W.k < W'.k+ 1 since W'.k = (bW).k =Wk — 1.

— Note that q # €, which follows from the third hypothesis. Further, since we haven’t changed
the world, we can see that the the return address does not change.

— Note that

(5W, (code[l{x1; o1 }9.1} ) [w1/B1],
(code[]{xz; 72}9.1;) [wz/B3]) € HVIV[-{x's o }]p
= (bW, code[[{x1 [w1/Bils o1 [wr /By 1 /BT, [wr /1),
code[]{xz[wa/Bzl; o2[w2/B2]}21%/P2) Ty [ws/B2]) € HVIVI.{x; o }p
= (>W, (code[]{p1(x")]; p1() }P1 (DT [w1 /31 ],
code[]{p2(x"); p2(0) }P>( .1} [w2/B2]) € HVIV[]-{x's o} ]p

Instantiate the latter with >W. We note the following:

* >W J W by reflexivity.

x ret-type(q, x’, o) = ret-type(q, x, o). The latter is immediate except in the case when
q is some register r’; in which case we must show that r’ € dom(x’) since otherwise
ret-type(q, x’, o) would be undefined. But note that from our first premise, it follows
that A F box V[].{x’; o }9. By inversion of typing rules, we have that A - V[].{x/; o},
and hence A[];x’;0 F q. From the latter it follows that ret-type(q, x’, o) is defined.
Hence, if q is some register r’, it must be that r’ € dom(x’). Moreover, from the second
premise, it follows that x’(r") = x(r"). This is enough to establish our claim.

« currentMR((>W) (ireg)) €Exw R[x']p. To show this, consider arbitrary (W, My, M) €
currentMR ((>W) (ireg)) such that W 1 >W. We must show that

*

*

*

*

*

(W, My, My) € R[x]p
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Note that (>W).k = W.k—1 and that current MR((>>W) (ireg)) = [currentMR(W (ireg)) | w.k—1-
Thus, (/VIV/, My, M) € currentMR (W (ireg)). Using the latter we can instantiate
currentMR(W (ireg)) €Ew R[x]p with (W, My, M), noting that W 3 W (by transitivity
of J), which gives us (W, My, M) € R[x]p. Finally, by Lemma 1.19 (register-file sub-
typing implies inclusion) we have that R[x]p C R[x’]p, which is sufficient to show what
we need.

 current MR(>W (ise)) €sw S[o]p. To show this, consider arbitrary (W, M, M) €
currentMR((>W) (igeic)) such that W 3 >W. We must show that

(W, My, M) € S[o]p

Note that (>W).k = W.k—1 and that current MR((>W) (istk)) = [current MR(W (isek)) | w.k—1-
Thus, (W, My, M) € currentMR(W (istk)). Using the latter we can instantiate
current MR(W (ist)) €w S[o]p with (W, My, M), noting that W 3 W (by transitivity
of 1), which gives us (W,Ml, M) € S[o]p as needed.
Hence, we can conclude that

W, (pr(I[w1/B1]), ), (p2(I5]w2/B2]), ) € E]a F ret-type(q, x’, o)]p

Now, the result follows by Lemma 1.11.

[
Lemma 1.45 (Load from Mutable Tuple)
If O; A;x F orgg &y reoiref (10,...,m), 0 <i<n,q#rq, and ¥;A;x[rq:7];0;q9 F I; =1 Iy, then
U; Asx;05q b ldrg, ralils I &1 ldrg, reeli]; L.
Proof

Clearly, ¥; A; x;0;q F 1dra, re1[i]; Ih and W5 A; x;0;q F 1drg, ree|i]; Io.

Consider arbitrary W and p such that W € H[¥], p € D[A], currentMR(W (ireg)) Ew R[x]p, and
currentMR(W (istk)) €Ew S[o]p. We need to show that

(W, p1((1dra, rai[i]; 11, +)), p2((1d v, rezli]; I2, )))
= (W, (1dra,rai[if; pr(I1), ), (Tdra, reali]s p2(I2), -)) € E[q F ret-type(q, x, o)]p.
Note that if W.k = 0 then we are done, since for any evaluation contexts E; and memories M;, we can
immediately show that running(0, (M; | E;[e;])).
In the following, assume W.k > 0 and let 7,; o, = ret-type(q, x, o).
Moreover, note the following preliminary facts:
e By instantiating our first hypothesis with W and p, we have that (W, VV.lfil(I:sl), W.R2(rs2)) €

W[[}"ef (705 ++57n)]p. From the definition of the latter, we have that W.R;(rs1) = ¢1 and
W.R2(rs2) = £2 and we know there exists an island ¢ such that

VW' O W.(€1,£2) € W' (3).bij(W'(i).s) A Jpnr. currentt MR(W' (7)) = opr ®
{ (W, {€1 — hi}],{€s — hy}]) € MemAtom | (W, hy,hs) € HV[(70s-.-,m)]p} (8)

We proceed by analogy to Lemma 1.11, but choose a world W' after choosing memories, so we cannot
use the Lemma as stated.

e We claim that (W, (1dra,rs1[i]; p1(I1), ), (1d ra, rsa[i]; p2(I2), -)) € TermAtom|[q b 7; o ]p. To
establish this, we must show W.W ;s W.x;; W.oj;pj(a) F (Ldra, rglils p;(I;), <) : pi(7e); pj(or).
The latter follows from ¥; A; x;0;q F 1drg, rgli]; I; using the component typing rule and the
properties of W and p that we have by assumption.
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e Expanding the definition of £[-], choose arbitrary E; and Es such that (W, E1, E2) € K[q F
T;0]p.
We must show that (W, E1[(1d ra, rs1i]s p1(I1), )], E2[(1d ra, rs2[i]; p2(I2), -)]) € O.

In order to do that, choose arbitrary (M;, Ms) : W. We need to show that the expressions either
both terminate with these memories or are both still running after W.k steps.

We do this by taking one step and then using the resulting memories, finding a world that we can
then use with the final hypothesis we are given.

Let M; = (Hj,Rj, S_]) for j € {1,2}.

From (Mi, M) : W, since W.k > 0, we have (W, My, M2) € @{ currentMR(0) | § € W.O }.
From the latter, we can have the following two facts, one for island 4.e, and one for the island
i (which we know exists from the preliminary facts we collected above and keeps track of the
references #; and £5 that we wish to update).

First, we have that (>W,Rq [,R2|) € currentMR(W (iyeg)). From the latter it follows that
R; = W.R; and, hence, R (rs1) = €4, f{z(rsz) = 05, (which are the same £; and £5 from our
preliminary facts above).

Second, we have that there exist some H,; C H; and H,2 C Hy such that (W, H,1[,H,2]) €
currentMR(W (7)). Instantiating (8) with W, noting W 3 W by reflexivity, we have that

currentMR(W (7)) = popr ®
{ (W, {1 — hi}], {€z — ho}]) € MemAtom | (W, hy,hs) € HV][(10,...,m)]p}

Hence, we have that H;(¢1) = H,1(¢1) = hy, and Hy(l2) = H,3(f2) = ha, as well as
(W, hq,hy) € HV[(10,...,Tn)]p. From the latter, it follows that h; = (w,...,w1,) and
hs = (wag, ..., Way). Moreover, since we have as our second hypothesis 0 < i < n, it follows
that (W, w;, wa;) € W[Ti]p.
Next, by the reduction semantics of our language, with all of the above facts in hand, we have
that:
(Mj | Ej[(Ldra, rgli]; p;(L;), ) — ((Hj, Rj[ra — wiil, Sj) | Ej[(p;(T;), -)])-
Let s = (W.Rq[rq — wii], W.xi[ra: p1(1)], W.Ra[ra — wai], Woxa[ra: p2(71)]),
Now let W/ = (W.k, W W, W. W5, W.O[ireg + island,eg (s, W.k)]).

e We claim that W’ € World.
It suffices to show W’'.¥;; - F wji: p; (7).
Since (W, w1, wai) € W[i]p and >W.¥; = W .¥;, WvalAtom gets us what we need.

e We claim that (Mj, M%) : W'.

e Instantiating the last hypothesis with W’ noting that Lemmas 1.20 and 1.21 yield the required
obligations on memory relations, we know that (W', E1[(p1(I1), )], E2[(p2(12),)]) € O.
This means that either <MJ' | E;[(p;(;),)]) 4 or running(W’ .k, (MJ' | E;i[(p; (L;), )]))-
In the former case, that clearly means that (M; | E;[(1dra, relils p;(I;), 9)]) L.

In the latter case, note that W’.k < W.k+1, which means that running(W.k, (M; | E;[(1d rq, rs[il; p;(I;), -)]))
holds, and so we are done.

O

Lemma 1.46 (Load from Immutable Tuple)
If W;A;x b reg &y rs2:box (19,..., ™), 0 <i<n, q#rg, and U;A; x[rq: 1i];0;q9 F I =1 I3, then
U; A;x;05q F 1drg, ralils I &1 1drg, reli]; L.

Proof

Clearly, ¥; A; x;0;qtF 1drg, re[i]; 11 and ®; A; x;0;q F 1drg, reafi]; In.
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Consider arbitrary W and p such that W € H[¥], p € D[A], currentMR(W (ireg)) Ew R[x]p, and
currentMR(W (istk)) €Ew S[o]p. We need to show that

(W, p1((1dra, rea[i]; 11, +)), p2((1d ra, rez2[i]; I2, +)))
= (W, (Adra, rei[i]; p1(T1), ), (1d g, rea[i]; p2(I2),+)) € E[q k- ret-type(q, x, a)]p. (9)

Note that if W.k = 0 then we are done, since for any evaluation contexts E; and memories M;, we can
immediately show that running(0, (M; | E;[ei])).

In the following, assume W.k > 0 and let 7,; o, = ret-type(q, x, o).

Moreover, note the following preliminary fact:

e By instantiating our first hypothesis with W and p, we have that (W, Wlfil(rhsl), W.Rz(rs2)) €
W[[pox (T0y+++5Tn)]p. From the definition of the latter, we have that W.R1(rs1) = €1 and
W.R2(rs2) = EQ and

V(W, My, Ms) € currentMR(W (ipox))- Waw
— (W, My (£1), Ma(£2)) € HV[(T0s-- - ma)]p} (10)

With the above fact in hand, we now prove (9).

e We claim that (W, (1drqg, rsi[i]; p1(I1), +), (1drqa, rs2[i]; p2(I2), -)) € TermAtom[q - 7; 04 ]p. To
establish this we must show W.Wy;; W.ox1; Wor;p1(q) B (1dra, rsi[i]s p1(I1), <) : p1(72); p1(or)
and WWq; s Woxa; W.oa; pa(q) F (Ldra, rs2i]; p2(I2), ) : p2(72); p2(or). Each follows from W; A; x; 0359
ldra,rsi[i]; Ih and ¥; A; x; 059 F 1drg, rsafi]; Iz respectively using the component typing rule
and the properties of W and p that we have by assumption.

e Consider arbitrary F; and Es such that (W, Ey, Es) € K[q F 7,;0:]p. We must show
(W, Eq[(1dra, e [i]; p1(I1), +)], Bo[(1d ra, rez2[i]; p2(I2),)]) € O.

Consider arbitrary (M, Mz) : W. We must show either that (M; | E1[(1dra, rs1[i]; p1(I1), <)]) 4
and (M | E2[(1drq, re2[i]; p2(I2), -)]) |, or running(W.k, (M; | E1[(1d rqa, rs1[i]; p1(I1), -)])) and
running(W.k, (M | Es[(1drq, rsa2li]; p2(I2), -)])).

Let My = (H1,R4,S1) and My = (H2, Ro, S2).

From (M, Ms) : W, since W.k > 0, we have (W, My, Ms) € @{ currentMR(0) | 6 € W.O }.
From the latter, we can have the following two facts, one for island %,e, and one for the island
Thox -

First, we have that (>W,R1[,R2[) € currentMR(W (i1eg)). From the latter it follows that
R; = W.R; and, hence, Rl(rsl) = /{4, f{2(rsg) = {5, (which are the same ¢4, f2 from our
preliminary fact above).

Second, we have that there exist some H,.y C Hy and H,5 C Hy such that (W, H,1[,H,2[) €
current MR(W (ipox))- Instantiating (10) with W, we have that

(I>VVa Hrlr (el)a Hr2r (62)) S 7'LVIK'TO’ ety Tn)]]p}

Hence, we have that Hy(¢1) = H,1(¢1) = hy, and Hy(¢2) = H,3(f2) = ha, as well as
(W, hy,hy) € HV[(70,--.,Tn)]p. From the latter, it follows that hy = (w1g,...,w1,) and
hs = (wag, ..., Way). Moreover, since we have as our second hypothesis 0 < i < n, it follows
that (W, wii, wa;) € W[r]p-
Next, by the reduction semantics of our language, with all of the above facts in hand, we have
that:

(My | Ex[(1dra, rsi[i]s p1(Ta), ) — (M7 | Ex[(p1(I1),-)])
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and

(M3 | B2[(1dra, rsz2[i]s p2(12), )]) — (M3 | E2[(p2(12),-)])
where M{ = (Hl, Rl [I’d —> Wli], Sl) with Rl(rsl) = El and Hl(él) = <W10, eeey Wiy -“7W1n>7
and Mé = (Hz, Rz[rd —> Wli]a Sz) with R2(r52) = Ez and H2(£2) = <W20, cooyg Wiy eesy W2n>.
Note that in order to complete our proof, it suffices to show:

(M7 | Ex[(pa(Ta), )} & A (M3 | E2[(p2(T2),-))) 1) Vv
(running(W-k — 1, (M7 | Ex[(p1(I1),-)])) A running(Wk — 1, (M3 | E2[(p2(12),-)])))

Let W = (W.k,W.W1, W.Wy, W.O[i1eg — island,eg (s, W.k)]) where
s = (W.Rq[ra — wi], Woxa[ra: pi(m)], WRz[ra — wai], Woxz[ra: p2(73)]).

We claim that W’ € World. Recall that we have (W, wy;,ws;) € W[7;]p. Thus we have that
W.W;; - F wji: pi(7i). Given our choice of W’ and since W € World, it follows that W’'.¥;;-
wji: pi(7;) which is sufficient to establish our claim.
Moreover, note that W’ 3 W and W’ J,,, W. Both follow immediately given our choice of W’
and the definition of island,eg.
We proceed by showing that (M7, M4) : W’ and then instantiating our final premise ¥; A; x[rq: 73]; 059 F
I; =1 1.
— We claim that (M7, M3) : W’. We prove this claim by establishing the following:

* B M{:W'.®y and F Mj: W' .®5, both of which easily follow from (M;, M3) : W and
the facts that W'.x1 = W.xi[ra: p1(7)], W.x2 = Woxza[ra: p2(7:)] and that we have
updated registers r4 in with well-typed words, i.e., with words of the types designated by
the ith elements of W.W;(£1) and W.¥5(£3), namely p;(7;) and pa(73).

* We assume that W.k > 0 (and thus W’.k > 0). We must show that

(>W', My, M}) € ®{ currentMR(0) | 6 € W'.© }

The latter follows from (M7, Ms) : W and monotonicity of MemRel given that we establish
the following claim for island 4,eg:

(W' W.Rq[rq — wai][, W.Ra[rq — wai]l) € current MR(W' (iyeg))

Recall that W'.R; = W.R;[rq — wj;]. Thus we obtain trivially that (W', W.Ry[rq —

wy;], W.Ra[rq — wai]) € {(W,W'.R;,W'.Ry) | W € Worldy}. From the latter, we
establish directly our claim that

(W' W.Rq[rq — wii][, W.Ra[ra — wai]l) € current MR(W' (iyeg))

— Next, we instantiate our final hypothesis with W’ and p. Note that p € D[A] by assumption,
W’ € H[¥] by heap monotonicity (Lemma 1.9) and that currentMR(W'(igx)) €w- S[o]p
by Lemma 1.21 since W' (istx) = W(isk). We also claim that currentMR(W' (iveg)) Ewr
Rx[ra:7i]]p. Above, we have established that (W', wy;,ws;) € W[r;]] which, using Lemma 1.20,
is sufficient to establish our claim. Hence, we have that

(W', (p1(T1,4)), (p2(12), ) € E[atk 75 0:]p

Instantiate the above with E; and F5. Note that we have (W', Ey, Es) € K[q - 7;0:]p
which follows from (W, Eq, Es) € K[q b 7v;0.]p by monotonicity for evaluation contexts
(Lemma 1.10), since our choice of W', W’ J,, W and our third hypothesis, q # rq, let us
easily establish all the premises of that lemma.

Hence, we have

(W', Exr[(p1(I1, )], Ba[(p2(12),-)]) € O.
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Instantiate the latter with M| and M}, noting that (M7, M}) : W’'. Hence, we have

(M7 [ Ex[(pr(To), D) 4 A (M3 | Eo[(p2(T2),)]) 1) Vv
(running(W.k, (M7 | E1[(p1(11),)])) A running(W.k, (Mj | E5[(p2(12),-)])))

which implies what we needed to show.

O

Lemma 1.47 (Store to Mutable Tuple)
If ;A;x F rar =y raz:ref (1o,...,™), 0 < i < n, U;A;x F rg1 =y re2: 7, and ;A x;059 F
I; =1 Iy, then ¥; A; x;0;qF strai[i], rs1; 11 =1 st razi], rs2; In.

Proof

Clearly, ; A; x;0;q F stray[i], rs13 I and ¥; A;x;0;q F st raz[i], rse; In.

Consider arbitrary W and p such that W € H[¥], p € D[A], currentMR (W (ireg)) €Ew R[x]p, and
currentMR(W (istk)) €w S[o]lp. We need to show that

(W, pr((strarli], rs13 11, +)), p2((st raz[i], rs2; Iz, +)))
= (‘/Va (St rdl[i]7 I's1s ,01(11)-, ')a (St Td2 [i]7 I's23 ,02(12)-, )) € 5[[(1 F ret—type(q, X U)]]p. (11)

Note that if W.k = 0 then we are done, since for any evaluation contexts E; and memories M;, we can
immediately show that running(0, (M; | E;le;])).
In the following, assume W.k > 0 and let 7,; o, = ret-type(q, x, o).

Moreover, note the following preliminary facts:

e By instantiating our first hypothesis with W and p, we have that (W, W.R, (ra1), W.R, (ra2)) €
Wiref (1o,...,7)]p. From the definition of the latter, we have that W.R(rq1) = £; and
W.Ra(raq2) = €2 and we know there exists an island ¢ such that

VW' 3 W.(€1,£2) € W(3).bij(W'(i).s) AJpp. currentMR(W' (7)) = o @
{(W,{€1 — hy}], {€z — ho}]) € MemAtom | (W, hy,hs) € HV[(10,...,m)]p} (12)

e By instantiating the third hypothesis with W and p, we have that (W, Wﬁl(rsl),WRz (re2)) €
W[ri]p. From the latter, we have that there exist some w’; and wi,; such that W.R; (rs1) = Wi,

and W.R» (rs2) = Why;.
With the above facts in hand, we now prove (11).

e We claim that (W, (st rai[i], rs1; p1(11), ), (st raz[i], rs2; p2(I2),-)) € TermAtom|q b 7v; or]p-
To establish this we must show W.Wy; s Wox1; Wooq; p1(q) F (st ra[i], vs1s p1(I1), <) p1(7); p1(0r)
and W.Wq; s Woxa; Woa; p2(q) F (strazli], rs2; p2(I2), ) : p2(7i); p2(oy). Each follows from
W Asx;o;qF strai|i], rs1s I and U5 A; x; 059 F st ras|i], rse; Iz, respectively, using the com-
ponent typing rule and the properties of W and p that we have by assumption.

e Counsider arbitrary F; and Es such that (W, Eq, Es) € K[q F 7,5 0] p. We must show that
(W, Eq[(strali], rs1s p1(1n), -)], E2[(st raz[i], re2; p2(I2), -)]) € O.
Consider arbitrary (M;, Mz) : W. We must show either that (M; | E1[(st ras[i], rs15 01 (I1), )]) 4
)

and (Ms | Es[(straz|i], rs2; p2(I2), -)]) J, or running(W.k, (M; | Eq1[(strai[i], rs1; p1(I1),)])
and running(W.k, (Ms | E2[(st raz|[i], rs2; p2(I2), -)]))-

Let M1 = (H]_, R]_, Sl) and M2 = (Hz,Rz, Sz)
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From (Mi, M) : W, since W.k > 0, we have (W, My, M2) € @{ currentMR(0) | § € W.O }.
From the latter, we can have the following two facts, one for island 4,e; and one for the island
¢ (which we know exists from the preliminary facts we collected above and keeps track of the
references #; and £5 that we wish to update).

First, we have that (>W,Rq [,R2[) € currentMR(W (iyeg)). From the latter it follows that
R; = W.R; and, hence, f{l(rdl) =4, R2(rd2) = L3, Rl(rsl) =Ww;, RQ(I‘dQ) = wj, (which are
the same £1, %2, w/;, and w}, from our preliminary facts above).

Second, we have that there exist some H,; C H; and H,2 C Hj such that (W, H,1[,H,2]) €
currentMR(W (7). Instantiating (12) with W, noting W 3 W by reflexivity, we have that

currett MR(W (7)) = o ®
{(W, {1 = hi}],{fz = ha}|) € MemAtom | (W, hy,ho) € HV[(7o, ... ma)]p}

Hence, we have that H;(¢1) = H,1(¢1) = hy, and Hy(¢2) = H,3(f2) = ha, as well as
(W, hq,hy) € HV[(10,...,Tn)]p.- From the latter, it follows that h; = (w,...,w1,) and
hs = (wag, ..., Way). Moreover, since we have as our second hypothesis 0 < i < n, it follows
that (>W, w1, wa;) € W[Ti]p.

Next, by the reduction semantics of our language, with all of the above facts in hand, we have
that:

((Hi, R, S1) | Ex[(stranfi], rea; p1(Ta), )]) ="' (Hi[lr — h}], Ry, S1) | Ex[(p1(Th),)])

and
((Hz, Ra, S2) | Ea[(st raz[i], rs2; p2(I2), -)]) ="' ((H2[f2 — hi], Ra, S2) | E2[(p2(I2),)])

where h] = (W10,...,W};,...,Win) and h}, = (Wag, ..., Whiy ..., Wap).
Let M{ = (Hl[ﬁl —> hll],Rl, Sl)7 let Mé = (HQ[E2 —> hlz], R2, Sz)
Note that in order to complete our proof, it suffices to show:

(M7 | Ex[(pa(Ta), ) & A (M3 | E2[(pa(T2),-))) 4) Vv
(running(W.k — 1, (M7 | Ex[(p1(11),-)])) A running(W.k —1, (M3 | E2[(p2(I2),)])))

We proceed by showing that (M7, M4) : W and then instantiating our final hypothesis ¥; A; x;0;q F
I; =1 1.
— We claim that (M7, M}) : W. We prove this claim by establishing the following:

x B M{:W.®; and = MJ: W.®5, both of which easily follow from (M, Ms) : W and the
fact that we have updated locations ¢; and £ in a type-preserving manner, i.e., with
tuples of the types designated by W.¥;(£1) and W.W5(€3), namely p1 ({70, ..., ™)) and

p2({Tos -5 Tn))-
* We assume that W.k > 0 and we must show that

(>W, M{, Mj) € ®{ currentMR(0) | 6 € W.O }
The latter follows from (My, Ms) : W, if we establish the following claim for island i:
(>W,H1[€1 — b, H.1[€1 — hi]l) € currentMR(W (2))

Recall that

currett MR(W (7)) = o1 ®
{ (W, {€1 — hi}],{fs > hy}]) € MemAtom | (W, hy,hs) € HV[(10s- .. ma)]p}
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Note that by monotonicity, we have (>W, w),, w5.) € W[ri]p. From the latter, together
with (>W, hy, ha) € HV[(70, . . ., Ta)]p, it follows that (W, h, h}) € HV[(70,. .., Ta)]p.
Also, from (W, H,1],Hy2] ) € currentMR(W (4)), we have that (W, H,q \ {1}, Hyo \ {€2}) €
M-
The latter two facts, are sufficient to establish our claim that (>W,H,q[¢; — h{] |
JHy1[€1 — hi]l) € currentMR (W (7)).

— Next, we instantiate our final premise with W and p. Note that W € H[¥], p € D[A],

currentMR(W (ireg)) €w R[x]p, and current MR(W (isk)) €Ew S[o]p. Hence, we have that

(W (pr(T154)); (pa(I2),-)) € Ela 7w 0xlp

Instantiate the above with F; and Es. Note that we have (W, Ey, Es) € K[q F 7v;0.]p.
Hence, we have
(W, Ex[(p1(11, )], E2[(p2(I2), -)]) € O.

Instantiate the latter with AM{ and Mj, noting that (M7, M) : W. Hence, we have

(M7 [ Ex[(pr(Ta), )] L A (M3 | Eol(p2(I2),)]) 4) V
(running (W-k, (M7 | Ex[(p1(11),-)])) A running(Wek, (Mj | Ea[(p2(I2),-)]))

which implies what we needed to show.

Lemma 1.48 (Allocate Mutable Tuple)
If len(7) = n, q # ra, and ¥; A; x[rq:ref (7)];0;dec(q,n) F Iy =5 I,
then ¥; A;x;T :: 0;qF rallocrg,n;I; =y rallocrg, n;I,.

Proof

Clearly, W; A; x;T :: 0;q F rallocrg,n;I; and W; A;x; 7T :: 0;q - rallocrg, n; L.

Consider arbitrary W and p such that W € H[¥], p € D[A], currentMR(W (ireg)) €Ew R[x]p, and
current MR(W (istk)) Ew ST :: o]p. We need to show that

(VVv pl((ralloc rq,n; I, ))7 pQ((ralloc rq, n; I, ')))
= (W, (rallocrg,n;pi(I1),-), (rallocrq, n; pa(I2), ) € E[qt ret-type(q, x, T :: o)]p. (13)

Note that if W.k = 0 then we are done, since for any evaluation contexts E; and memories M;, we can
immediately show that running(0, (M; | E;[e;])).
In the following, assume W.k > 0 and let 7; o, = ret-type(q, X, 7 :: o) and T =7y -+ 22 Ty,

Moreover, note the following preliminary facts:

e By our first hypothesis, we have that m = n.

e By our third hypothesis and the typing rules, we have that , dec(q,n) # € and dec(q,n) #
undefined. A consequence of the latter fact is that if g =i then i > n.

e By our assumption currentMR(W (ist)) €Ew S[7T :: o]lp and the first fact, we have there exist
W11y ooy Win, W21y ooy W2n, Si and Sé such that WSl = W11 v Wi i, WSQ = Wagq it -
wap, 2 Sh and (W, wy;, we;) € W[Ti]p.

With the above facts in hand, we now prove (13).

e We claim (W, (rallocrqg, n;pi(I1),-), (rallocrg, n; pa(I2),)) € TermAtom[q F 7+; 0r]p. From
the definitions of TermAtom[q - 7¢; 0,]p and TermAtom[q - 7; 0] , it suffices to show
W Wox; Weois pi(a) F (rallocra, ns pi(Ih), -) 1 p1(7:); p1(or) and Wy s Woxe; Woa; p2(q)
(rallocrqg,n; pa(I2),-): pa(7r); p2(or). Each follows from W; A;x;7T :: o;q F rallocrg, n; Iy
and W; A;x;T :: 0;q F rallocrg, n; I respectively using the component typing rule and the
properties of W and p that we have by assumption.
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e Consider arbitrary F; and Es such that (W, Ey, Es) € K[q b 7,;0:]p. We must show that
(W, Eq[(rallocrg, n; p1(I1), -)], Fal[(rallocrq, n; po(I2),-)]) € O.

Let My = (H1,R4,S1) and My = (H2, Ro, S2).

From (Mi, M) : W, since W.k > 0, we have (W, My, My) € @{ currentMR(0) | § € W.O }.
From the latter, we can have the following facts for island 4.

We have that (W, S1[,S2]) € current MR(W (igx)). From the latter it follows that S; = W.S; =
Wy1 e W S;.

Next, by the reduction semantics of our language, with all of the above facts in hand, we have
that:

(My | Eq[(rallocra, n;pi(Lh), )])— (M1 | Er[(p1(11),")])
and
(M3 | Es[(rallocra, n pa(I2), -)]) —(My | Ba[(p2(I2),-)])
where M| = (H,R/,S’) where R} = Rq[rqg — (1] and H| = Hy[(; — (w11, ,w1p)], and
where M; = (H), R, S),) where R}, = Ra[rq — ¢3] and H, = Hy[ly — (war, -+, wap)].
Note that, by the reduction semantics, ¢1 € dom(Hy) and {5 & dom(Hs).
Note that in order to complete our proof, it suffices to show:

(M7 | Ex[(pa(Ta), )} & A (M3 | E2[(p2(12),)])) 1) Vv
(running(W.k — 1, (M7 | Ex[(p1(11),-)])) A running(W-k — 1, (M; | Ez[(p2(I2),-)])))

Let W' = (W.k, ¥}, W), 0") where
1. \IIJ’ =W, 4 (g )
O =0]+1 =i
Vi & {ireg, itk ie}. ©'(i) = W.O(i);
O (ireg) = islandyeg (s, W.k) with s = (W.Rq[rq — £1], Woxa[ra: pi(vef (71, ,ma))],
WRa[rq — 2], Woxz[ra: pa(ref (11, -+ ,m))]).
O’ (istk) = islandgy (s, W.k) with s = (Sq1, 0, Sa, 0);
6. ©'(i¢) is such that VIV J W.
(£1,L2) € W'(ig).bij(W' (ig).s) A
Jppr. currentMR(W'(ip)) = o @ .
{(W,{€1 — hi}],{€s — ha}]) € MemAtom | (W,hq,hs) € HV[(T1,--- ,m)]p}}
We claim that W’ € World. Recall that we have (W, wy;,ws;) € W[7;]p. Thus we have that

W.Wj; - = wj;: pj(7;). Given our choice of W’ and since W € World, it follows that W'. ¥ ;- +
wji: pj(7;) which is sufficient to establish our claim.

Moreover, note that W’ 3 W and W’ Jp1, W. Both follow immediately given our choice of W’
and the definition of island,es, and islandgq.

e

ot

We proceed by showing that (M7, M}) : W’ and then instantiating our final hypothesis
W; A;x[ra:ref (T)];0;dec(q,n) F I; ~1 I

— We claim that (M7, M3) : W’. We prove this claim by establishing the following:
x« = M{:W'.®; and b M} : W' .®5. Note the following facts:
- Wixa = Wxa[ra: pi(mi)] and W'xz = Woxz[ra: p2(7i)];
- W'.o1=0and W.oy = 0;
W =Wy T ) and WUy = WoWs, by " (1, 7).
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Both claims follow easily from (Mj, My) : W, the above facts, the fact that we have
initialized location £ in both memories with well-typed words, i.e., with tuples of types
p1({Toy ..., m)) and p2((70,...,Tn)), and the fact that we have updated registers r4 to
hold locations that point to well-typed words, i.e., the locations £; and £ that point to
words of types p1({(Toy ..., ™)) and po({To, ..., Tn)).

*x We assume that W.k > 0 (and thus W’.k > 0). We must show that

(W', M{, Mj) € Q){ currentMR(0) | 6 € W.© }

The latter follows from (M7, Ms) : W and monotonicity of MemRel given that we establish

the following claims:

1. Forisland tyeg, (W', W.R1[rq — wii][, W.Rz[rq — wa;][) € currentt MR(W' (i1eg));

2. For island ig, (W', S1,595) € currentMR(W” (4s4x) );

3. Forisland ig, (W', {£1 — (W11, , Win)} ,{f2 — (Wa1,- -+ ,Wan)}) € currentMR(O’(i()).
For the first claim recall that W’.R; = W.R;[rq — wj;]. Thus we obtain trivially that

(W', W.Ry[rq — wyi], W.Ra[ra — wai]) € {(W,W’'.Ry,W'.Ry) | W € Worldy.; }.

From the latter, we establish directly our claim that

(W', W.Rq[rqa — wii][, W.Ra[rq — wai]]) € currentMR(W (iyeg))

For the second claim recall that W’..S; = S;. Thus we obtain trivially that (>W’, S}, 5%) €
{(W,W’'.51,W'.Ss) | W € Worldy ;. }. From the latter, we establish directly our claim
that

(W', 87, 5%) € current MR(W' (gt ) )

For the fourth claim recall that we have (W, wy;, wa;) € W[r;]p. Thus, from monotonicity
(lemma 1.8), we obtain (>W' wy;, we;) € W[r;]p. Moreover, by construction island
W'(i,) is such that YW’ J W.

(€1,€2) € W' (ie).bij(W'(ic).5) A

Jppr. carrentMR(W (i0)) = o1 ®

{(W,{y — hi},{ls — ha}]) € MemAtom | (W,hy,hs) € HV[(11, -+ ,m)]p}}
From the latter, we establish directly our claim that

(DW/, {£1 —> <W11, cee W1n>}r N {Ez — <W21, LU ,W2n>}[) S CurrentMR(@'(il))

— Next, we instantiate our final hypothesis with W’ and p. Note that p € D[A] by assump-
tion, W’ € H[P] by heap monotonicity (Lemma 1.9). Let W that is the same as W’
but W (istk) = W(istk) W' (istk) = W(isek). We claim that currentMR(W” (isek)) €wr
S[r1 2+« i i o] p by the first case of lemma 1.21 and currentMR(W" (ireg)) €Ewr R[x]p
by the first case of lemma 1.20. Let W' that is the same as W but W' (i;stk) = W' (i;stk).
Clearly W 3 W" and W' J W'’. We claim that currentt MR(W" (istx)) €w» S[o]p by the
second case of lemma 1.21 since W' (ig) = islandgk (s, W.k) with s = (S, 0, S2,0) where
W (istk) = islandgk (s, Wok) with s = (wyg = -+ 2wy 081,71 5 -0 00 T 2t o way v i
Wop it S2,T1 i -+- 1 Ty it 0). Moreover we claim that currentMR(W" (ireg)) €Ewr Rx]p
by the first case of Lemma 1.20. Finaly, we claim that currentMR(W'(istk)) €w S[o]p
and currentMR(W (ireg)) €wr R[x[ra:7i]]p. The first follows directly from the first case
of lemma 1.21 since we have shown that current MR(W"' (istx)) Ewr S[o]p and W' I W',
The second follows directly from the second case of lemma 1.20 since, above, we have estab-
lished that (W', wy;, we;) € W[r,] and currentt MR(W" (ireg)) €Ewr R[x]p, and W' I W".
Hence, we have that

(W/a (pl(Ilv ))7 (/_72(12), )) € E[[q F Tr; Urﬂp

Instantiate the above with E; and F5. Note that we have (W', Eq, Es) € K[q - 7;0:]p
which follows from (W, Eq, Es) € K[q b 7;0.]p by monotonicity for evaluation contexts
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(Lemma 1.10), since our choice of W', W' J,,, W and our third hypothesis, g # rq, and
the preliminary fact that if q = i then i > n let us easily establish all the premises of that
lemma.

Hence, we have

(W', Exl(pr(L1, )], B2[(p2(I2), -)]) € O.
Instantiate the latter with M| and M}, noting that (M7, MJ) : W’. Hence, we have

(M7 [ Ex[(pr(To), D) & A (M3 | Eo[(p2(T2),)]) 1) V
(running(W-k, (M7 | Ex[(p1(T1),-)])) A running(W.k, (M3 | E2[(p2(12),-)])))

which implies what we needed to show.

Lemma 1.49 (Allocate Immutable Tuple)
If len(7) = n, q # ra, and ¥; A; x[rq: box (T)]; o;dec(q,n) F I ~p I,
then U; A;x;T :: o;q F ballocryg, n;I; =y ballocry, n;Is.

Proof

Clearly, ¥; A; x;7 :: o0;q F ballocrg,n; Iy and W; A;x; 7 :: o;q F ballocrg, n;Is.

Consider arbitrary W and p such that W € H[¥], p € D[A], currentMR(W (ireg)) €Ew R[x]p, and
currentt MR(W (igt ) €Ew S[T :: o] p. We need to show that

(VVa pl((balloc rq,n; I, ))’ P2((ba1100 rq, n; I, ')))
= (W, (ballocrg,n; p1(I1),+), (ballocrq, n; pa(I2),-)) € E[q F ret-type(q, x, T :: o)]p.

Note that if W.k = 0 then we are done, since for any evaluation contexts E; and memories M;, we can
immediately show that running(0, (M; | E;[e;]).

In the following, assume W.k > 0 and let 7,; o, = ret-type(q, x, o).
We proceed by unfolding the definition of £[q F 7; o] p and proving the resulting obligations:

o (W, (ballocrg,n;pi(I1),-), (ballocrg, n;pa(Iz), ) € TermAtom|[q F 7,; o]p. From the defi-
nitions of TermAtom|[q F 7+; ]p and TermAtom|[q F 7; 0] , it suffices to show W.Wy; s Wox1; Weoq; p1(q)
(ballocra,n;pi(I1),+): p1(7e); p1(ow) and Wolss s Woxa; Weoa; pa(q) = (ballocra, ns pa(la), ) : p2(7r); p2(0).
Each follows from W; A;x;7T :: 0;q F ballocrg,n;I; and ¥; A; x;7 :: o;q F ballocrg, n; I
respectively using the component typing rule and the properties of W and p that we have by
assumption.

e For arbitrary Fy and Es, (W, Eq, Es) € K[q & 7.; 0] p implies
(W, E1[(ballocrg, n; p1(I1), )], Ea[(balloc rg, n; p2(I2), -)]) € O.

From the definition of O, this requires to show that given arbitrary (M, Ms) : W, (M; |
Eq[(ballocra,n; p1(I1),+)]) | iff (M | Es[(ballocrg,n;pa(I2),-)]) J. We proceed by run-
ning each expression for one step and then using the resulting memories, to construct a world
that we can then use with our second hypothesis, ¥; A; x[rq:ref (7)]; o;dec(q,n) F Iy ~1 Io:

— Assume that our two arbitrary memories are of the form M; = (Hi,R;,S51) and My =
(Hs, Rs, S5).
From (M, Ms) : W, since W.k > 0, we have (W, My, M) € @{currentMR(0) | 6 €
W.©}. From the latter, we have the following fact for island igy: (>W,S: [,S2]) €
current MR(W (igtx ) ). From the latter it follows that S; = W.S;.
From the reduction semantics of our language we obtain that:

(My | Ex[(ballocra,n; pi(Iy), -)]))—(M] | Ex[(p1(T1),-)])
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and

(Mx | Ez[(ballocra, n; pa(Iz2), -)]) — (M | B2[(p2(T2),-)])
where M{ = (H/,R},S}) with R} = Rq[rq — {1], H} = Hy[{; — wy] and S; = wy = S,
and Mj; = (H), R, S)) with R), = Ra[rq — ¢1], H, = Hy[{; — W3] and Sy = wy :: SY,.

— Let $peg = (W.R1[ra — £1], W.x1[ra: pi(box (T))], W.Ra[rq — £2], W.x2[ra: p2(box (7))]),
Show = (WH [£y > Wi, WH[ly — w3]) and W = (W.k, W.%y, W.Wo, W.O[ireg > islandyeg (sreqs W.k), ibo
islandpox (Sboz, W.k)]) where W.S; = w; :: SI.

— We claim that W’ € World. From the restriction currentMR(W (istx)) €Ew S[T :: o]p, we
have that

(W, W.S1(5), W.S2(j)) € W[ri]p
for j € {1..n}.
And thus (W, w1, W2) € HV[(T)]p.
Thus we have that W.W;; - - £;: p;(box (7)) and W. U, = w;: %%, ((T)).
Given our choice of W’ and since W € World, it follows that W’.¥;; - - W.R;(pi(13)) : pi(7)
which is sufficient to establish our claim.

— Next, to use our third hypothesis, we note that W/ € H[¥] by heap monotonicity (Lemma 1.9)
and that currentMR(W/ (istk)) €w S[7T :: o]p by Lemma 1.21 since W' (isti) = W (isei). We
also claim that currentMR (W' (ireg)) €Ewr R[x[ra: box (T)]]p. We have that
(W, £1,£2) € W[box (T)]p. Hence, by monotonicity and the definition of W’ we have

(W’,El,zz) = (W/, W/.Rl (I‘d), W/.Rz(rd)) S W[[bOX <F>]]p,

which, using Lemma 1.20, is sufficient to establish our claim.
Therefore we can apply our third hypothesis to W’ and p, finding that

(W', p1((T1, ), p2((I25 ) € E[a F ret-type(q, x, o)]p-

— By unfolding that definition we derive that given (M7, M) : W' (W' E1[(p1(11), )], E2[(p2(12),)]) €

O. By construction (M, M3) : W’ and thus by unfolding the definition of O, we obtain

(M} | Exl(py(T2), )]) 4 and (M | Bal(pa(La), ]) 4, or running(W" &, (M; | Ex[(pr(Ta), -)])

and running(W'.k, (M} | Ea[(p2(I2),-)])). In the first case, it is straightforward to de-

rive from the reduction semantics that (M; | Ej[(ballocrg,n;pi(I1),-)]) | and (Ms |
Es[(ballocrg, nip2(Iz),-)]) J. In the second case, since W'.k = W.k, we derive that
running(W.k, (M; | Eq[(ballocrg, n;p1(I1),)]) and running(W.k, (Ms | Ex[(ballocrg, n; pa(I2),-)]).
Thus we conclude that:

(W, Eq[(ballocry, n; p1(I1), )], E2[(balloc raq, n; pa(I2), -)]) € O.

Lemma 1.50 (Move)
W, A;xtFupmyue:7,q#rg, and U, A;x[ra: 75059 I =1 I,
then ¥; A;x;0;qFmvrg,uys Iy =pmvrg,us;Is.

Proof
Clearly, ¥; A; x;0;qFmvrg,u31; and ¥; A;x;0;q F nvrg, ug; Io.

Consider arbitrary W and p such that W € H[¥], p € D[A], currentMR (W (ireg)) €Ew R[x]p, and
currentMR(W (istk)) €w S[o]lp. We need to show that

(W, pr((mvra,us;1s,-)), pa((mvra, uz; I, -)))
= (W, (mvra, p1(u1); p1(I1), -), (mvra, pa(uz); p2(l2), -)) € E[q k- ret-type(a, x, o)]p.
Note that if W.k = 0 then we are done, since for any evaluation contexts E; and memories M;, we can
immediately show that running(0, (M; | E;[e;]).
In the following, assume W.k > 0 and let 7,; o, = ret-type(q, x, o).

We will use Lemma 1.11 to complete the proof, so we start by establishing the premises of that lemma.
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e We claim that (W, (mvrg, p1(u1); p1(I1), ), (mvra, p2(uz); p2(I2),+)) € TermAtom|q - 7p; oy p-
To establish this, we must show W.WU;; s Wox;; Weoi; pi(q) b (mvra, pi(ui); pi(Li), <) : pi(72); pi(or).
The latter follows from ¥; A; x; 0;q F mvrg, u;; I; using the component typing rule and the prop-
erties of W and p that we have by assumption.

e Let s = (W.Ri[ra — W.R1(p1(u1))], Woxa[ra: p1(7)], WR2[ra — W.R2(p1(uz))], Woxz[ra: p2(7)])
and W' = (Wk,W.W1, W Wy, W.O[iyeg — island,eq (s, W.E)]).

e We claim that W’ € World. Instantiating the first hypothesis with W and p, we have that
(W, W-R4 (p1 (1)), WR2(p2(uz))) € Wr]p
Thus we have that W.W;; - }—AVV.Ri(pi(ui)) :pi(7). Given our choice of W’ and since W € World,

it follows that W’.¥;; - F W.R;(p;(u;)): p;(7) which is sufficient to establish our claim.

e Note that W’ Jd,u, W. The latter is immediate given our choice of W’ and the definition of
islandyeg-

e Consider arbitrary (M, Ms) : W. Let M; = (H;, Ry, Si).
From (M, Ms) : W, since W.k > 0, we have (>W, Ml,Mg) ®{ currentMR(0) | 0 € W.O }.

From the latter, we have the following fact for island ¢,eg: ( R:[,R [ ) € currentMR(W (ireg))-
From the latter it follows that R; = W.R; and, hence, R (p,(ul)) Ri(pi(ui)).
Note that

((Hi, Ri, Si) | (mvra, pi(ui)s pi(Li), ) =" ((Hi, Rifra = Ri(ps(ui))], Si) | (i), )
Let M! = (H;, Ri[ra — Ri(pi(13))],S;). Given our choice of W, since R; = W.R;, we have that
(M, ML) - W',
e Note that W.k < W'.k + 1.

e Note that q # €, which follows from the third hypothesis since it is a side condition of the
instruction typing rules. Further, since q # rgq, which was the only memory location changed
between W and W', we can see that the the return address does not change.

e Next, to use our third hypothesis, we note that W’ € H[¥] by heap monotonicity (Lemma 1.9)
and that currentMR(W'(isti)) € W’S[o]p by Lemma 1.21 since W' (istx) = W(istk). We also
claim that currentMR(W (ireg)) Ew+ R[X[ra: T]]p. From above, we have that
(W, W.Rq (p1(u1)), W-Ra(p2(u2))) € W[r]p. Hence, by monotonicity and the definition of W’

we have
(W', WRa (1 (1)), WoRa (pa (1)) = (W', W' R (va), W Ra(xa)) € Wlr],

which, using Lemma 1.20, is sufficient to establish our claim.
Therefore we can apply our third hypothesis to W’ and p, finding that

(W/7 p1((I15+)), p2((I2,-))) € E[a k- ret-type(q, x, o)]p.
Now, the result follows by Lemma 1.11. O

Lemma 1.51 (Move Return Address)
If x(rs) =7 and ¥; A; x[rq: 7];0;rq B I =1 I, then ¥; A; x; 0315 Fmvrg, rg; 11 /=1 mvrg,rg; Is.

Proof

Clearly, ¥; A; x;0;1rs Fmvrg,rg; 17 and W A;x;o;rs Fmvrg, rg; Is.

Consider arbitrary W and p such that W € H[¥], p € D[A], currentMR (W (ireg)) €Ew R[x]p, and
currentMR(W (istk)) €Ew S[o]lp. We need to show that

(W, p1((mvra, rs; L1, +)), po((mvrg, re; I2,-)))
= (W, (mvra, rs; p1(L1), +), (mvra, rs; pa(l2), ) € E[rs - ret-type(rs, x, o)]p.
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Note that if W.k = 0 then we are done, since for any evaluation contexts E; and memories M;, we can
immediately show that running(0, (M; | E;[e;]).

In the following, assume W.k > 0 and let 7,; o, = ret-type(rs, x, o).

We will use Lemma 1.11 to complete the proof, so we start by establishing the premises of that lemma.

e We claim that (W, (mvrq,rs; p1(I1),-), (mvra, rs; p2(I2),-)) € TermAtom[rs F 7v; 04]p. To es-

tablish this, we must show W.W;; s W.x;; W.oi;rs b (mvra, vs; pi(Li), <) : pi(72); pi(or). The latter
follows from W; A;x;o;rs F mvrg,rs; I; using the component typing rule and the properties of
W and p that we have by assumption.

Let s = (W.Rq[rq — W.Rq(rs)], Woxira: p1(7)], W.Ra[rg — W.Ra(rs)], Woxa[ra: p2(7)]) and
W' = (Wk, WU, Wy, W.O[ireg — island,eq (s, W.Ek)]).

We claim that W’ € World. By our first hypothesis, we have that (rs : 7) € x. It then follows
from current MR(W (ire)) €w R[x]p and the definition of island,ey that

(VV, W.R1 (I‘s), VV.Rz(I'S)) S W[[Tﬂp
Thus we have that W.U;; - = W.R;(rs): p;(7). Given our choice of W’ and since W € World, it

follows that W'.U;; - = W.R;(rs): p;(7) which is sufficient to establish our claim.

Note that W’ Jpu, W. The latter is immediate given our choice of W’ and the definition of
islandyeg.

Consider arbitrary (M7, M) : W. Let M; = (H;, Ry, Si).

From (M, M) : W, since W.k > 0, we have (W, My, M) € @{ currentMR(0) | § € W.O }.
From the latter, we have the following fact for island 4,es: (W, R1[,Ra2l) € current MR(W (ireg)).
From the latter it follows that R; = W.R;.

Note that
<(Hia Ria Sl) ‘ (mV rq,rs; pi(Ii)a )> ’—>1 <(Hia Ri[rd — Ri(rs)]a Sl) | (pi(Ii)a )>)
Let M! = (H;, Ri[rqa — Ri(rs)], Si). Given our choice of W, since R; = W.R;, we have that
(M7, M3) - W',
Note that W.k < W'k + 1.
Note that ret-addry (W, rs) = ret-addry (W’,rq) and ret-addry (W, rs) = ret-addre (W', rq).

Next, to use our second hypothesis, we note that W’ € H[¥] by heap monotonicity (Lemma 1.9)
and that currentMR(W'(istx)) €w+ S[o]p by Lemma 1.21 since W' (igx) = W(isk). We also
claim that currett MR(W'(ireg)) Ewr R[x[ra:7]]p. From (W, W.R(rs), W.Rx(rs)) € W[r]p
by monotonicity and the definition of W', we have

(W', W.R4(rs), WR2(rs)) = (W, W Ry (ra), W Ra(ra)) € W[r]p,

which, using Lemma 1.20, is sufficient to establish our claim.
Therefore we can apply our second hypothesis to W’ and p, finding that

(W, p1((I1,+)), p2((X2,+))) € E[ra b ret-type(ra, x[ra: 7], 0)]p = E[ra b ret-type(rs, x, o)]p.

Now, the result follows by Lemma 1.11. O

Lemma 1.52 (Unpack)
IfW; A;xFup &y uz:Jdat, q #rq, and U; A, o x[ra: 7];0;q9 F Iy =q 1o,
then ¥; A; x;0;q F unpack (e, rq) us; Iy =1 unpack (o, rq) uz;Io.

Proof
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Clearly, ¥; A; x;0;q F unpack (o, rq) us; Iy and ¥; A; x;0;q F unpack (o, rq) ug; L.

Consider arbitrary W and p such that W € H[¥], p € D[A], currentMR(W (ireg)) €w R[x]p, and
currentt MR(W (ist)) €Ew S[o]p. We need to show that

(W, p1((unpack (o, ra) u1; 11, -)), p2((unpack (a, ra) uz;Iz,-)))
= (W, (unpack (, ra) p1(u1); p1(I1), ), (unpack (e, ra) pa(uz); p2(I2),-)) € E[q - ret-type(q, x, o)]p.

Note that if W.k = 0 then we are done, since for any evaluation contexts E; and memories M;, we can
immediately show that running(0, (M; | F;[e;]).

In the following, assume W.k > 0 and let 7,; o, = ret-type(q, x, o).

We will use Lemma 1.11 to complete the proof, so we start by establishing the premises of that lemma.

e We claim that (W, (unpack (a, rq) p1(u1); p1(I1), ), (unpack (o, rq) p2(uz); p2(I2),-)) € TermAtom[q F
Ty; 0] p. To establish this, we must show W.W,; -; Wox;; W.oi; pi(q) F (unpack (e, ra) pi(wi); pi(Li), ) : pi(7e); pi(o,
The latter follows from ¥; A; x; o; q F unpack («, rq) u;; I; using the component typing rule and
the properties of W and p that we have by assumption.
o Let s = (W.Rq[rqa — wi], Wixi[ra: p1(7)], W.Ra[ra — wa], Woxa[ra: p2(7)]) where W.R; (u;) =
pack(7’,w;) as Ja.7 and W/ = (Wk,W.W, W W5, W.O[ireg — island,eg (s, W.k)]).

e We claim that W’ € World. Instantiating the first hypothesis with W and p, we have that
(W, W.R1(p1(u1)), W-R2(pa(u12))) € W[Eew.7]p

Thus we have that W.U;;- F Wf{iA(pi(ui)):pi(Ela.T). Given our choice of W' and since W €
World, it follows that W’'.¥;; - - W.R;(p;(u;)) : p;(3e.7) which is sufficient to establish our claim.
e Note that W’ Jd,u, W. The latter is immediate given our choice of W’ and the definition of
islandyeg-
e Consider arbitrary (M, Ms) : W. Let M; = (H;, Ry, Si).
From (M, M) : W, since W.k > 0, we have (bW, M1, M) € @{currentMR(0) | § € W.O }.
From the latter, we have the following fact for island ¢,e: (W, R1[,R2]) € current MR(W (ireg) ).
From the latter it follows that R; = W.R;.

Note that
((Hi, R4, S;) | (unpack (o, ra) pi(w); pi(Ti), -)) ¥ ((Hi, Ri[ra — wil, ;) | (pilec = 7'](Th), -))

Where W.R;(pi(1;)) = pack(r’,a) asJa.7. Let M! = (H;, Ri[rq — w;],S;). Note that
(M7, M3) : W'

e Note that W.k < W'k + 1.

e Note that q # €, which follows from the third hypothesis since it is a side condition of the
instruction typing rules. Further, since q # rgq, which was the only memory location changed
between W and W/, we can see that the the return address does not change.

e Next, to use our third hypothesis, we note that W’ € H[¥] by heap monotonicity (Lemma 1.9).
From above, we have that (W, W.R1 (p1(u1)), W.R2(p2(u2))) = (W, pack (' w1) as p1 (3a.7), pack(t' w1) as p1 (3a.7
W[3a.7]p.

From the definition of W[3a.7]p, we have that (W, w1, ws2) € W[r]pla — (7', 7', )] for some

Pw-

We choose p' = pla— (7,7, ¢0u)] € D[A, a].

We claim that currentMR (W' (istk)) €wr S[o]p’. From Lemma 1.21 we have current MR (W' (istx)) €+
Slo]p since W' (igtk) = W(istk). From substitution, we know that S[o]p’ = S[o[r//a]]p. Since

o is well-formed under A, « is not free and thus currentMR(W' (istk)) €Ewr S[o]p’.

We also claim that current MR(W' (iyeg)) €w+ Rx[ra: T]]p’. From substitution, since x is well-
formed under A, we know that this is equivalent to current MR(W' (i1eg)) €Ew+ R[x[ra: T[7"/al]]p.
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We can use Lemma 1.20 provided we can show that (W', w1y, wy) € W[r[7"/a]]p. But this, via
substitution, is equivalent to showing that (W', wq, w2) € W[r]p’, which we have from the first
hypothesis.

Therefore we can apply our third hypothesis to W’ and p’, finding that

W, p1((T15 ), Po((T2, ) € E]a - ret-type(a, x, o)]p'.

Now, the result follows by Lemma 1.11.

Lemma 1.53 (Unfold)
If O; A x Fug &=y ug: pa., q #rq, and U; A; x[rq: T[pa.7/a]];o;q F I =5 1o,
then ¥; A;x;0;qF unfoldryg,u;;I; =1 unfoldrg, us;Io.

Proof

Clearly, ¥; A;x;0;qF unfoldrg,uy;I; and ¥; A; x;0;q F unfoldrg, us; Is.

Consider arbitrary W and p such that W € H[¥], p € D[A], currentMR(W (ireg)) €w R[x]p, and
current MR(W (i )) €Ew S[o]p. We need to show that

(W, p1((unfoldrg,us; Iy, -)), po((unfoldrg, us;Ia, +)))

= (W, (unfoldrg, p1(ui); p1(I1),-), (unfoldra, pa(uz); pa(I2),-)) € E[q - ret-type(q, x, o)]p.

In the following, let 7; o, = ret-type(q, x, o).

We will use Lemma 1.11 to complete the proof, so we start by establishing the premises of that lemma.

We claim that (W, (unfoldrq, p1(u1); p1(I1),-), (unfoldrg, p2(us); p2(I2),-)) € TermAtom[q -

7v; 0] p. To establish this, we must show W.W,; s Woxi; Wooi; pi(q) F (unfoldra, pi(wi); pi(Li), <) : pi(7e); pi(or).
The latter follows from W; A;x;o;qF unfoldrg, u;; I; using the component typing rule and the

properties of W and p that we have by assumption.

Let s = (W.R1[rqa — w1], W.xi[ra: p1(T[pe.m/a])], WR2[ra — wa], W.xz[ra: p2(T[pe.m/a])])
where W.R;(u;) = fold,o.» wi and W/ = (W.k — 1, W.W 1, W W5, W.Oireg — island,eg (s, W.k)]).

We claim that W’ € World. Instantiating the first hypothesis with W and p, we have that
(W, W.Ri (p1 (1)), WRz(p2(u2))) € Wlpa.r]p

From the definition of W[pa.7]p, we have that (W, wq, wsz) € W[ [po.7/a]]p.

This means that W.W;; - F wy : p;(T[po.7/a]).

Given our choice of W’ and since W € World, it follows that W’.¥;; - = wq : p;(T[poe.7/a]) which
is sufficient to establish our claim.

Note that W’ Jp,u, W. The latter is immediate given our choice of W’ and the definition of
island,eg -

Consider arbitrary (M7, Ms) : W. Let M; = (H;, R4, S;). Note that
((Hi, Ri, S;) | (unfoldra, pi(wi); pi(Li), ) ="' ((Hi, Ri[ra = wi], Si) | (p:(Th), -))
Where W.R;(pi(u;)) = fold,.q.» wi. Let M! = (H;, Ri[ra — wil, S;). Note that (M{, Mj) : W'

Note that W.k < W'k + 1.

Note that q # €, which follows from the third hypothesis since it is a side condition of the
instruction typing rules. Further, since q # rgq, which was the only memory location changed
between W and W', we can see that the the return address does not change.
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e Next, to use our third hypothesis, we note that W’ € H[¥] by heap monotonicity (Lemma 1.9).
From above, we have that (W, W.R1 (p1(11)), W.Ra(p2(u2))) = (W, p1(fold .~ w1), pa(fold e wa)) €
Wpae.t]p.
From the definition of W[pa.7]p, we have that (W, w1, ws) € W[ [pa.7/a]]p.
We claim that current MR(W (igx)) €w+ S[o]p. This follows from Lemma 1.21.

We also claim that currentMR(W (iveg)) €wr R[x[ra: 7[poe.7/c]]]p. In order to show this, we
need to show that (W', wy,wz) € W[r[pa.7/al]p. From the definition of W[pa.7]p we have
that (W, w1, w2) € W[r[pa.7/a]]p. But W J W, since W 3 W and W'.k < Wik — 1,
which means from monotonicity, the required condition holds.

Therefore we can apply our third hypothesis to W’ and p, finding that

(W', p1((T15-)), p2((T2, ) € E]a - ret-type(a, x, o)]p-

Now, the result follows by Lemma 1.11. O
Lemma 1.54 (Allocate Stack Space)
If O; A; x;unit :: -+ ™ :: unit :: o;inc(q,n) F Iy =1 I, then ¥; A; x;0;qF sallocn;I; =1 sallocn;I,.
Proof

Clearly, ¥; A;x;0;qF sallocn;I; and W; A; x;0;qF sallocn; I,.

Consider arbitrary W and p such that W € H[¥], p € D[A], currentMR(W (ireg)) €Ew R[x]p, and
currentMR(W (istk)) €Ew S[o]p. We need to show that

(W, p1((sallocn;Iy,+)), p2((sallocn;Ia, -)))
= (W, (sallocn; p1(I1),-), (sallocn; pa(I2), ) € E[q b ret-type(q, x, o)]p. (14)

Note that if W.k = 0 then we are done, since for any evaluation contexts E; and memories M;, we can
immediately show that running(0, (M; | E;le;])).

In the following, assume W.k > 0 and let 7,; o, = ret-type(q, x, 7 :: o).

We now prove (13).

We proceed by unfolding the definition of £[q F 7; o] p and proving the resulting obligations:

o We claim (W, (sallocn;pi(I),-), (sallocn;pa(I2),-)) € TermAtom|q F 7y;0]p. From the
definitions of TermAtom|[q F 7; o]p and TermAtom|q F 7; o] , it suffices to show W.Uy; s W.x1; W.o1; p1(q) F

(sallocn;pi(I1),-): p1(7e); p1(or) and WoWlo; s Woxa; Woo2; pa(q) - (salloc ng pa(Iz), +) : p2(7e); p2(or).
Each follows from W; A;x;0;qF sallocn; Iy and W; A; x;0;q - salloc n; 5 respectively us-
ing the component typing rule and the properties of W and p that we have by assumption.

e Consider arbitrary Fy and Es such that. (W, Ey, Es) € K[q F 7,;0,]p. We must show that
(W, Er[(sallocn; pi(I1), +)], Eo[(salloc n; pa(I2), -)]) € O.

Let My = (H1,R1,S1) and My = (Hs, Ra, S»).

From (M, Ms) : W, since W.k > 0, we have (W, My, Ms) € @{ currentMR(0) | 6 € W.O }.
From the latter, we can have the following facts for island 4.

We have that (>W,S1],S2) € currentMR (W (igx)). From the latter it follows that S; = W.S;.

Next, by the reduction semantics of our language, with all of the above facts in hand, we have
that:

Er[(p1(11), )]
and
(Mg | Ep[(sallocn; pa(I2),-)])—(Ms | Ea(p2(I2),-)])
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where M{ = (Hy,R4,S)) with S} = () :---" () = Sq, and My = (Hz, R»,S)) with S}, =
()™ () s Sa.

Note that in order to complete our proof, it suffices to show:

(M7 | Ex[(pa(Ta), )} & A (M3 | E2[(p2(T2),)])) 1) Vv
(running(W.k — 1, (M7 | Ex[(p1(11),)])) A running(W.k — 1, (M; | Ea[(p2(I2),-)])))

Let W = (Wk,W. W, WU, 0) where

1. Vi # igtx. ©'(1) = W.0(4);

2. O (igtk) = islandgk (s, Wok) with s = (S, unit :: - - 2 unit :: W.oq, S, unit =2 - ™ - unit = W.os).
We claim that W’ € World. Note that we have (W, (),()) € W[unit]p. Thus we have that

W.¥j;- F (): pj(unit). Given our choice of W’ and since W € World, it follows that W’.¥;;-
(): p;j(unit) which is sufficient to establish our claim.

We proceed by showing that (M7, M}) : W’ and then instantiating our hypothesis
W; A;x;unit :: - - -™ 3t unit :: o;inc(q,n) F I; =~ I

— We claim that (M7, M3) : W’. We prove this claim by establishing the following:

« = M{:W'.®; and b M} : W' .®5. Note the following facts:
- W'ox1 = W.ox1 and W .xo = Woxa;
- W'op =unit i -+ s unit : Weoq) and W.oy = unit - " i unit :: Woos);
WUy =W ¥y and W .0y = WU,
Both claims follow easily from (Mj, Ms) : W the above facts, and the fact that we have
extended both stacks with same number of well-typed words, i.e., with n () words.

* We assume that W.k > 0 (and thus W’.k > 0). We must show that

(W', M7, M}) € ®{ currentMR(0) | 6 € W'.©}

The latter follows from (M7, Ms) : W and monotonicity of MemRel given that we establish
the following claim for island g

(W', 87, 5%) € current MR(W/ (gt ) )

Recall that W'.S; = S!. Thus we obtain trivially that (W', S}, S}) € {(W,W'.S1, W'.Sy) |
W € Worldw i }. From the latter, we establish directly our claim that

(W', 81, 5%) € current MR(W (g4 ))

— Next, we instantiate our final hypothesis with W’ and p. Note that p € D[A] by assumption,
W' € H[¥] by heap monotonicity (Lemma 1.9). We claim that currentMR (W’ (ireg)) Ew
R[x]p by the first case of Lemma 1.20. Moreover we claim that currentMR(W’ (istk)) Ew
S[o']p Our claim follows directly from the third case of lemma 1.21 since, above, we have
established that (W, (), ()) € W[unit] and current MR(W (istx)) €w S[o]p. Hence, we have
that

(W', (p1(I1,-)), (p2(I2), ) € E[at Tyoe]p

Instantiate the above with E; and E3. Note that we have (W', Ey, Es) € K[q - 7y 0:]p
which follows from (W, Eq, E3) € K[q b 7;0.]p by monotonicity for evaluation contexts
(Lemma 1.10), since our choice of W', W’ J,,, W and the reduction does not affect the
return marker.
Hence, we have

(W', Er[(pr(T1, )], E2[(p2(T2), -)]) € O.
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Instantiate the latter with M| and M}, noting that (M7, M}) : W’'. Hence, we have

(M7 | Ex[(pr(To), D) 4 A (M3 | E2[(p2(I2),-)]) 1) V
(running(W.k, (M7 | Ex[(p1(11),-)])) A running(W.k, (Mj | E5[(p2(12),-)])))

which implies what we needed to show.

O
Lemma 1.55 (Free Stack Space)
If W; A;x;0;dec(q,n) Iy =5 I, then W; A;x;70 tt -+ 3t Th—1 :: 0;q F sfreen; I; =y sfreen;I,.
Proof
Clearly, W; A;x;To 22+« i Th1 2 0;qF sfreen; Iy and W; A; x; 79 3t + -+ 32 Th1 2 0;qF sfreen; Is.
Consider arbitrary W and p such that W € H[¥], p € D[A], currentMR(W (ireg)) €w R[x]p, and
currentMR(W (istk)) €w S[710 :: -+ + 22 Th—1 :: o]p. We need to show that
(W, p1((sfreen;Iy,-)), pa((sfreen;Is,-)))
= (W, (sfreen; pi(I1),), (sfreen; pa(I2),-)) € E[q F ret-type(q, x, To it = -+ it Th_1 :t 0)]p. (15)

Note that if W.k = 0 then we are done, since for any evaluation contexts E; and memories M;, we can
immediately show that running(0, (M; | E;[e;])).
In the following, assume W.k > 0 and let 7,; 0, = ret-type(q, x, 7 :: o) and T =71 =2 -+ - it Ty

Moreover, note the following preliminary fact:

e By our hypothesis and the typing rules, we have that , dec(q,n) # € and dec(q,n) # undefined.
A consequence of the latter fact is that if g =i then i > n.

With the above facts in hand, we now prove (15).

o We claim (W, (sfreen;pi(I1),+), (sfreen; pa(I2),)) € TermAtom[q b 7; 0y]p. From the defi-
nitions of TermAtom|[q F 7; o ]p and TermAtom[q + 7y; 0] , it suffices to show W.Wq; s Wox1; Weot; p1(q) F
(sfreen; p1(I1),-): p1(7e); p1(oy) and WUs; s Woxo; Weoa; po(q) F (sfreen; pa(I2),-): pa(7r); p2(oyr).
Each follows from W; A; x; 79 :t + -+« it Th—1 :: 0;q b sfreen; Iy and W A x; 70 2t -+ 2t Thq 2 03 q -
sfree n; I, respectively using the component typing rule and the properties of W and p that we
have by assumption.

e Counsider arbitrary F; and Es such that (W, Eq, Es) € K[q F 7,5 0] p. We must show that
(W, E1[(sfreen; p1(11), )], F2[(sfree n; pa(I2),-)]) € O.

Let M1 = (Hl, Rl, Sl) and Mg = (Hz,Rz, Sz)

From (Mi, M) : W, since W.k > 0, we have (W, My, M) € @{ currentMR(0) | § € W.O }.
From the latter, we can have the following facts for island 4ty

We have that (>W, S1[,S2]) € current MR(W (igi)). From the latter it follows that S; = W.S; =

wjr Wiy S}.
Next, by the reduction semantics of our language, with all of the above facts in hand, we have
that:
(My | Ex[(sfreen; py(I1), -)])—(M{ | Ex[(p1(I1),)])
and

(Mz | Ea[(sfreen; pa(I2), )])— (M; | E2[(p2(T2),-)])
where M{ = (Hl, Rl, Sg_) and Mé = (Hz, Rg, S,2)

56



Note that in order to complete our proof, it suffices to show:

(M7 [ Exf(pr(Ta), D) & A (Mg | Ea[(p2(I2),)]) 1) Vv
(running(W-k — 1, (M7 | Ex[(p1(I1),-)])) A running(Wk — 1, (M3 | E2[(p2(12),-)])))

Let W = (Wk,W. W, WU, 0) where

1. Vi freg inek, ©' (1) = W.O(i);

2. O'(istk) = islandgek (s, W.k) with s = (51,0, 5%, 0).
We claim that W’ € World. Given our choice of W’ and since W € World, it is starightforward
to establish our claim.

Moreover, note that W’ 3 W and W’ J,,, W. Both follow immediately given our choice of W’
and the definition of islandggy.

We proceed by showing that (M7, M5) : W’ and then instantiating our hypothesis

¥; A; x;0;dec(q,n) F1; ~p Iz

— We claim that (Mj, M}) : W’. We prove this claim by establishing the following:

« = M{:W'.®; and - M4 : W' .®y. Note the following facts:
- W'.x1 = W.ox1 and W .xs = Woxa;
- W.o1=0and W.oy = 0;
- W Wy =W, and W . Wy = W,
Both claims follow easily from (Mj, My) : W, the above facts and the fact that we remove
n words from the top of each stack.

*x We assume that W.k > 0 (and thus W’.k > 0). We must show that

(W', My, M}) € ®{ currentMR(0) | 6 € W'.© }

The latter follows from (M7, Ms) : W and monotonicity of MemRel given that we establish
the following claim for island igy:

(>W', S, 55) € current MR(W' (istx )

Recall that W'.S; = S!. Thus we obtain trivially that (>W’, S}, S}) € {(W,W'.S1, W'.S,) |
W € Worldw i }. From the latter, we establish directly our claim that

(W', 81, 5%) € current MR(W' (it ) )

— Next, we instantiate our final hypothesis with W’ and p. Note that p € D[A] by assumption,
W' € H[¥] by heap monotonicity (Lemma 1.9). We claim that current MR(W' (isx)) Ew
S[o]p by the second case of lemma 1.21 since W/ (i) = islandgk (s, W.k) with s = (S1, 0, Sa, 0)
where W (ig) = islandgy (s, Wok) with s = (wy1 2 -++ 0wy 0 S1,71 5 0 0 Ty 22 Oy way
cee i Wop it Sg, Ty it e-- 1t Ty, it o). Moreover we claim that current MR(W (ireg)) €wr Rx]p
by the first case of Lemma 1.20. Hence, we have that

(W/a (pl(Ilv ))7 (02(12), )) € 5[[q F Tr; Urﬂp

Instantiate the above with E; and F5. Note that we have (W', Ey, Es) € K[q - 7;0:]p
which follows from (W, Eq, E3) € K[q b 7v;0.]p by monotonicity for evaluation contexts
(Lemma 1.10), since our choice of W'/, W’ J,,, W and the preliminary fact that if g = i
then i > n let us easily establish all the premises of that lemma.

Hence, we have

(W', Exr[(p1(I1, )], Ba[(p2(12),-)]) € O.
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Instantiate the latter with M| and M}, noting that (M7, M}) : W’'. Hence, we have

(M7 [ Ex[(pr(To), D) 4 A (Mg | Ex[(p2(I2),)]) 4) V
(running(W.k, (M7 | E1[(p1(11),)])) A running(W.k, (Mj | E5[(p2(12),-)])))

which implies what we needed to show.

O

Lemma 1.56 (Load from Stack)
Ifo(i) =7,q#ra, and ¥;A; x[ra: 7i];0;qF I =1 I, then ¥; A;x;0;qF sldrg, i;I; =1 sldrg,i; L.

Proof

Clearly, ¥; A; x;0;qF sldrg,i;I; and ¥; A; x;0;q F sldrg,i;Is.

Consider arbitrary W and p such that W € H[¥], p € D[A], currentMR(W (ireg)) €w R[x]p, and
currentMR(W (istk)) €Ew S[o]lp. We need to show that

(W, p1((sldra,i;I1,+)), p2((sldrg,is Iz, )))
= (W, (sldrq,i; p1(I1),-), (sldrq, i; pa(I2), -)) € E[a - ret-type(a, x, )]p.

Note that if W.k = 0 then we are done, since for any evaluation contexts E; and memories M;, we can
immediately show that running(0, (M; | E;[e;]).

In the following, assume W.k > 0 and let 7,; o, = ret-type(q, x, o).

We will use Lemma 1.11 to complete the proof, so we start by establishing the premises of that lemma.

e We claim that (W, (sldrg,i;p1(I1),+),(sldra,i; p2(I2),-)) € TermAtom|[q F 7;0.]p. To es-
tablish this, we must show W.U ;s W.x;; W.oy; pi(q) F (sldra,is pi(L), ) : pi(7); pj(or). The
latter follows from W; A; x;0;q F sldrg,i; I; using the component typing rule and the properties
of W and p that we have by assumption.

e Let s = (W.Rq[rq — W.S1(1)], Wxa[ra: p1(7)], W.Ra[rqa — W.S2(i)], W.xz[ra: p2(7)]) and W' =
(Wk,W W, WWs, W.O[ireg — island,eg (s, W.k)]).

e We claim that W’ € World.

From the hypothesis, we know that (W, W.S; [,W.S5 |) € S[o]p. Since o(i) = 7, this means
(W, W.S1(i), W.S2(i)) € W[r]p.
Given our choice of W’ and since W € World, this is sufficient to establish our claim.

e Note that W’ Jd,u, W. The latter is immediate given our choice of W’ and the definition of
islandyeg-

e Consider arbitrary (M, M) : W. Let M; = (H;, R;, S;).

From (M, Ms) : W, since W.k > 0, we have (W, My, Ms) € @{ currentMR(0) | 6 € W.O }.

From the latter, we have the following fact for island igy: (W, S1], Sa[) € currentMR(W (istx))-
From the latter it follows that S; = W.S;.

Note that
((Hj, Ry, S;j) | (sldra, 5 p5(T5), ) —" ((Hj, Ry[ra — Si(3)],S;) | (05 (T5), )

Let MJI = (Hj, Rj [I‘d — Sj (Z)], SJ) Note that (M{,Mé) W
e Note that W.k < W'k +1.

e Note that q # €, which follows from the third hypothesis since it is a side condition of the
instruction typing rules. Further, since q # rq, which was the only memory location changed
between W and W', we can see that the the return address does not change.
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e Next, to use our third hypothesis, we note that W’ € H[¥] by heap monotonicity (Lemma 1.9)
and that current MR(W'(istx)) €w S[o]p by Lemma 1.21 since W' (igi) = W (istk). We also
claim that currentMR(W' (ireg)) €Ew+ R[X[ra: 7]]p. From above, we have that
(W, W.S1(i), W.S2(i)) € W[7]p. Hence, by monotonicity and the definition of W’ we have

(W/, WSl(Z), WSg(’L)) = (W’, W’.Rl (I‘d), W/.Rz (I‘d)) € WHT]]p,

which, using Lemma 1.20, is sufficient to establish our claim.
Therefore we can apply our third hypothesis to W’ and p, finding that

(W', p1((L1, ), p2((I25 ) € E[a F ret-type(q, x, o)]p-

Now, the result follows by Lemma 1.11.

Lemma 1.57 (Load Return Address from Stack)
If (i) =7; and ¥; A; x[ra: 1i];o5ra F I1 =1 I, then U; A;x;0;iF sldrg,i; I &1 sldrg,i;Is.

Proof

Clearly, ¥; A;x;0;iF sldrg,i;I; and W; A; ;031 sldrg,i; Ls.

Consider arbitrary W and p such that W € H[¥], p € D[A], currentMR (W (ireg)) €Ew R[x]p, and
currentMR(W (istk)) €w S[o]p. We need to show that

(Vval((S]-drd’n; Il"))vp2((31drdan§ Iz, )))
= (W, (sldra,n; p1(L1), ), (sldra, n; p2(I2), -)) € E[i - ret-type(i, x, o)]p. (16)

Note that if W.k = 0 then we are done, since for any evaluation contexts E; and memories M;, we can
immediately show that running(0, (M; | E;[e;i])).

In the following, assume W.k > 0 and let 7,; o, = ret-type(i, x, o).
Moreover, note the following preliminary fact:

e By our first and second hypothesis, and the typing rules we obtain that o =7 :: -+ 1 7; 2 0.

e By our assumption current MR(W (is1k)) Ew S[o]p and the previous fact, we have that wiy, ..., wis, wa1, ..., wa;,
Si, Sé such that WSl = Wiy =t v Wy it Si, WSQ = Wag1 i+ W it Sé and (VV,wM,in) €
W] p-

With the above facts in hand, we now prove (16).

e We claim (W, (sldrg,i; p1(I1),-), (sldrqg,i;pa(I2),-)) € TermAtom[i F 7; 0,]p. From the defi-
nitions of TermAtom[i - 7; o]p and TermAtom|i - 7; o] , it suffices to show W.Wy; - Wox1; Wo1; 1 (1) F
(sldra,i; p1(I1), <) : p1(7e); pr(ow) and WoWo; s Wx2; Woora; po(i) F (sldra, is pa(l2), -) : p2(7e); p2(o).
Each follows from W; A;x;o;iF sldrg,i;l; and W; A; x; 051 F sldrg,i; Is respectively using
the component typing rule and the properties of W and p that we have by assumption.

e Consider arbitrary F; and Es such that (W, Ey, Es) € K[i b 7,; 0:]p. We must show that
(W, Er[(sldra, i; p1(11), -)], B2[(s1ldra, i; p2(I2),)]) € O.

Let Ml = (Hl,Rl,Sl) and MQ = (Hz,Rz, S2)

From (My, M) : W, since W.k > 0, we have (W, My, M) € @{currentMR(0) | 0 € W.O }.
From the latter, we can have the following facts for island 4ggy.

We have that (W, S1[,S2] ) € currentMR(W (igk)). From the latter it follows that S; = W.S; =
Wyt e W S}.

Next, by the reduction semantics of our language, with all of the above facts in hand, we have
that:
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(My | Ex[(sldra, is pr(Ta), ) ) — (M7 | Ex[(p1(11),-)])
and
(Ma | Eo[(sldra, is pa(I2), -)]) — (M3 | Ba[(p2(12),-)])
where M{ = (Hl, Rll, Sl) with H1 = H{[Td — wu], and Mé = (Hg, R’2, Sz) with le = Hg[Td —
’LUQZ}
Note that in order to complete our proof, it suffices to show:

(M7 [ Ex[(pr(Ta), ))& A (Mg | Ea[(p2(I2),)]) 1) Vv
(running(W-k — 1, (M7 | Ex[(p1(I1),-)])) A running(Wk — 1, (M3 | E2[(p2(12),-)])))

Let W = (Wk,W. W, WU, 0) where
1. Vi & {ireg}. ©/(3) = W.O(0);
2. O (ireg) = islandyeg (s, W.k) with s = (W.Rq[rqa +— wai], Woxa[ra: p1(7)],
W.Rz[rq — wai], Woxz[ra: p2(p1(71))]-
We claim that W’ € World. Recall that we have (W, wy;,ws;) € W[r;]p. Thus we have that
W = wj;: pj(7;). Given our choice of W’ and since W € World, it follows that W'.¥;;- +
wji: pj(7;) which is sufficient to establish our claim.

Moreover, note that W’ 3 W and W’ Jp1, W. Both follow immediately given our choice of W’
and the definition of island,es, and islandgk.

We proceed by showing that (M7, Mj) : W’ and then instantiating our final hypothesis
W A;x;0;iF sldrg, i Iy =1 sldrg,i;Is

— We claim that (Mj, M}) : W’. We prove this claim by establishing the following:

* B M :W'.®; and F M} : W’ .®5. Note the following facts:
- W'xa = Wxara: pi(mi)] and Woxe = Woxalra: p2(7)];
- W.o1=0and W.oy = 0;
- W Wy =W and W . Wy = W,
Both claims follow easily from (My, M) : W, the above facts, the fact that we have
updater register rq in both memories words well-typed words, i.e., with words of types
p1(71) and pa(73).

* We assume that W.k > 0 (and thus W’.k > 0). We must show that

(>W', M{, Mj) € ®{ currentMR(0) | 6 € W'.© }

The latter follows from (M7, Ms) : W and monotonicity of MemRel given that we estab-
lish the following claim for island iyeq, (>W', W.R1[rq +— w1i][, W.Rz[rq — was]] ) €
current MR(W/ (ireg) ).

For the claim recall that W'.R;, = W.R;[rq — wj;]. Thus we obtain trivially that
(W', W.Ry[rq — wyi], W.Ra[rq — wa;]) € {(W,W'.Ry,W'.Ry) | W € Worldy}. From
the latter, we establish directly our claim that

(W' W.Rq[rq — wii][, W.Ra[ra — wai]l) € current MR(W' (iyeg))

— By lemmas 1.20 and 1.21, and by unfloding the definition of our second hypothesis, ¥; A; x[rq: 7i]; 0519 F
I; =~ I, we derive that given (M7, MY) : W', (W', Ey[(p1(11),")], E2[(p2(12),-)]) € O. By
construction (M7, M}) : W’ and thus by unfolding the definition of O, we obtain (M; |
Byl(py(T), )] 4 and (M} | El(pa(12), )]} b, or running(W"k, (M | Ey[(py(I1), )])) and
running(W'.k, (M} | E2[(p2(I2),-)])). In the first case, it is straightforward to derive from the
reduction semantics that (M, | E1[(sldra,i;p1(11),+)]) J and (Ms | Eo[(sldrg,i; p2(12),)]) J-

In the second case, since W'.k = W.k, we derive that running(W.k, (M; | E1[(sldra,i; p1(I1),-)])
and running(W.k, (Ms | E3[(sld rqa,i; p2(I2),-)]). Thus we conclude that:

(W, Ex[(sldrq, 5 p1(11), +)], B2[(sld ra, i; p2(I2), -)]) € O.
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— Next, we instantiate our final hypothesis with W’ and p. Note that p € D[A] by assumption,
W' € H[¥] by heap monotonicity (Lemma 1.9). We claim currentMR (W' (isik)) €Ew- S[o]p
which follows directly from the first case of lemma 1.21. We claim currentMR(W (iveg)) Ew
R[x[ra: 7i]]p- The claim follows directly from the second case of lemma 1.20 since, above,
we have established that (W', wy;, we;) € W[r;] and by assumption currentMR(W (iyeg)) Ew
R[x]p. Hence, we have that

(W' (p1(T1,4)), (p2(12), ) € E[at 75 0:]p

Instantiate the above with Fy and Es. Note that we have (W', Eq, Es) € K[q F m;0:]p
which follows from (W, Ey, E;) € K[q b 7v; 0:]p by monotonicity for evaluation contexts
(Lemma 1.10), since our choice of W', W' J,,, W and our second hypothesis let us easily
establish all the premises of that lemma, including that ret-addry (W, ¢) = ret-addry (W, ry)
and ret-addry (W, 4) = ret-addra (W, rq).
Hence, we have

(W, Exl(p1 (11, )], Eal(pa(12), )]) € O.

Instantiate the latter with M{ and M}, noting that (M7, M}) : W’'. Hence, we have

(M7 | Exf(pr(To),)]) & A (M3 | E2[(p2(T2),-)]) 1) V
(running(W-k, (M7 | Ex[(p1(11),-)])) A running(W.k, (M3 | E2[(p2(12),-)])))

which implies what we needed to show.

O
Lemma 1.58 (Store to Stack)
W, A;xbrsy ®ureo:7,q#1,and ¥; A;x;70 20 -+ i1 27 2 o;qb I =1 I,
then W; A;x;79 :: -+ 271 it o;qF ssti,rgy; 17 =1 ssti,rgo;Io.
Proof
Clearly, W; A;x;70 st -+ 2 Ty it o;q b ssti,rgy; Iy and W A x; 710 t2 -+« it 7 i o;q F ssti,rgo; Lo,
Consider arbitrary W and p such that W € H[¥], p € D[A], currentMR(W (ireg)) €w R[x]p, and
currentMR(W (istk)) €w S0 it - -+ 2 73 i: o] p. We need to show that

(VV,pl((SSt i,re1;14, ')>7p2((SSt i, rez; Iz, )))
= (W, (ssti,p1(rs1); p1(I1), ), (sst i, pa(rs2); p2(I2), -)) € E[q k- ret-type(q, x, o)]p.

Note that if W.k = 0 then we are done, since for any evaluation contexts E; and memories M;, we can
immediately show that running(0, (M; | F;[e;]).

In the following, assume W.k > 0 and let 7,; o, = ret-type(q, x, 7o :t -+ 2 73 it 0).
We will use Lemma 1.11 to complete the proof, so we start by establishing the premises of that lemma.
e We claim that (W, (ssti, p1(rs1); p1(I1),-), (ssti, pa(rs2); p2(I2),-)) € TermAtom[q F 7v; o ]p.
To establish this, we must show W.W;;  Woxi; W.os; pi(q) F (sst i, pi(rsi); pi(Li)s +) : pi(7e); pi(ore).
The latter follows from W; A; x;0;q b sst i, rg;; I; using the component typing rule and the prop-
erties of W and p that we have by assumption.

o Let s = (W.S1[i — W.Rq(p1(re1))], Weors[i: pi(7))], W.S2[i — W.Ra(p1(rs2))], Weoa[iz pa(7)])
and W' = (Wk, W0y, Wy, W.6[iu s islands (s, W.k)]).

e We claim that W’ € World. Instantiating the first hypothesis with W and p, we have that
(W, W-R1(p1(rs1)), WR2(p2(rs2))) € W[r']p
Thus we have that W.U;; - - W.Ri(pi(rsi)) : pi(77). Given our choice of W’ and since W € World,
it follows that W/.U;; - = W.R; (pi(rsi)) : pi(77) which is sufficient to establish our claim.
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e Note that W’ Jd,u, W. The latter is immediate given our choice of W’ and the definition of
islandggy.

e Consider arbitrary (M7, Ms) : W. Let M; = (H;, Ry, Si).
From (My, M) : W, since W.k > 0, we have (bW, My, M) € @{currentMR(0) | ¢ € W.O }.
From the latter, we have the following fact for island iyeq: (W, R1[,Ra[) € currentMR(W (ireg)).
From the latter it follows that R; = W.R;.

Note that
((Hi, Ri, Si) | (ssti, pilrai); pi(Ti), +)) ¥ ((Hi, Riy Sili = Ri(pi(rai))]) | (oi(Ti), -))

Let M! = (H;, Ry, S;[i — Ri(pi(rsi))]). Note that (M, Ms) : W'.
e Note that W.k < W'.k + 1.

e Note that q # €, which follows from the third hypothesis since it is a side condition of the
instruction typing rules. Further, since q # i, which was the only memory location changed
between W and W/, we can see that the the return address does not change.

e Next, to use our third hypothesis, we note that W’ € H[¥] by heap monotonicity (Lemma 1.9)
and that currentMR(W’(ires)) €wr R[x]p by Lemma 1.20 since W/ (iyeg) = W (ireg). We also

claim that currentMR(W'(isx)) €@w+ S[7o @2 -+ it 77 2 o p. From above, we have that
(W, W.R1(p1(rs1)), W.R2(p2(rs2))) € W[7']p. Hence, by monotonicity and the definition of W’
we have

(W, WR1(p1(rs1)), W-R2(pa(rs2))) = (W, W’'.S1 (i), W'.S2(i)) € W[']p,

which, using Lemma 1.21, is sufficient to establish our claim.
Therefore we can apply our third hypothesis to W’ and p, finding that

(W, p1((T1, ), p2((T2,+))) € E[a - ret-type(q, x, o)]p.

Now, the result follows by Lemma 1.11.

O
Lemma 1.59 (Store Return Address to Stack)
If x(rg) =7"and O; A;x;70 2 +-» i1 2 77 oyib I =p I,
then W; A;x;79 st -+- 7T 2 o;1rg Fssti,rg; I =1 ssti,rg;Is.
Proof
Clearly, W; A;x;7g 2t -+ 2Ty it o;1rg Fssti,rgsly and Wy A x; 7 it -+ - i 7y i oy rg b ssti, rg; Lo,
Consider arbitrary W and p such that W € H[¥], p € D[A], currentMR(W (ireg)) €Ew R[x]p, and
current MR(W (i) €w S[7o i -+ - it 73 :: o] p. We need to show that

(VV, pl((SSt i,rg; 1, ))a Pz((SSt i,rg; o, )))
= (VV7 (ssti,rs; pl(Il)’ *), (sst i, rs; p2(12)9 )) € S[[rs F ret—type(rs, X U)]]p. (17)

Note that if W.k = 0 then we are done, since for any evaluation contexts E; and memories M;, we can
immediately show that running(0, (M; | E;le;])).

In the following, assume W.k > 0 and let 7,; o, = ret-type(rs, x, o).

Moreover, note the following preliminary fact:

e By our first second hypothesis, and currentMR (W (ireg)) €Ew R[x]p we have that there exist wy,
and wy such that W.R;(ry) = wy and W.Ra(rs) = wa, (W, w1, ws) € W[T']p.

With the above facts in hand, we now prove (17).
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e claim that (ssti,rs;p1(11),), (ssti, re; pa(l2),-)) € TermAtom[rs b 7;0.]p. From the defini-
tions of TermAtom|[rs - 7.; 0] p and TermAtom|[rs F 75 0] , it suffices to show W.WUy; ;s Wox1; Weoq; p1(rs) b
(sldra,ispi(I1),): p1(7e); pr(ow) and WoWsas s Woxo; Weora; pa(rs) b (sld ra, i3 p2(I2), +) : p2(72); p2(o).
Each follows from W; A; x; 79 2 -+ 2 73 2t o;1rg Fsstiyrg; Iy andW; A 70 2o it 1y it oy rg B
sst i, rg; I respectively using the component typing rule and the properties of W and p that we
have by assumption.

e Consider arbitrary F; and Es such that (W, Ey, Es) € K[rs b 7,;0,]p. We must show that
(W, Ex[(ssti,rs; p1(In), -)], Bal(sst i, rs; p2(12), -)]) € O.

onsider arbitrary (My, M3) : W. We must show either that (M; | E1[(st ras[i], rs1; p1(I1), +)]) 4
)

and (My | Ez[(straz[i], rs2; p2(I2),+)]) |, or running(W.k, (M; | E1[(st ras[i], rs1; p1(I11),+)])
and running(W.k, (Ms | E2[(st raz([i], rs2; p2(I2), -)]))-

Let My = (H1,R1,S1) and My = (Ha, Ro, S»).

From (M, M) : W, since W.k > 0, we have (W, My, M) € @{currentMR(0) | ¢ € W.O }.
From the latter, we can have the following fact for island ;eq.

We have that (W, R4[,Ral) € current MR(W (ireg)). From the latter it follows that R; = W.R;
and, hence, R, (rs) = wy and R, (rs) = wo (which are the same wy and ws from our preliminary
facts above).

Next, by the reduction semantics of our language, with all of the above facts in hand, we have
that:

(My | Ex[(ssti,rg; pa(Ta), )]))— (M7 | Ex[(pr(T1),-)])
and

(M | Bo[(ssti,rs; pa(12), ) )) —> (My | E2[(p2(12),)])
where M| = (Hy,R4,S)) with S| = Si[i = w1], and M3 = (Hz, R, S}) with S, = Ss[i — w»].
Note that in order to complete our proof, it suffices to show:

(M7 | Ex[(pa(Ta),)]) & A (M3 | Ea[(p2(12),)]) 1) Vv
(running(W.k — 1, (M7 | Ex[(p1(11),-)])) A running(W.k — 1, (M; | Ez[(p2(I2),-)])))

We proceed by showing that (M, M) : W and then instantiating our final hypothesis ¥; A; ;79 22+ 22 73 2
ssti,rg;l; =y ssti,rg; s,
— We claim that (M7, M3) : W. We prove this claim by establishing the following:

* B M{:W.®y and = MJ: W.®5, both of which easily follow from (M7, M3) : W and the fact
that we have updated the ith element of each stack with well-typed words of the same
type, i.e., with words with types p1(7’) and pa(7’) respectively.

* We assume that W.k > 0 and we must show that

(>W, M{, M}) € ®{ currentMR(0) | 6 € W.O }

The latter follows from (M7, Ms) : W and monotonicity of MemRel given that we establish
the following claim for island gk, (W', S| [,S51) € current MR(W' (ig¢x) ) -

Recall that W'.5; = S.. Thus we obtain trivially that (W', S7,55) € {(W, W'.Sy,W'.S) |
W € Worldy ;. }. From the latter, we establish directly our claim that

(>W',S51,5%) € current MR (W (istx ) )

— Next, we instantiate our final hypothesis with W’ and p. Note that p € D[A] by assumption,
W' € H[¥] by heap monotonicity (Lemma 1.9). We claim that currentMR (W' (ireg)) Ew-
R[x]p by the first case of Lemma 1.20. Moreover we claim that currentMR(W’ (istk)) Ew
S[o']p Our claim follows directly from the fourt case of lemma 1.21 since, above, we have
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established that (W', wy,w2) € W[7r'] and currentMR(W (isx)) €w S[o]p. Hence, we have
that

(W', (p1(T1,4)), (p2(12), ) € E[at 75 0:]p

Instantiate the above with E; and F5. Note that we have (W' Ey, Es) € K[q - 7;0:]p
which follows from (W, Ey, Es) € K[q b 7;0:]p by monotonicity for evaluation contexts
(Lemma 1.10), since our choice of W', W’ J,u, W our second hypothesis let us easily
establish all the premises of that lemma, including that ret-addry (W, ry) = ret-addry (W, 1)
and ret-addry (W, r) = ret-addry (W, ).

Hence, we have

(W', E1[(p1(L1, )], E2[(p2(12), -)]) € O.
!

Instantiate the latter with M| and M}, noting that (M7, M}) : W’'. Hence, we have

(M7 [ Ex[(pr(Ta), D) L A (M3 | E2l(p2(I2),-)]) 4) V
(running(W.k, (M7 | E1[(p1(11),-)])) A running(W.k, (Mj | E5[(p2(12),-)])))

which implies what we needed to show.

Lemma 1.60 (Return from Call)
If x(r) = box V[].{r’: T; a'}q, and x(r’) = 7, then ¥; A;x;0;r Fretr {r'} =~y retr{r'}.

Proof

Clearly, ¥; A; x; o5 Fretr {r'}.

Consider arbitrary W and p such that W € H[¥], p € D[A], currentMR(W (ireg)) €Ew R[x]p, and
currentMR(W (i )) €w S[o]p. From the first premise, we have that ret-type(r, x,o) = ;0. We
need to show that

(W, p1((xetr {r'}, ), p2((retr {r'},:))) = (W, (retr {r'}, ), (retr {r'},:)) € &r - T;0]p.
Consider arbitrary E; and Ej such that (W, Eq, Es) € K[[r - ;0] p. We need to show that

(W, Ex[(retr {r'}, )], Bo[(retr {r'},-)]) € O

Instantiate (W, E1, Es) € Kr = 7;0]p with W, r, v/, and r’. Note that W Jpu, W (by reflex-
ivity), the return markers are both r, and currentMR(W (isx)) €w S[o]p. We also claim that
(W, W.R,(r"), WR2(r")) € W[T]p. Instantiate currentMR(W (ireg)) Ew R[x]p with (W, W.R4 [
,W.R2 |) noting that the latter is in currentMR(W (iyez) by the definition of island,e, and that
>W 3 W. Hence, we have (W, W.R1|,W.R2]) € R[x]p. By the second premise, we have that
(r':7) € x. Therefore our claim follows from the definition of R[x]p. Thus, we have exactly what we
needed to show. O

Lemma 1.61 (Return at End)
If x(r) =7, then ¥; A;x;0;end{r;0} Fretend{r;0} {r} =1 retend{r;0} {r}.

Proof

Clearly, ¥; A; x;0;end{r;0} F retend{r;0} {r}.
Consider arbitrary W and p such that W € H[¥], p € D[A], currentMR (W (ireg)) €w R[x]p, and
currentMR(W (istk)) €w S[o]lp. We need to show that

(W, p1((retend{r;0} {r},-)), p2((ret end{r;0} {r},")))

= (W, (retend{pi(7); pr(a)} {r}, "), (ret end{pi(7); pr(a)} {r}, ")) € E[end{r; 0} - 7;0]p.
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Consider arbitrary Eq and Ej such that (W, Eq, Es) € K[end{7;0} F 7;0]p. We need to show that
(W, Er[(ret end{p1(7); pr(a)} {r}, )], Ba[(ret end{p(7); pr(e)} {r},-)]) € O

Instantiate (W, E1, E») € K[end{7r;0} - 7;0]p with W, end{7; 0}, r, and r. Note that W J,,, W
(by reflexivity), the return markers are both end{7; o}, and current MR(W (is1x)) €w S[o]p. We
also claim that (>W, W.Rq(r), W.R2(r)) € W[7]p. Instantiate currentMR(W (ireg)) Ew R[x]p with
(W, W.R4[,W.R2]) noting that the latter is in currentMR(W (iye) by the definition of island,ey, and
that >W 3 W. Hence, we have (W, W.R1[,W.R2]) € R[x]p. By the first premise, we have that
(r:7) € x. Therefore our claim follows from the definition of R[x]p. Thus, we have exactly what we
needed to show. O

Lemma 1.62 (Jump)
If O3 Asx Fug =~y uz:box V[ {x;0}9, A+ x <X, and [[A];x;0 F q,
then W; A;x;0;qF jmpu; =y jmp us.

Proof

Clearly, ¥; A; x;0;qF jmpuy and W; A; x; 059 jmp ug follow from the premises.

Consider arbitrary W and p such that W € H[¥], p € D[A], currentMR (W (ireg)) €w R[x]p, and
current MR(W (it )) €Ew S[o]p. We need to show that

(W, p1((jmpur, -)), p2((jmp uz, +))) = (W, (jmp p1(u1), -), (jup p2(uz), ) € E[a k- ret-type(q, x, o)]p-

Note that if W.k = 0 then we are done, since for any evaluation contexts E; and memories M;, we can
immediately show that running(0, (M; | E;[e;])).

In the following, assume W.k > 0 and let 7,; o, = ret-type(q, x, o).

Instantiate the first premise with W and p, noting W € H[¥], p € D[A], and current MR(W (ircg)) Ew
R[x]p. Thus we have that (W, Wfil(gl(ul)),Wlf{2(p2(U2))) € W[box V[|.{x';0}%p. From the
definition of the latter, we have that W.R;(p;(u;)) = £;[wi].

We will use Lemma 1.11 to complete the proof, so we start by establishing the premises of that lemma.

e We claim that (W, (jmp p1(u1), ), (jmp p2(uz),)) € TermAtom[q - 7,; o]p. To establish this,
we must show W.U,; - Woxs; Weoi; pi(q) B (Gmp pi(wi), <) : pi(7:); pi(or). The latter follows from
W: A;x;0;q F jop u; using the component typing rule and the properties of W and p that we
have by assumption.

e Let W/ = >W. Note that W’ € World since W.k > 0 and W € World.

e Note that >W Jdpup, W by Lemma 1.6.

e Consider arbitrary (M, Mz) : W. Let M; = (H;, R;, Si).
From (M, M) : W, since W.k > 0, we have (W, My, M) € @{ currentMR(0) | § € W.O }.
From the latter, we have two facts, one for island i,.s and the other for island 7px.
First, we have that (>W,Rq [,R2[) € currentMR(W (iyeg)). From the latter it follows that
R; = W.R; and, hence, R;(p;(u;)) = £[wi].
Second, we have that there exist some Hypq C Hy and Hy,s C Hy such that (W, Hp1 [, Hpal ) €
currentMR(W (inox ). We use the latter to instantiate (W, £ [w1], €2 [w2]) € W]box V[|.{x’; o }9]p,
noting that >W 2 W, which allows us to conclude:

— Hypi(4) = code[Bi]{xi; i }%.I;,

pi(X") = xilwi/Bil,

pi(o) = ailwi/Bi],

- pi(q) = qi[wi/Bi], and

— (oW, (code[]{xx; 01 }.I1) [w1 /B, (code] {xz; 02 }92.T3) [w2/Ba]) € HVIV]-Ax's o}
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Hence, we have that R;(p;(u;)) = £[w;] and H;(4;) = code[B;]{x;; o3 }%.1;, and

((Hi,Rs, Si) | (jmp pi(wi), -)) —* ((Hi, Ri, Si) | (Lifws/Bi], )
Let M! = M; = (H;, R;, S;). Note that (M], M}) : W' is equivalent to (M, Ms) : >W, which
follows by Lemma 1.6.

e Note that W.k < W'.k 4 1 since W'.k = (bW).k = Wk — 1.

e Note that q # €, which follows from the third hypothesis. Further, since we haven’t changed the
world, we can see that the the return address does not change.

e Note that

(W, (code[]{x1; o1}9*.11) [w1 /B1],
(code[]{xa; o2}.12)[w2/B3]) € HVIV-{x; o }]p
= (W, code[|{x1[w1/B1]; o1[w1/B1]} /Pl 11 [wy /B4],
code[|{xz2[wz/Bz]; 0w/ B2} 212/P2] Tz w2/ B2)) € HVIV[I-Ax'5 o}
= (>W, (code[[{p1(x")]; p1(0)}P1 (D) 1, [w1 /B1),
code[[{p2(x); p2(0)}P>(V Iz [w2/B2]) € HVIVI{x'; 0} ]p

Instantiate the latter with >W and 7;sigma’ = ret-type(q, x, o). We note the following:

— We have >W J >W by reflexivity.

— We claim that ret-type(q, x’, o) =, ret-type(q, x,o). Since q # ¢, the latter is immediate
except in the case when q is some register r’, in which case we must show that r’ € dom(x’)
since otherwise ret-type(q, x’, o) would be undefined. But note that from our first premise,
it follows that A F boxV[].{x’;0}9. By inversion of typing rules, we have that A F
V[].{x’; o}4, and hence A[]; x’;o F q. From the latter it follows that ret-type(q, x’, o) is
defined. Hence, if q is some register r’, it must be that v’ € dom(x’). Moreover, from the
second premise, it follows that x’(r’) = x(r’). This is enough to establish our claim.

— We claim that currentMR((>W)(ireg)) €Exw R[x']p- To show this, consider arbitrary
(W, M, Ms) € currentMR((>W)(ireg)) such that W O >W. We must show that

(Wa M17 M2) S R[[X/]]p

Note that (>W).k = W.k—1 and that current MR((>W) (ireg)) = |currentMR(W (ireg)) | wik—1-
Thus, (W, My, M) € current MR(W (ireg ) ). Using the latter we can instantiate
currentMR(W (iyeg)) €Ew R[x]p with (W,Ml,Mg), noting that W 3 W (by transitivity of
), which gives us (W,Ml,Mg) € R[x]p. Finally, by Lemma 1.19 (register-file subtyping
implies inclusion) we have that R[x]p C R[x’]p, which is sufficient to show what we need.

— We note that current MR (> W (igeic)) €sw S[o]p. To show this, consider arbitrary (W, My, M) €

currentMR((>W) (istx)) such that W 3 >W. We must show that
(Wa Mla MQ) € S[[O']]p

Note that (>W).k = W.k—1 and that currentMR((>W) (istk)) = [current MR(W (istk)) wik—1-
Thus, (W, My, Ms) € currentMR(W (igx)). Using the latter we can instantiate
current MR (W (isti)) €w S[o]p with (W, My, My), noting that W 3 W (by transitivity of
J), which gives us (W, My, M) € S[o]p as needed.

Hence, we can conclude that

(W, (p1(Ii[w1/B1]); ), (p2(I2[w2/B2]), -)) € E[a F ret-type(a, X', o)]p

Now, the result follows by Lemma 1.11. O
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Lemma 1.63 (Call)
Given the following;:

o U A;x Fu; =y uz:box V[¢, €].{x; 5}9,

e ret-addr-type(q, X, 6) = V[].{r: 7; 6},

o AHF o,

A FV[]{x[oo/ClIG +k — j)/els 5loo /Sl + k — j) /€] }4,

o Ak x <x[oo/Cll(+k —j)/¢],
® o =Tp T O,

e G =To-uTyC,

e j<i,and

o & =7l Tl

we have that ¥; A;x;0;iF calluy {o0,i+k — j} =1 callus {op,i + k — j}.

Proof
Clearly, ¥; A; ;031 b callug {og,i+k —j} and ;A x;0;1 b calluy {og,i+ k — j} follow
from the premises.

Consider arbitrary W, v, and p such that W € H[¥], p € D[A], (W,v) € G[]p, currentMR(W (ireg)) Ew
R[x]p, and currentMR(W (istx)) €Ew S[o]p. We need to show that

(W, p1(mi((calluy {o0,i+k —j},+))), p2(r2((calluz {oo,i+k —j},-))))
= (W, (call pi(ur) {p1(o0),i+k —j},+), (call pa(uz) {p2(00),i+k — j},)) € E[i F ret-type(i, x, o)]p.

Note that if W.k = 0 then we are done, since for any evaluation contexts F; and memories M;, we can
immediately show that running(0, (M; | E;[e;i])).

In the following, assume W.k > 0 and let 7,; o, = ret-type(i, x, o).
Consider arbitrary (W, By, E3) € K[i F ;0] p. We need to show that

(W, Ex[(call pr(u1) {p1(o0),i+k —j}, )], E2[(call pa(uz) {p2(c0),i + k —j},)]) € O

Consider arbitrary (Mj, Ms) : W. We must show that for ¢ € {1,2}, either both configurations
(M; | Ei[(call p;i(w;) {pi(c0),1+k — j},)]) terminate or both are running at W.k.

Instantiate the first premise with W and p, noting W € H[¥], p € D[A], and current MR(W (i1e5)) Ew
R[x]p. Thus we have that (W, W.Rq(p1(u1)), W.Rz(pa(u3))) € W[box V[¢, €].{x; 6}%]p. From the

definition of the latter, we have that W.R;(p;(w;)) = £;[wi].

Next, let M; = (Hi, Ri, Sl)

From (M, Ms) : W, since W.k > 0, we have (W, My, M) € @{ currentMR(#) | 6 € W.0 }. From
the latter, we have three facts, one each for islands yeq, @stk, and ipox-

First, we have that (>W,Rq[,Ra2|) € current MR(W (ireg)). From the latter it follows that R; = W.R;
and, hence, Ri(pi(u)) = £[wi].

Second, we have (>W, S1[,S2]) € current MR(W (istx )). From the latter and currentMR(W (isik)) €Ew
Sleollp, it follows that (>W,Sq1[,S2[) € S[o]p. From the premise o = ¢ :: - - - it 75 it 0, it follows
that Sq = wyg 2 -+« 2 Wyj it S10, So = Wag it « -+ it Waj it Saq, (BW, Win, Wan) € W[m]p for n €
{O, . ,j}, and (\>VV7 S1ol, SZO[) S S[[O’oﬂp.

Third, we have that there exist some Hy; C H; and Hype C Hjy such that (W, Hpy [, Hpa[) €
current MR(W (ipox)). We use the latter to instantiate (W, £1 [w1], £2[wz]) € W[box V[, €].{x; 6 }9]p,
noting that >W 3 W, which allows us to conclude:
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Hbl (El [E’ C’ 6]{Xi; a-i}qi-Iia

* pi(X) = xi wl/ﬁl],
* pi(6) = oi[wi/Bil,
e pi(@) = ai[wi/Bi], and

Hence, we know that R;(p;(u;)) = #[wi] and H;(¢4;) = code[B;, ¢, €]{xi; o3 }%.1;, and therefore
<(Hia R;, Si) | Ei[(call pi(ui) {pi(UO)7 i+k— J}a )]> —!
((Hi, Ri, Si) | Eil(Liwi/Bil[pi(o0) /€I + k —§) /€],

Therefore, it suffices to show that for ¢ € {1, 2}, either both configurations
(M; | Ei[(Li[wi/Billpi(o0) /C][(1 + k — j) /€], +)]) terminate or both are running at W.k — 1.

We proceed by noting that from the premise ret-addr-type(q, x,6) = V[].{r: 7; 6’ }, by definition of

ret-addr-type, it must be that either § = ry, or q = ia.

Further, we note that we have

(5W, (code[¢, €]{xa; o1} Ty ) [wn /B ],

(code[C, €] {x2; 72}9.I2) [wa/B2]) € HVIVIC, €].{x; 6}]p
= (>W, code[(, €]{x1[w1/B1]; o1 w1 /B1] Y2 /Pl T [wy /3],

code[, €]{xz[w2/B2]; o2[w2/B2] }42[2/P2] I, w, / B2]) € HVIVIC, €].{x; 6}]p
= (bW, codel[¢, €] {p1(%); p1(6) 31 D).1, [wy /5],

code[C, €] {p2(R); p2(8)}2(D) 1 [w2/B2]) € HVIVIC, €l {x; 6 }]p

Instantiate the latter with >W, p*, 7, and &, where

p* ={C = (p1(0),p2(00),ps), €~ (i+k —j,i+k —j)} and
S = {(W,Slo Szo )l W:' |>W}

We note the following:
e We have >W J >W by reflexivity.

e Note that p* € D[(, €], which follows by the definition of D[-] and by applying Lemma 1.18 to

(>W,S10l,S20l ) € S[oo]p-
o Let p =pUp™.

e Note that 7;6" =, ret-type(d,x,5). This follows by applying the substitutions p} and pj

&) =

to ret-type(q,X,5) = 7;6’, which in turn follows from the premise ret-addr-type(q, X,
V[ {r: ;6" }e.
e We claim that current MR(W (ireg)) €xw R[X]p'-

must show that .
(W, M7, M5) € R[x]/'

(>W, (code[(, €[{x1; 01} .11)[w1/B1], (code[(, €]{x2; 02}92.12) [w2/B2]) € HV]V[(, €]-{X;

Q)

(t)
To show this, consider arbitrary (W, M;, M3) € current MR(W (4reg )) such that W JoW. We

Instantiate currentMR(W (iveg)) €xw R[x]p with (W, M;, M3) € currentMR (W (iye¢)), noting
that W 3 >W, which gives us (W, M;,M;) € R[x]p. Finally, by Lemma 1.19 (register-file
subtyping implies inclusion) applied to the premise A F x < x[o0/C][(i + k — j)/€] we have
that R[x[p € R[x[o0/Cl[(i +k — ) /€l]p.

Therefore, it remains to show that R[x[oo/¢][(i + k — j)/€]lp C R[x]p'-

Next, we examine two cases based on the value of G:
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Case ( = i, Hence, from the premise A - x \ g, we have that A F x. Therefore, note that
RI%[oo/ClIG+k — ) /ellp=RIx]p since C,e ¢ ftv(z) = R[%]p’ by Lemma 1.13

which suffices to show what we needed.

Case ( = r,, Hence, from the premise A F x \ @, we actually have that A F X \ rya.

Hence, it follows that R[(X[o0/C][(i +k — j)/€]) \ rralp = R[(X) \ rra]p’.
Therefore, it remains to show the following for the remaining register r,,, whose type by our
premises must be box V[].{r: 7;6'}¢ where A F 7:

R[rra:box V[|.{r: 7; 6 [o0/¢]}l(Tk=I/el]p C R[rpa: box V[|.{r: T;6'}¢]p’

Therefore, we must show for arbitrary
(W Ri1,R5) € Rlrea:box V[ {r: 756 [00/¢]}el(Tk=D/l]p that (W* RE[,R5T) €
R[rra:box V[].{r:7;6'}]p’. Hence, it suffices to show that

(W*, R (rra), R5(rra)) € Wbox V[].{r: 756" }<]p’.

Note, from our most recent assumption, we have

(W*, R (rva), RE(rra)) € W[box V[|.{r:7;6'[0¢/¢]}cl(Fk=D/<l]p. By the substitution
(Lemmas 1.15 and 1.16), the latter is equivalent to (W*, R} (rya), R3(rra)) € W[box V[].{r: 756"} p*
where p* = p[C = (p1(90), p2(00), S[o0]p), € = (1 + k —j,i + k —j)]. .

To show (W*, R} (rra), R (rra)) € Wbox V[].{r: 756" }“]p, consider arbitrary (W, My, M) €
current MR (W* (ipox)) such that W aw*.

Instantiating (W*, R} (rra), R3(rra)) € W[box V[|.{r:7;6"}]p*, we end up in a position

where we have to show that

HV[V[A{r: 736"} ]p" € HV[V[A{r:7;6"}]p

The latter follows by expanding the definitions and noting that it suffices to prove the following
three facts:
— For any world W, current MR(W” (ireg)) €w R[r: 7]p" implies currentMR(W (iveg)) Ew
R[r: 7]p* since both are equal to current MR(W'(i1eg)) Ewr R[r: 7]p because A F 7.
— For any world W', given that currentMR(W' (istk)) €w S[6']p" we claim that
currentMR (W' (iveg)) Ewr S[6']p*.
Note that 6" = 7] :: -+ 22 7/ :: ¢, and from the premise A - 6'[o¢/(], we know that
¢ ¢ ftv(r)) for n € {0,...,k}. Therefore, it suffices to show that

S[¢lp’ € S[c]p” = ¢s € S[oolp

which is immediate from our choice of ¢g above.

— Finally, we note that 7;or =, ret-type(e,{r:7},6’). (We show the latter in detail
later in the proof so we won’t duplicate it here.) Therefore, note that E[e F ;o] p* =
Eli+k—jbkrmofp =E[i+k —jF 7 0]p.

This completes our proof of the claim marked (7).

e Note that currentMR((>W)(ireg)) €Exw R[X]p’, which follows from current MR(W (ireg)) Epw
RIx].

e We claim that currentMR(W (istk)) Exw S[o]p’ 1)
To show this, consider arbitrary (W,Mf,M;) € currentMR(W (isx)) such that W 3 >W. We

must show that .
(W, My, M3) € S[a]p.

Recall that above we had (>W,S1[,S2]) € currentMR (W (igtx)). Therefore, by definition of the
istk island, it must be that M; = S;1] and M5 = Sa|. Hence, it remains for us to show:

(stlfyszr) e S[a]y
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where we recall that

S1=wiyo -+t Wyj it Sqo
So = Wgg i1 - -+ 11 Waj i Sgg
G=T1pn--ruTu(

and p’ = p[¢ = (p1(90), p2(00), ps), € = (T + K — i+ k — j)]
with ps = {(W, S]_()[,Szorﬂw | [>W}

Thus, to show (W, Sil,S2l) € S[6]¢/, it suffices to show

— (W,wln,wzn) € W[ru]p' for n € {0,...,5}, which follows from (>W, w1y, Wan) € W[T]
by monotonicity (Lemma 1.8).

- (W, S10,S20) € S[¢]p’, which is immediate from S[¢]p’ = ¢s (by definition) and our choice
of pg above.

e Note that currentMR((>W)(istk)) Exw S[&]p’, which follows from current MR(W (i) Epw
S[a]p’.

Hence, we can conclude that

(BW, (It[w1/B1llp1(o0) /€I + k — §) /€], -), (T2[wz/B2][p2(00) /¢l + k — j) /€], +))
e&lak ;60

Next, we instantiate the latter with F; and FEs, for which we need to show the following:

(>W, B, Ey) € K[aF m;6"]p

Consider arbitrary W', §’, r1, r2 such that
1. W' dpup W,
2. (&= & = end{F15'}) V
(Fro.d" =ro A ret-addri (W, pi(4)) = W/.Ri(ro) A ret-addra(>W, ph(q)) = W'.Ra(ro) A
ret-regy (W', rg) =11 A retregy (W' rg) =1r2)
3. (W, W' Ry(r1), W .Ra(r2)) € W[r]p
4. currentMR (W' (isik)) €w S[67]p

We are required to show
(W', (ret p1(@’) {r1}, "), (ret p2(@’) {r2},-)) € O
Next, we collect some facts before we proceed:

e Note that from assumption (4) above, it follows that >W" is defined, which means that W'.k > 0.

e Recall from above that either § = r,, or § = i.,. This fact lets us refine (3) above—that is, since
4 #, end{7; 6"}, we know that

Irg.q" =g A ret-addr; (W, p1(q)) = W'.Ri(rg) A ret-addra(>W, ph(q)) = W.Ra(ro)) A
ret-reg; (W', rg)) =r1 A ret-regy(W’,rg)) =r2)
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Hence, p;(4") = pi(ro) = ro. Therefore, it suffices to show
(W', Er[(retro {r1}, )], Ba[(ret ro {r2},-)]) € O

Consider arbitrary (M7, M%) : W’. We must show that for ¢ € {1,2}, either both configurations
(M] | Ex[(retro {r;i},-)]) terminate or both are running at W'.k.

Next, we establish that (>W, W' R (ro), W .Ra(ro)) € W[box V[].{r:7;’}]p’ by considering the
two cases of §:

Case  =r;,: Hence, by the definition of ret-addr-type we have
ret-addr-type(q, X, &)= ret-addr-type(rya, X, &)
=V[].{r:7; 6’} where X(rya) = box V[].{r:7;5'}¢

Since (BW,Rq [,R2[) € currentMR(W (ireg)) (from above) and currentMR(W (ireg)) Epw
R[x]¢' (f from above), it follows that (>W,R; [,Ra ) € R[x]p’. From the latter, since
Ipa @ box V[ {r:7;6'}c € X, we have

(W, R (rra), Ra(rra)) € W[box V[.{r:7;6'}]p’.
Since R; = W.R; = >W.R;, the above is equivalent to
(W, bW.R (rra), >W.R2(rra)) € W[box V[].{r:7;6"}¢]p’.

Moreover, note that we have the following equalities

ret-addr; (W, §)

= ret-addr; (bW, rya) since q = rpa

= (>W).Ri(rra) by definition of ret-addr;

= W' R;(ro) since ret-addr; (>W, q) = W’ .R;(ro)
Hence, we have

(>W, W' R1(rg), W .Ra(rg)) € W[box V[|.{r:7;5"}]p’.

Case 4 =i,,: Hence, by the definition of ret-addr-type we have
ret-addr-type(q, X, &)= ret-addr-type(iya, X, 5)
=V[].{r: 7;6'}€ where 6 (iya) = box V[].{r:7;5'}¢

Since (W, S1[,S2l) € current MR(W (isek)) (from above) and currentMR (W (igtk)) Exw S[5] 0’
(1 from above), it follows that (>W, S1[,S2) € S[6]p’. From the latter, since iy, : box V[].{r:7T;6'}c €
&, we have

(>W, S1(ira), S2(ira)) € W[box V[].{r: 755"}y .

Since S; = W.S; = >W.S;, the above is equivalent to

(W, >W.Sq (ira), >W.S2(ira)) € W[box V[].{r:7;5'}]p .
Moreover, note that we have the following equalities

ret-addr; (>W, )

= ret-addr;(>W, i) since § = iya

= (W).Si(ira) by definition of ret-addr;

= W' Ri(ro) since ret-addr; (>W, ) = W’.R,(ro)
Hence, we have

(W, W' Ry (ro), W .Ra(rg)) € W[box V[].{r:7;6"}¢]p .
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Since W’ 3 >W, by monotonicity we have
(W', W' R1(ro), W .Ra(ro)) € Wlbox V[].{r:7;6'}<]p’.

From the above, we have that W/ .Wy;- = W/ . Ry(ro) : pi(box V[.{r:7;6'}€) and W' . Uy;-
W' Ra(rg) : ph(box V[].{r:7;5’}¢). These facts put together with W’ € World and ret-reg; (W', ro)
allow us to conclude r = ry = rs.

Next, let M/ = (H/, R/, S!).

From (M7, M5) : W', since W.k > 0, we have (W', M{,M3) € Q{ currentMR(¢) | 6 € W'.©}.
From the latter, we have three facts, one each for islands iyeg, #sti, and ipox-

First, we have that (>W’, R/, R5[) € currentMR(W” (ireg)). From the latter it follows that

R{ = W'.R; and, hence, we have (>W' R/ (ro), R} (r0)) € W[box V[].{r:7;6'}[p". From the
latter, it must be that R!(rq) = £![w!].

Second, we have (W', S 1,8, 1) € currentMR(W’(isk)). Hence, we can instantiate assumption
(5) from above, i.e., currentMR(W'(istx)) €wr S[6']p/, with (W', S’ 1,S5 1), noting >W' I3 W’
(by Lemma 1.6), which allows us to conclude that (>W' S| T,S,]) € S[6']p'. From the premise
' = 7)) (it follows that S = wig - w28, S, = why oo wh i Sh )
(W' w! ,wh ) e W[rl]p for n € {0,...,k}, and (>W',S,[,S5,1) € S[¢]p'. From the latter,

since S[¢]p" = ¢s, it follows that S, = S1¢ and S}, = Sa0.

Third, we have that there exist some H{ 5 C H} and H], C H) such that (W', H [, H{,[) €

currentt MR(W/ (ipox ) ) -

Instantiate (W', £/ [w]], £, [w]]) € W[box Y[].{r:7;&'}]p’ with (W', H |, H},I) € current MR(W’ (i1,0x)),
noting that >W’ 3 W’ by Lemma 1.6. Hence, we have that

o H},(£) = codelB]){x}s o}.1,
o pi(r:7) = xilwi/B],
o pj(6") = a{[w]/B]],
e pi(€) = aj[wi/B], and
o (>W', (code[]{x}; 0} }9.17) [w]/B1], (code[l{x}; 05} % 1) [wh/B3]) € HVIV(|.{r: 75 6'}]¢
Hence, we know that R{(ro) = £/[w!] and H/(¢£!) = code[3]]{x!; o'i'}qi,.I{, and therefore
(H, R{, ) | Eil(ret ro {ri}, )]) —" ((H{, R, S)) | Bi[(L[w]/B], )]

Therefore, it suffices to show that for i € {1,2}, either both configurations (M; | E;[(I![w!/B!],)])
terminate or both are running at W'.k — 1.

We proceed by noting that

(5W", (code[[{x}; o }4.1)) [ /8], (code[|{ x4 o5} .14) [wh /B5]) € HVIVI].{x: 736/}
= (W', code[l{x} [} /B1]; o4 [} /BF1} 5 4 /PELT, (i /7],
code(}{x; (w5 /B3] o4 [wh /B3l % l4/P8. 1, [wy /B5]) € HVIVI){r: 75 5"} <]of
= (>W', code[[{p} (r: 7); o1 (6")}1(€).1{ [w] /1),
code(l{ph(r: 7); ph(6")}72(E). 1[5 /B5]) € HVIVI){r: 755" }<]
= (6W', code[l{r: pi(7); ph (")} T K ~ L1 [ /7],
code(l{r: py(r); ph(6")} T K ~I1, w5 /B3)) € HVIVI){r: 756/}

’

Instantiate the latter with >W’, 0 € D[-], 7+, and o
We note the following:
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e We have >W' J >W' by reflexivity.
e We claim that 7,; o =, ret-type(e, {r: 7},6’). It suffices to show for i € {1,2}:

pi(7:); pi(or) = ret-type(p;(e€), pi({r: 7}), pi(67))
= 0l () = retetype(i + k — , A({r: T}, oo 55+ 5 7 2 €))
= pi ()i pi(or) = ret-type(i + k — j, p;({r: 7}), pi(70) 22 - -+ 2 pi(75) == p(C))
= pi(1e); pi(or) = ret-type(i + k — j, pi({r: 7}), pi(70) :: - -+ 32 pi(75) 2 pio0))
Recall that 7; 0, = ret-type(i, x, o) where o = 79 :: - -« :: 75 :: 0¢. Hence, FTV(1;0,) C A

and oo(i —j — 1) = box V[|.{r’: 7; o} for some r’ and q’.
Putting these facts together, we have that

A6 (i +k =)= pilooli+k—j— (k+1)))
= pi(box V[.{r": 7p; 0 }¥)

which means that p;(7:); pi(or) = ret-type(i + k — j, pi({r: 7}), p;(6")) as we needed to show.
e We claim that currentMR((>W')(ireg)) Exwr Rr: T]p’.

To show this, consider arbitrary (W, M7, M3) € current MR((>W) (ireg)) such that W W,
We must show that .
(W, M{,M3) € Rlr:7]p

Note that since W’.k > 0 (from above), (>W’).k = W'.k — 1 and therefore

current MR((>W') (iveg)) = [currentMR(W (ireg)) | k-1 C currentMR(W/ (iyeq))

Thus,(W, M;, M3) € current MR(W' (ireg ) ). Moreover, since we already have (>W', R/, R}[) €
current MR(W/ (iyeg)), by the definition of island i,eg, it must be that M;* = R!. Therefore, we
are required to show .

(W, R4, RL) € R[r: 7]y

It suffices to show N
(W, R/ (r),R5(r)) € WT]p

which follows by monotonicity (Lemma 1.8) from our earlier assumption (4), namely
(W', W' Ri(r1), W Ra(rz)) € W[r]p’ since r = ry = r, (from above) and since W/.R; = R/
and W/.R, = RJ.

e We claim that currentMR((>W')(istk)) €Eswr S[6']p’.

To show this, consider arbitrary (W, My, M3) € currentMR((>W')(istx)) such that W W,
We must show that .
(W, M, M3) € S[6"]p".

Note that since W’.k > 0 (from above), (>W).k = W.k — 1 and therefore

current MR((>W) (istx)) = [currentMR(W (isex)) [ w k—1 C current MR(W' (4gtx ) )

Thus,(W, M}, M3) € currentMR(W” (igy)). Moreover, since we already have (>W’, SiI,850) €
current MR(W” (istx ) ), by the definition of island iy, it must be that M;" = S!. Therefore, we are
required to show

<W,s;r,s;r> e S[6"]/'.

; DN R : R ’ R ’
Since 6" = 7 = 7y ¢ with S = wi o twiy i Sigand S, = wh, i 32 wh it Sh,
the above follows from
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- (W,W’ln,w'zlﬂ) e W[r!]p' for n € {0,...,k}, which follow by monotonicity (Lemma 1.8)
from (W', w' ,w, ) e W[r.]p, and

— (W, Siol, S5 1) € S[¢]p', which follows from S[(]p" = s and the definition of g since
Sllo = SlO and S,20 = Szo.

Hence, we can conclude that
(=W, (I3 [wi/B1]s %), (Ip[ws /B3], ) € Ee b 7o oo’
By Lemma 1.16, and noting that FTV (1;0,) C A we have

W', (1 [wi/B1]; ), Ialws /B3], ) € Eli + k — j i 0:]p. (18)

Near the beginning of this proof, we had assumed (W, Ey, Es) € K[i b 7; 0] p-

We now apply Lemma 1.10 (monotonicity for evaluation contexts) to (W, E1, Es) € K[i b 7;0:]p,
noting the following:

o W' J,u W, which follows by transitivity of J,,, and the following W' Jdpu, W Jpup
>W Jpun W (which we have from above and from Lemma 1.6).
e ret-addry (W,i) = ret-addr;(>W’,i+ k — j) and ret-addry(W,i) = ret-addra(>W',1i+ k — j),
which follow from:
ret-addry (W,1) = W.S1(i)
= (W1 - -+ it Wyj it S10) (i)
=Sio(i—j+1)
and
ret-addr; (W/,i + k —j) = W'.S.(i +k — j)

= (Wig st -+ Wi 12 S10)(i+k —j)
=Sio(i+k—j—(k+1))
=S10(i—j—1)

and analogously for ret-addrs.
Hence, we have that (W', E1, Es) € K[i+k — j b 70 0] p.
Instantiating 18 with the above, we have (>W', E1[(T] [w] /8], )], E2[(1,[w5 /B5], )]) € O.
By instantiating the latter with M{ and M}, noting (M7, M3) : >W’, we have that (M7 | E1[(T}[w]/B1],)])

and (My | E5[(I5[w5/B5], -)]) either both terminate or are both running at W’.k — 1, as we needed to
show.

Hence, we conclude that
(W, Er[(Ii[wi/Ba]lpr(e0)/Cllai /€], )], Ba[(I2[w2/B2][p2(00) /Claz/€], )]) € O

Now instantiate the above with M; and M, noting that we have (M, Ms) : >W by Lemma 1.6 since
(My, M2) : W. Hence, we have that for ¢ € {1, 2}, either both configurations (M; | E1[(Li[wi/Bi][pi(c0)/C][ai/€], )]
terminate or both are running at W.k — 1, which is exactly what we needed to show!

O

Lemma 1.64 (Call from Top Level)
Given the following:

o U A;x u; =, uz:box V[(, €].{x; 5}9,
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ret-addr-type(q, x, ) = V[|.{r: 7; 6'}¢,

o AHF 0o,

A V[ {x[oo/¢llend{r*;0*}/€]; &[o0/Cllend{T*; 0"}/ €]},
At x < x[oo/Cllend{7*;0"}/€],

T it 0o,

[ ) [ ) [ )
q
Il

Q»
Il

° T :: (, and

"'=1" ¢,

we have that ¥; A; x;o;end{7*;0*} F calluy {09, end{7*;0*}} =~ calluy {og,end{7*;0*}}.

Q»

Proof
Clearly, ¥; A; x;0;end{7*;0*} F calluy {og,end{7*;0*}} and
U A;x;oyend{7*;0"} F call us {og, end{7*; 0* }} follow from the premises.

Consider arbitrary W ,v, and p such that W € H[¥], p € D[A], (W,v) € G[[]p, current MR(W (ire)) Ew
Rlx]p, and currentMR(W (istx)) €Ew S[o]p. We need to show that

(W, p1(m((callus {go, end{r";5"}},))), p2(12((calluz {oo, end{7*; 5" }},))))

= (W, (call pi(uyr) {pi(o0), end{pi(7*); pr(c*)}}, ), (call pa(uz) {p2(d0), end{ps(7*); pr(a*)} },-))
€ Elend{r*;0*} F 7*;0%]p.

Note that if W.k = 0 then we are done, since for any evaluation contexts F; and memories M;, we can
immediately show that running(0, (M; | E;[e;i])).

In the following, assume W.k > 0. Also, let q; = end{p;(7*); p;(c*)}
Consider arbitrary (W, By, E3) € K[end{7*;0*} - 7*; 0*]p. We need to show that

(W, E1[(call pi(uy) {p1(o0), a1}, )], E2[(call pa(usz) {p2(c0), az},)]) € O

Consider arbitrary (Mi, Ms) : W. We must show that for ¢ € {1,2}, either both configurations
(M; | E;[(call pi(u;) {pi(c0),di},-)]) terminate or both are running at W.k.

Instantiate the first premise with W and p, noting W € H[¥], p € D[A], and current MR(W (i1e5)) Ew
R[x]p. Thus we have that (W, W.R;(p1(u1)), W.Rz(pa(u3))) € W[box V[¢, €].{x; 6}%]p. From the

definition of the latter, we have that W.R;(p;(w;)) = £;[wi].

Next, let M; = (H;, Ry, S;).

From (M, Ms) : W, since W.k > 0, we have (W, My, M) € @{ currentMR(0) | § € W.© }. From
the latter, we have three facts, one each for islands 7;eg, tstk, and ipox.

First, we have that (W, R1],Rzl) € current MR(W (iyeg)). From the latter it follows that R; = W.R;

and, hence, R;(pi(us)) = £[wi].

Second, we have (>W, S1],S2]) € current MR(W (st )). From the latter and currentMR(W (ig1)) Ew
Slo]p, it follows that (>W,S1[,S2[) € S[o]p. From the premise o = 7¢ :: -+ - :: 75 it 0, it follows
that S;1 = wyg 22 -+« 2t Wyj it S10, S2 = Wag it «++ it Waj it Sag, (DW, Win, Wan) € W[m]p for n €
{07 . ,j}, and ([>VV7 Siol, S2O[) S S[[O'()]]p

Third, we have that there exist some Hy,; C H; and Hyps C Hjy such that (W, Hpp |, Hpa[) €
current MR(W (ipox)). We use the latter to instantiate (W, £4 [wy], £2[w2]) € W[box V[, €].{x; 6 }9]p,
noting that >W 2 W, which allows us to conclude:

e Hy;(6;) = code[B;, ¢, €]{xi; o: } 4 I,
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L pz( ) Xl[wl/ﬁl]

o pi(6) = oi[wi/Bil,

e 0i(d) = ai[wi/Bi], and

o (bW, (code[(, €]{x1; 01} .11)[w1/B1], (code[(, €]{x2; 02} %2.12)[w2/B2]) € HV[V[(, €].{x; 6}]p

Hence, we know that R;(p;(u;)) = #[wi] and H;(4) = code[B;, ¢, €]{xi; o3 }%.1;, and therefore

((Hi, Ry, Si) | Eil(call pi(w) {pi(o0), ai}, -)]) —"
((Hi, Ry, Si) | Es[(Ti[wi/Billpi(o0)/C]ai/ €], -)])

Therefore, it suffices to show that for ¢ € {1, 2}, either both configurations
(M; | Ei[(Li[wi/Bil[pi(o0)/¢]ai/€], -)]) terminate or both are running at W.k — 1.

We proceed by noting that from the premise ret- addr—type( , X, 6) =V[].{r:7;6"}¢, by definition of
ret-addr-type, it must be that either § = r., or § = iya.

Further, we note that we have

(W, (code[¢, €{x1; o1} 1) [ws /Bu],
(code[¢, el{x2; 02} I2) [wa/Bz]) € HVIVIC, €] {%; 6}3]p
= (>W, code[(, €]{x1[w1/B1]; o1 [w1/B1]} /Pl 1y [wy /B4],
code[C, el{x2wz/Bals 7afws/Ba]}122/P2. L [ /Ba]) € HVIVIC, €] {%; 5}
= (>W, code[C, €] {p1(%); p1(6)}P1 (D) 1, (w1 /1],
code[C, ] {p2(R); p2(6)}2(D) 15 [w2/B2]) € HVIVIC, €l {x; 6 }]p

Instantiate the latter with >W, p*, 7, and &/, where

p* ={¢ = (p1(o0), P2(Uo) ©s), € — (q1,92)} and
¢s = {(W,S10l,S20)| W I >W}

We note the following:

e We have >W J >W by reflexivity.

e Note that p* € D[(, €], which follows by the definition of D[-] and by applying Lemma 1.18 to
(>W,S10l,S20l) € S[oo]p.

o Let p) = pUp*.

e Note that 7;6" =, ret-type(q,x,d). This follows by applying the substitutions p; and pf
to ret-type(q, X,5) = 7;6’, which in turn follows from the premise ret-addr-type(q, x,&) =
V[].{r:T;6'}e.

e We claim that currentMR(W (ireg)) €ow R[X]p'- (1)
To show this, consider arbitrary (W, M7, M3) € current MR(W (4yeg )) such that W 2 >W. We

must show that .
(W, My, M3) € R[X]'

Instantiate currentMR(W (ireg)) €sw R[x]p with (W, M7, M3) € currentMR(W (iyeg)), noting
that W 2 W, which gives us (W,MT,MQ‘) € R[x]p- Finally, by Lemma 1.19 (register-file
subtyping implies inclusion) applied to the premise A F x < x[oo/(][end{7T*;0*} /€] we have
that Rx]p € R[X[oo/C]lend{7"; "} /€]]p.

Therefore, it remains to show that R[x[oo/¢][end{T*;0"}/€]]p C R[x]p’ .

Next, we examine two cases based on the value of G:
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Case ( = i, Hence, from the premise A - x \ g, we have that A F x. Therefore, note that
Rlx[oo/¢]lend{r*;0*}/€]]lp = R[x]p since ¢, € & ftv(x) = R[x]p’ by Lemma 1.13

which suffices to show what we needed.

Case ( = r,, Hence, from the premise A F x \ @, we actually have that A F X \ rya.
Hence, it follows that R[(x[oo/(][end{T*;0*}/€]) \ rrallp = R[(X) \ rra]s’-
Therefore, it remains to show the following for the remaining register r,,, whose type by our
premises must be box V[|.{r:7;’}¢ where A - 7:

R[rra:box V[|.{r: ; &,[UO/C]}e[end{T*; Cr*}/e]]]p C Rlrra:box V[].{r: ;6" }<]p’

Therefore, we must show for arbitrary (W*, Rj[,R3[) € R[rya: box V[].{r: 7; &'[JO/C]}E[end{T*; U*}/E]]]p
that (W*, RI[,R3[) € Rrea:box V[|.{r:7;5"}]p’. Hence, it suffices to show that

(W*, R} (rea), R3 (rra)) € Wbox V[I.{r: 736/}

Note, from our most recent assumption, we have

(W*, R} (rra), R (rra)) € W[box V[|.{r: T; &’[UO/C]}e[end{T*3 U*}/e]]]p. By substitution
(Lemmas 1.15 and 1.16), the latter is equivalent to (W*, R} (rra), R3(rra)) € W[box V[].{r: 756"} p*
where p* = p[¢ - (p1(00), p2(0), S[o0]p), € > (a1, d2)]. N

To show (W*, R} (rra), R (rra)) € W[box V[].{r: 756" }“]p, consider arbitrary (W, My, M) €
currentMR (W * (inox)) such that W =3 W*.

Instantiating (W*, R} (rra), R3(rra)) € W[box V[|.{r:7;6"}]p*, we end up in a position

where we have to show that

MYV Ar:756'}]p" © HV[V[{r:756"}]p

The latter follows by expanding the definitions and noting that it suffices to prove the following
three facts:
— For any world W/, current MR(W' (ireg)) €w R[r: 7]p" implies currentMR(W (iveg)) Ew
R[r: 7] p* since both are equal to current MR(W'(i1eg)) Ewr R[r: 7]p because A F 7.
— For any world W, given that current MR (W' (itx)) €w S[67]p" we claim that current MR(W' (t1eg)) Ew
S[e']p*.
N[([)te]]tphat 6" = 7)) ¢, and from the premise A - 6'[0¢/(], we know that
¢ ¢ ftv(r)) for n € {0,...,k}. Therefore, it suffices to show that

S[clp € S[c]p" = ¢s € S[oolp

which is immediate from our choice of ¢g above.
— Finally, we note that 7*;0* =, ret-type(e,{r:7},6’). Therefore, note that Efe F
T 0% p* = E[end{r*;0*} F T*;0*]p = E[end{T*;0*} F T*;0%]p.
This completes our proof of the claim marked (7).
e Note that currentMR((>W)(ireg)) €Exw R[X]p’, which follows from current MR(W (ires)) Epw
RIx]-
e We claim that currentMR(W (istk)) Exw S[o]p’ 1)

To show this, consider arbitrary (W, M, M3) € currentMR(W (istx)) such that W 3 >W. We
must show that .
(W, M7, M) € S[6]p.

Recall that above we had (>W,S1[,S2]) € currentMR (W (igtx)). Therefore, by definition of the
istk island, it must be that M7 = S;1] and M5 = Sa|. Hence, it remains for us to show:

(stlfyszr) e Sla]y
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where we recall that

81:W10 R A T SlO
Sg = Wpg 1t -+ 1t Waj 1t Sgg
G=T1pu--ruTyu(

and p' = pl¢ = (p1(70). pa(@0). ps), € = (a1, a2)]
with ©ps = {(W, SlO[,S20r)|W 3 |>W}

Thus, to show (W, S1l,S2l) € S[a]p, it suffices to show
- (W,Wln,wzn) € W[m]p' for n € {0,...,5}, which follows from (>W, w1y, Wayn) € W[m]
by monotonicity (Lemma 1.8).

— (W, S10,S20) € S[¢]p/, which is immediate from S[¢]p’ = ¢ (by definition) and our choice
of pg above.

e Note that currentMR((>W)(istk)) Exw S[6]p’, which follows from current MR(W (igx)) Epw
S[a]p’

Hence, we can conclude that

(W, (Ii[w1/Billpr(o0)/Clla1 /€], -), (T2lwa/Bz]lp2(00)/Cllaz/€l, -)) € Elat 756716

Next, we instantiate the latter with F; and FE5, for which we need to show the following:
(bW, E1, Ep) € K[a F 7;6']p

Consider arbitrary W', §’, ry, r2 such that
1. W dpup W,
2. (@=p § =p end{7;6'}) Vv
(Fro.@" =rg A ret-addri (W, pi(q)) = W.R1(ro) A ret-addry(>W, p5(dq)) = W'.Ra(rg) A
ret-regy (W' rg) =11 A retregy (W' rg) = 1r2)
3. (W W' Rq(r1), W .Ra(rz)) € W[r]p’
4. curret MR(W” (i) €@wr S[6"]p’

We are required to show
(W', Ex[(ret pr(@') {r1}, )], B2[(ret p2(&') {r2},-)]) € O
Next, we collect some facts before we proceed:

e Note that from assumption (4) above, it follows that >W" is defined, which means that W'.k > 0.

e Recall from above that either § = r,, or @ = i,,. This fact lets us refine (3) above—that is, since
4 #, end{7; 6"}, we know that
Irg.q" =rg A ret-addr (W, p1(q)) = W' .Ri(rg) A ret-addra(>W, ph(q)) = W.Ra(ro)) A
ret-reg; (W' rg)) =r1 A ret-regy (W', rp)) = 12)

Hence, p;(4@") = pi(ro) = ro. Therefore, it suffices to show

(W’,El[(ret Tro {1‘1}, )], Eg[(ret Iro {I‘z}, ')D cO

Consider arbitrary (M7, M%) : W’. We must show that for ¢ € {1,2}, either both configurations
(M] | Ei[(retro{ri},-)]) terminate or both are running at W'.k.

Next, we establish that (>W, W' R4 (ro), W .Ra(ro)) € W[box V[].{r:7;86’}]p’ by considering the
two cases of §:
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Case q =r.,: Hence, by the definition of ret-addr-type we have

ret-addr-type(q, x, )= ret-addr-type(rya, X, &)
=V[|.{r:7;6'}¢ where X(rya) = box V[|.{r:7;6'}¢

Since (DW,Rq [,R2[) € currentMR(W (i1eg)) (from above) and currentMR(W (ireg)) Epw
RIx]p (1 from above), it follows that (>W,R; [,R2[) € R[x]p’. From the latter, since
rya : box V[|.{r:7;6'}¢ € x, we have

(W, R1(rra), Ra(rra)) € W[box V[ {r:7;6"}]p’.
Since R; = W.R; = >W.R;, the above is equivalent to
(W, bW.R (rra), >bW.R2(rra)) € W[box V[].{r:7;6"}<]p’.
Moreover, note that we have the following equalities

ret-addr; (>W, q)

= ret-addr;(>W,r.a) since § = rya

= (>W).R;i(ra) by definition of ret-addr;

= W' Ri(ro) since ret-addr; (>W, §) = W'.R;(ro)

Hence, we have
(W, W' Ry (ro), W .Ra(rg)) € W[box V[|.{r:7;6"}]p .
Case q = i.,: Hence, by the definition of ret-addr-type we have

ret-addr-type(q, x, 6 )= ret-addr-type(iya, X, &)
=V[].{r: 7;6'}¢ where 6 (iya) = box V[].{r:7;5'}¢

Since (>W, S1[,S2l) € current MR(W (istk)) (from above) and currentMR (W (istk)) Exw S[5]p’
(1 from above), it follows that (>W, S1[, Szl ) € S[&]p’. From the latter, since iy, : box V[.{r:7;5'}¢ €

&, we have
(>W, S1(ira), S2(ira)) € W[box V[].{r:7;5'}<]p .

Since S; = W.S; = >W.S;, the above is equivalent to
(>W,>W.S1(ira), >W.S2(ira)) € W[box V[|.{r:7;6"}¢]p’.
Moreover, note that we have the following equalities

ret-addr; (>W, )

= ret-addr;(>W,i,,) since § = iya

= (>W).Si(ira) by definition of ret-addr;

= W' Ri(ro) since ret-addr; (W, q) = W'.R;(ro)

Hence, we have
(W, W' Ry (ro), W .Ra(ro)) € W[box V[].{r:7;5"}<]p’.
Since W’ 3 >W, by monotonicity we have

(W, W' Ry (ro), W .Ra(ro)) € W[box V|[.{r:7;6'}]p .
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From the above, we have that W/ .¥y;- b W/ .Rq(rg) : pj(box V[].{r:7;6’}¢) and W' . Uy;- +
W' Ra(rg) : ph(box V[|.{r:7;5'}¢). These facts put together with W’ € World and ret-reg; (W', ro)
allow us to conclude r = rqy = rs.

Next, let M! = (H/, R/, S!).

From (Mj, M}) : W', since W'.k > 0, we have (W', M;, M}) € @{currentMR(0) | § € W .O }.
From the latter, we have three facts, one each for islands iyeg, tstk, and ipox-

First we have that (>W’', R/ [,R5[) € current MR (W' (ireg)). From the latter it follows that
= W'.R; and, hence, we have (>W' R/ (ro),R}(ro)) € W[box V[|.{r:7;6"}]p’. From the
latter, it must be that R!(ro) = £[w!].

Second, we have (W', S 1,S,1) € currentMR(W’(isk)). Hence, we can instantiate assumption
(5) from above, i.e., currenttMR(W'(isx)) €wr S[6']p’, with (W', S, 1,8, 1), noting >W' I W’
(by Lemma 1.6) Which allows us to conclude that (>W’, S' I,S51) € S[6']p’. From the premise
6 =71 2 ¢, it follows that S| = w0t Wi, S’lo, S'2 = Woo it c e it Why it Sho,
(DW’,W’ln,w'zn) E W[[Tr']]]p for n € {0,...,k}, and (>W',S) [ Shol) € S[C]p'. From the latter,
since S[¢]p" = ¢s, it follows that S|, = Sm and S’ = Sz0.

Third, we have that there exist some H[, C H} and H{, C H), such that (W', H,[,H],[) €
currentMR(W (ipox))-

Instantiate (W', £ [w]], £, [w]]) € W[box V[].{r:7;'}]p’ with (W', Hj |, H},I) € current MR(W’ (i1,0x)),
noting that >W’ 3 W’ by Lemma 1.6. Hence, we have that

Hi;(6) = code[B{]{x}; o{}%.I},

pi(r:T) = xi[wi/B]],

pi(6") = oilwi/Bil,

pi(€) = ai[w{/B], and

(>W', (code[]{x; 01 }%.1})[wi /B1], (code[]{x}; 05} %.15) [w) /B5]) € HVIVI.{r: 756"}/
Hence, we know that R{(ro) = £/[w!] and H/(£!) = code[3]]{x!; o-i'}qi,.I;, and therefore

(H, R{, S) | Eif(retro {ri}, )]) —* ((H{, R, S)) | Bi[(L[w]/B],)])

Therefore, it suffices to show that for ¢ € {1, 2}, either both configurations
(M | E;[(I{[w!/B!],+)]) terminate or both are running at W’'.k — 1.

We proceed by noting that

(W, (code[]{x}; o }%.1,) (w5 /B7], (code[l{x}; o5 }% .15) [wh/B3]) € HVIV[{r: 736}/
= (>W', code[][{x}[w]/B1]; o1 [wl/ﬁl]}ql[wl/ﬁl]'li [""1/61]7
code[l{x}[wh/B5]; oy [wh/B5] } %15/P2) Ty [wh /B5]) € HVIV]]{r: 756"}
= (W', code[]{py (r: 7); pi (6”)}1(€) T, [w] /B1],
code[l{ph(r: 7); ph(6”) }P2(€) T4 [wh /B5]) € HVIV().{r: 7567}]0

Instantiate the latter with =W’ 0 € D[], 7*, and o*.

We note the following:
e We have >W’ J >W' by reflexivity.
e We claim that 7*; 0* =, ret-type(e,{r: 7},5’). It suffices to show for ¢ € {1, 2}:
pi(T7); pi(™) = ret-type(pj(€), pi({r: 7}), pi(67))
= pi(77); pi(0™) = ret-type(pj(end{7™; ™ }), pi({r: 7}), pi(70 32 -+ - 2 75 2 ()
Note that FTV(7*;0*) C A.
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e We claim that current MR((>W')(ireg)) Exwr R[r:7]p’.

To show this, consider arbitrary (W, M7, My) € current MR((>W')(ireg)) such that W 3w
We must show that .
(W, M}, M;) € Rr: 7]

Note that since W'.k > 0 (from above), (>W').k = W’'.k — 1 and therefore
current MR((>W') (iveg)) = [currentMR(W (ireg)) | k-1 C currentMR (W' (iyeg))

Thus,(W, M7, M3) € current MR(W’ (iyeg ) ). Moreover, since we already have (W', R/, R[) €
current MR(W/ (ireg)), by the definition of island i,g, it must be that M;* = R!. Therefore, we

are required to show N

(W, R/I,RL) € Rr:7]p'.
It suffices to show .

(W, R,l(r)7 R;(r)) € W[[T]]pl

which follows by monotonicity (Lemma 1.8) from our earlier assumption (4), namely
(W', W' Rq(r1), W . Ra(rz)) € W[r]p’ since r = ry = r3 (from above) and since W/.R; = R/
and W/.R, = RJ.

e We claim that currentMR((>W')(istk)) Exw S[67]p’.

To show this, consider arbitrary (W, M, M3) € currentMR((>W') (gt )) such that W W,
We must show that .
(W, M;, M3) € S[6"]p".

Note that since W'.k > 0 (from above), (>W).k = W.k — 1 and therefore

currentMR((>W') (istk)) = [current MR(W (isx ) Jwr k—1 € current MR(W” (g ))

Thus,(W, M}, M3) € currentMR(W” (igy)). Moreover, since we already have (>W’, SiI,850) €
current MR(W” (isx ) ), by the definition of island igy, it must be that M;" = S!. Therefore, we are

required to show .
(W,S11,850) € S[e7]p.

; DN R : Y T Y 1/ A ) Y 14
Since 6" = T = Ty s with S = wig o i wiy i Sipand S, = wh i 1T Wh i S5,
the above follows from

- (W,W’ln,w’zn) € W[r!]p" for n € {0,...,k}, which follow by monotonicity (Lemma 1.8)
from (W', w/ ,w) ) e W[r.]p, and

— (W, Siol, S5 1) € S[¢]p', which follows from S[(]p" = s and the definition of g since
’ _ ’ —
SlO = SlO and 520 = Szo.

Hence, we can conclude that
W', 11[wi/B1]s ), T3lws /B3], +)) € Ele - 5 0:]0
By Lemma 1.16, and noting that FTV (7*;0*) C A we have

W, (I [wi/B1]; ), (Ih[ws/ B3], +) € Elend{r*; 0"} - 7*;07]p. (19)

Near the beginning of this proof, we had assumed (W, Ey, Es) € K[end{7*;0*} b 7*;0*]p. We now
apply Lemma 1.10 (monotonicity for evaluation contexts) to (W, E1, E3) € K[end{r*;0*} - 7*;0*] p,
noting the following;:

o W' J,u W, which follows by transitivity of J,,, and the following W' Jdpu, W Jpun
>W Jpup W (which we have from above and from Lemma 1.6).

o end{7*;0*} =, end{7*;0*}.
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Hence, we have that (W', E1, Es) € K[end{7*;0*} F 7*; c*] p.
Instantiating 19 with the above, we have (>W', E1[(T] [w]/B1], )], E2[(1,[w5 /B5], )]) € O.
By instantiating the latter with M] and Mj, noting (M7, My) : >W’, we have that (M7 | E1[(T][w]/B1], )])

and (M | Es[(I45[wh/B5], +)]) either both terminate or both are running at W’.k — 1, which gives us
what we needed to show.

Hence, we conclude that
(>W, Ex[(I1[w1/B1]lp1(o0)/Cl[a1 /€], )], Ba[(I2[w2/B2][p2(00) /C][az/€], -)]) € O

Now instantiate the above with M; and Ms, noting that we have (M;, M) : >W by Lemma 1.6 since
(My, M) : W. Hence, we have that for ¢ € {1, 2}, either both configurations (M; | E1[(Li[wi/Bi][pi(c0)/C][ai/€], -)])
terminate or both are running at W.k — 1, which is exactly what we needed to show!

O
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2 Functional language: F

2.1 Syntax and Semantics

T = o | unit |int | (F)— 7| pot | (T)

e =1t

to=x|()|n|tpt]if0ttt| A(Xx:7).t|tt] fold ..t | unfoldt | (t) | m(t)

pu=+|—|=

v i= () | n| AXXi7).t| fold,a.r v | (V)

E:=[]|Ept|vpE|if0Ett|Et|vvEt| fold,n.r E | unfoldE | (v,E,t) | m;(E)

A:x=.|A«

ra=-.|Mx:r

2.1.1 Well-Formed Type
ael AFT  AFT AabT ArT - Ab T,
AFa A F unit AFint A-F)—> 1 AF pot AF (Tiy.00,™a)

2.1.2 Well-Formed Type Environment

T ‘T
. FlMyx:T
2.1.3 Well-Typed Component
x:T el MN-tp:int MN-ty:int
r-x:r = ():unit F-n:int M-t pty:int
M- tp:int Fr-ty:r F-ts:r rxrr-t:7 Fr-to:(m)— m r-t.m
FEif0t; tp t3: 7 rExxn).t:(@7)—» 7’ FEtot:m
Nr-t:rjpa.r/a Ne-t:pa.t FrHti:m M-t,:m
I+ fold,q.~ t: po.t FFunfoldt: mpa.7/a] FE(t,.ocstn) i (T1ye ooy Tn)

FEt: (71,00 Ta)

r-mt):n
2.1.4 Reduction Relation m
E[n; p no] +— E[prim(p, n1, n2)]
E[if00 t; to] — E[t1]
E[ifO n ty tz] — E[tz] n 75 0
E[A(XT7T).tV] — E[t[v/X]]
E[unfold (fold,,o.- v)] +— E[v]
E[mi({viy.+.sVn))] — E[vi]
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3 Multi-Language: F+T

3.1 Syntax and Semantics

T u=- | (7) @)T’
t u=-- | "FTe| )\(q;(x:T).t | tt/
Tu=T|T

Vo= | A2 |

(o) e x=ele
E:|T]:TE fu:,:v|v
q = | out E:=E|E
¢ w= .- | protect ¢, ¢ | import rq, 7T F7 e A= -|Aa|AalAl|Ace
E; = .-+ | import rq,?TF" E; 1
¢ =T
oc=C(|e|opo
3.1.1 Boundary Type Translation

o =a
unit” = unit poe.t’ = po(77T)
int” =int  (11,...,m)’ =box(m7,...,m7)
(Tiyeeesm) = 77 =box V[, €].{ra:V[.{r1: 77 ;(}; 0}
where o/ = 7,7 o7
bi:00 o . T oo (FLE. 5/
(T15++eym™) — 77 =boxV[(,€|.{ra:V[].{rl1:7"7;¢po :: (};0'}
where o/ = 7,7 s oov T gy i

NOTE: FT inherits any judgments of F or T not mentioned here explicitly.

3.1.2 Well-Typed Heap Value | ¥ F h:V)

-FV[A]{x;o}1 WAy x;0;qF 1 ;. wg:Tg U Wp,:Th
¥ - code[A]{x; 0 }0.I: POXV[A]. {x; o' }9 Wk (Woy .- v Wn): Y (Tos oo, )

3.1.3 Well-Typed Instruction Sequence ‘ U A x;0;,qF 1 ‘

To the corresponding rules of T, amend the side-condition to forbid q = out as well as q = € and add the
environment I'. We also add the following rule, which allows Tcode to protect the tail of a stack and get a
name for the abstract tail.

o=¢: o0 o =¢:( WA, Chx; o qFT
W A;lx;0;qF protect ¢, (31

3.1.4 Well-Typed Instruction ‘ WA x;o;qbe= A )07 ‘

To the corresponding rules of T, amend the side-condition to forbid q = out as well as q = €, add the
environment ', and add the following rules:
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O =Tg:e T O o' =Ty T 0
WA Gh X (To s+ i1y C);out Ferr; (1400 1 12 €) q=i>jorq=end{7;6}

W: A;T;x;0;qF import rgq, °TFT e = A;(rq: 7’ );0’;inc(q, k—j)

3.1.5 Well-Typed Component | U A:T;x;0:qF e: ;07 |

To the corresponding rules of T, add the environment I' and add the following rules:

x:T el
W:A;T;x;0;0out-x:7;0 W; A;T; x; 05 0ut - () :unit; o W: A;T;x;0;out - n:int;o

W: A;l;x;00;0ut F t;:int; o1 W A;l;x;01;0ut Fty:int; oo

W A;T;x;00;0ut Fty p ta:int; o

W: A;T;x;00;0ut F t;:int; o1 W, A;T;x;01;0ut Fta: 1502 U A;lx;01;0ut Ft3: 702
U AT x;00;0ut Fif0t; t t3:7;02

U A, G, X x;Gout Ht: 75 ¢ WA, G XX 01 Gout Ft: 77500 1 €
U AT x;00ut FA(XET).t: (F)— 750

U, A;l;x;0;0out - )\gi (xT7).t: (7) ¢iﬁ>° "0

U A;T;x;050ut Et: (1) — 7’ 00 W A;l;x;oi-1;0ut - t: 7135 04
W A:T;x;0;0ut Ftty - ty: 700

¢i;¢)o

W A;Tsx;o50ut -t (1) — 7’500
W A;T;x;0i—1;0ut - t;:73; 05 On=0;:: 6 o' =6’
W A:T;x;0;0out Ftty .- t,: 7507

W; A;T; x;00;0ut - t:m[pa.7/al;o1 W A;T;x;00;0ut - t: pa.t; 01
W; AT x;00;0ut Ffold o+ t: pa.m;01 W; A;T; x; 00;0ut Funfold t: 7[pa.7/al; 01
W; A;T;x;00;0ut Fty:1m;01 W AT x;0n—1;0ut - t,: ;00

W; A;T;x;00;0ut (tla'-'atn>:<Tla'-°a7'n>§0'n

W; A;T;x;00;0ut i (Tq,...,T); 01 W:A;T;;0;end{r";0'} Fe: 77 ;0
W; A;T; x; 00;0ut - mi(t): ;01 U A;T;x;0;0out -"FTe:1;0’
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3.1.6 Value Translation

TF"((), M) = (0, M)

TF" (n, M) = (n,M)

TF 7 (fold o7 v, M) = (fold .77 v, M) where TFTI#7/l (v, M) = (v,M')
TF™® = 7 (A(XT7).t, M) = (¢,(M, £~ h))

where h = code[(, €]{ra: V[|.{r1: 775 ¢} 77 = ¢}
salloc 1;sst 0, ra; import ry,$7TF™ e;sldra,0;sfreen+1;retra{ri}
e= (A(x:7).t)"FT ((sldri,n+1—i;retend{r7;0} {r1}),")
o=V[]{rt:7'T;¢} 77T ¢
TR 5 TG ()4 M) = (6 (M, £ b))
where h = code[(, €]{ra: V[|.{r1: 77 ;o :: C}&5 77 it ¢y 22 CF2.

salloc 1+4|¢;|; sst |¢il, ra;

sldri,|¢i| + n;sstl,rl;...;sldrl, || + n + |¢di| — 1;sst ||, r1;

import r1, STF™ e

sldra, |¢ol;

s1dr2, |¢o|—1;sst |Po|+n+|di| — 1,12;...; 51d 12, 05 sst |@o|+n+]|¢;|—|pref,|, r2;

sfreen+|¢o|+1;ret ra {ri}

e= (Ajﬁi (X57).t)"FT ((sldrl, |¢s] + ns ret end{nT; o} {r1}), ")

™FT ((sldri, |¢i| + 13retend{r,7 ;0} {r1}),")
o=V {r1:7'T;¢} 7T i gy i €
TF ) ((vgy .oy vn), M) = (€,(Mpi1,2 > (Wo,...,Wn))) Mo=M, and TF7(v;, M;) = (w;, Mj;1)

UMET((), M) =(0,M)
intpr (1, M) = (n,M)
#eTFT(fold o 77 W) = (foldya.- v, M) where THeT/pT (w, M) = (v, M)

() = TP (w, M) (v, (M, £ena — hena))
where v = )\(ﬁ).'r'}"’r (protect -, ¢;import r1, $TF™ x1;salloc 1;sst0,r1;5...;
(import r1,¢T F™ x,; salloc 1;sst 0,r1;
mv ra, Lena[¢]; jup w(¢][end {7’75 (}]), )
hena = code[¢]{r1: 7'7; C}end{T,T; C}oret end{7'7; ¢} {r1}
) " TBD(w, M) = (v, (M, fend > hena))
where v = Ag; (ﬁ)."',}"]’ (protect ¢, ; import r1, ST F™ xg;salloc 1585t 0,r1;5.. .3
(import ri, CTF™ Xp; salloc 15sst 0, 1r1;
mv ra, Lend [Po :: €5 jmp W[(] [end{T'T; $o :: C}),0)
hena = code[¢]{r1: 7'7; C}end{T’T; C}oret end{7'7; ¢} {r1}
(70, TR (£, M) = ((Voy++vyVn), Mpt1) where M(£) = (wq,...,Wn),
Mo =M, and "FT(w;, M;) = (vi, Mit1)
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3.1.7 Reduction Relation ’ (M | e) — (M’ | ')

Lift the individual language reduction relations to obtain a multilanguage reduction relation, noting that the
contexts are untyped, as for T, we may reach intermediate states with different types and return markers q.
This means that a proof of type safety would not be possible using progress and preservation, and we would
instead have to use a unary logical relation in the style of [1]. We have not done this, but do not anticipate
any problems, since the form of this logical relation would be a special case of the binary logical relation for
equivalence that we have used.

e— e (M |e)— (M']|e")
(M | Ele]) = (M| E[e']) (M| Ele]) = (M' | E[e'])

Add the reduction rules for boundaries:

(M | E["FT (retend{77;0} {r},")]) +—— (M’|E[v]) if " FT(M.R(r),M) = (v, M)
(M | E[(import rq, o TFT v; L, 9)]) — (M’ | E[(nvrg,w;I,-)]) if TF" (v, M) = (w,M’)

Finally, add beta reduction for the new lambda form, which is identical to normal beta reduction:

(M| B[S (k7)) ) — (M| BIefe'/X])

3.1.8 Reduction Relation ’ M| I)— (M| I')

Add instruction reduction for stack protection, which has no operational consequence:

<(H7 R, S) | protect ¢, (; I>_)<(H’ R, S) | I>
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3.2 General Contexts and Contextual Equivalence
C:=[]|Cpt|tpC|if0Ctt

| Agi (x77).C | Ct | tECE Cr =[] | import ra, *TF™ C;1 | 45 Cr
| f0|d“a-,-c | unfold C | <E’ C, E> CH o= CH,—e — h | H,E —> COde[A]{X; O'}q.CI
| m(C) | "FT C

c:==C|C

3.2.1 Plug Function

[lle] =e
(Cpt)e]=(Cle))pt
(tp C)le]=tp (Cle])

(ifOC t tz) e if0 (C[e]) t to
(ifO to C tz) e if0 tg (C[e]) to
(ifO to t1 C) e if0to ty (C[e])

!
¢
2
g
g
¢
(AFTT).C)le] = A(x77)-(Cle)
(G (x77)-C)le] = AG! (x77).(Cle])
(CBYe
¢
g
g
g
g
g

= (Cle]) t
(t'tCt)le]=t't (Cle]) t
(fold ...~ C)[e] = fold ... (Cle])
(unfold C)[e] = unfold (C[e])

((Ea C7P>) €] = <Ea (C[e])at7>
(mi(C))[e] = mi(Cle])
("FT C)le] = "FT (Cle])

(Cr, H)[e] = (Ci[1], (H,H’)) e = (I, H") A Cy contains no language boundaries
" a (Cile], H) otherwise
(I, Cur)le] = (I, (Cu[1],H")) e= (I,H’) A Cg contains no language boundaries
P (I, Cule]) otherwise
=1

(import rq, T F7™ C;I)[e] = import rq, 7 TF" (Cle]);1

(¢ Cr)le] = ¢; Crle]
(Cu, £ — h)le] = (Cule]), £ +— h
(H, £ — code[A]{x;0}2.Ci)[e] = H, £ — code[A]{x; o}.(Cile])
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3.2.2 Well-Typed Context ||— C:(U; AT x; 059 1307) ~ (B ALG T X 500;9" T’;01)|

PCP® ACA TCl ArFRxX<x
F[]: (2 A5 x; 050ut = 7507) ~ (P75 AT X o 0ut - 73 07)

FC:(U;A;T;x;0;qF 750") ~ (P A% T 00; 0ut - int; 0q) P AT ;x5 01;0ut F tiint; oo

FCpt:(T;A;T;x;0;qF 150") ~ (U5 AT X 00; 0ut | int; o2)

T’ A: T 09;0ut - t:int; oy FC:(U;A;T;x;0;qF 750") ~ (P A% T’ 01;0ut - int; 02)
Ftp C:(T;A;T;x;0;qF 150") ~ (P AT X 00; out | int; o2)

FC:(P;A;T;x;0;qF 7;0") ~ (B AT X' 00; 0ut - int; 0q)
AT x  o1;0ut -ty : 7500 AT x op;0ut Fty: 500
Fif0 C t1 t2: (U5 AT x5 039 - 7307) ~ (B A% T X 005 0ut - 75 072)

AT X' 00;0ut - tg:int; o1
FC:(U;A;T;x;0;qF 150") ~ (P AT x5 01;0ut B 75 02) AT x o1;0ut Fty: 7500
Fif0to C t2: (U5 A; 5 x505q - 7507) ~ (B AT x5 005 0ut - 75 02)

W AT x';00;0ut - tg:int; oy
AT x  o1;0ut Fty: 7500 FC:(;A;T;x;0;,qF 7;0") ~ (B AT X 01;0ut - 75 02)
Fif0to t1 C: (AT x; 050 7507) ~ (B AT X' 00 0ut - 75 02)

FC: (AT xs05q - m507) ~ (875 (A, O); (M, x37); x5 Gout - 775¢)
FAXET).C:(T;A;T; x;059F 1507) ~ (B AT x5 00;0ut F (F) = 775 00)

FC:(®;A;T; x;0;qF 7307) ~ (875 (A, Q) (M, X:7); x5 01 12 Gout - 775 22 C)

+ )\ii xz7).C:(T;A;T;x;0;qF 150") ~ (U5 AT x5 00; 0ut F (7) ¢L¢>° 75 00)

FC:(U;A;T;x;0;qF 150") ~ (O AT x5 00;0ut B (11,00 0y Ta) = T7500)
O AT X" oi_1;0ut F tj:7; 04
FCty--ta: (T AT x5 05 750") ~» (875 A T x'; 005 0ut - 75 0)

FC:(T;A;T;x;0;qF 7;0") ~ (B AT x 00;0ut = (Th5000 5 Th) d)ﬁo 7’5 00)
U AT X 0i_1;0ut F tj: 1; 04 on=0¢;:: G o' =¢o b
FCty-- ta: (T; A5 x505qF 1507) ~ (P AT X 00;0ut = 7507)

T AT x5 o0;0ut Ft:(11,...,m) — 7’500
U AT X s o0;0ut Fty: 711501 U AT X oi_1;0ut F t: 735 04
FC:(T;A;T;x;05qF 1;0") ~ (B AT X/ 05;0ut F Tig1;05401)
U ALT X o415 0ut - tigo: Tip2; o142 U AL x s on_1;0ut Fty: T 00
Fttyee i Ctiga- - ta: (B AT x5 05 B 1307) ~» (U5 AT s 005 0ut 775 0)

¢i§¢o

AT X 00;0ut Ft: (11,000, m) —> T/500
AT X sogout Htyimyon - WL ALT X ooy 0ut b T o
FC:(T; AT x;0;qF 750") ~ (85 AT x5 o5;0ut F 115 0141)
AT X oip1;0ut Ftigo: Tig2; 0igo

T AT x;on_1;0ut -ty T o on=0¢;:: 6 o' =¢, b
Fttyoe ti Ctigo---tn: (T A5 x; 059 730") ~ (P AT X o0;0ut F 775 07)
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FC:(¥;A;T;x;0;qF 1;0) ~ (B AT x5 005 0ut - 7[pa.t/al; o)
Ffoldya.r C: (U; A;T; x50, 7507) ~ (P AT x; 00; 0ut - pat;01)

FC:(U;A;T; x;0;qF 150") ~ (B AT x5 005 0ut - paet;01)
Funfold C: (¥; A;T; x; 059 F 7307) ~ (¥ AT X 00; 0ut F 7[pa.t /0] 01)

U AT x';00;0ut Fty: 11509 U AT x ;oi_1;0ut F tj: 1; 04
FC:(¥; AT x;0;qF 750") ~ (B AT X 045 0ut F 115 0144)
AL X oip1;0ut F tigo: Tigo; oiga . O AT X' on_1;0ut Fty: Ty 00

F(tryeeestiyCotizayeo oy tn): (U5 AT x;0;qF 7307) ~ (B AT x5 00;0ut B (71,0 00y Ta); o)

FC:(U;A;T;x;0;qF 7;0") ~ (B AT x 00;0ut - (1,000, To);01)
Fm(C): (B AT x; 059 F 7307) ~ (B AT X 005 0ut F 735.04)

FC: (W4T x;05qF 7507) ~ (B AT X 00;end{r7 501} F 77504)
FTFTC:(P;A;T;x;0;qF 150") ~ (P AT x s 00;0ut - 7507)

U FH: U
ret-type(q’, x’,00) =501 F Cr:(¥; A5 05qF 1307) ~ (P, 9); AT x5 005")
F(CL,H): (T;A;T;x;05qF 7507) ~ (¥ AT x5 009" F 7501)

FCu: (T A;T;x;05qF 1507) ~ (P W)
ret-type(q’, x’,00) = T;01 (¥, ¥); AT x"500;q" F 1
F (I, Ch): (¥;A;T; x;05qF 150") ~» (O AT ) 0059 F 1501)

wCw ACA’ rcr’ AFx <x ret-type(q, x, o) = 750’
E[H( 8T o5a b 1307) ~ (B5A% T x5 03q)

WAL T X 005d Fe= A X 0159” R (AT xg o5 b 1507) ~ (B AT x5 04547)
Fo; Cr: (B;A;Ts x; 059 - 7507) ~ (B AT x5 00;4)

"
Oo=To...uTju 0
FC:(%;A;T;x;0;9F 1307) ~ (85 (A, Q)M x 510 e iy i Gout by e vw i1y 22 Q)
q =i>jorq =end{7;6} T AT (a7 )1 e i 7 0 ine(q, k—j) F I

 (import rq, TFT C);1: (¥; A;T; x;05q - 7307) ~ (B AT x5 00; ')

H=4,— hy,..., 0, — hy H =¢ —h,..., ¢ — h)
Uy ={lr:¢1,yee ey L P, L V[A]{X 500}, 6 00, 00 2!} Eapy o by
Wo, Wy Fhy: %1 W, Wy Fh: Y O (85 AT xs 03 a b 7i07) v (R0, ¥1); A3+ x5 005 0)
’ ’
N /R = AR 70 S VRS PR 20 R AR
- H, £ — code[A]{x;00}¥.C, H : (¥; A;T;x;05q - 7507) ~ (¥ - ¥y)
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3.2.3 Contextual Equivalence

~ def
AT X 05q b en R eg:i 736 =

WAL xsoqberim;0 AU AT xso,qlex:im;6 A

YO, M, ¥ x', o', 7,6’
HC:H(W AT x5 0598 736) ~ (W55 x5 079" 7567) A M (W, ), o)
= (M| Clea]) | <= (M| Cle2]) 1)

3.2.4 CIU Equivalence

; ~ def
U AT x;o5qF e =™ eqim; 6 =

U AT x;o,qber:m 6 A WA D ) o5qbe:m;6 A

Vo, vy, E,M, ¥’ o, 7 6.
HO:A AW eoutyiTe A
FE:( s x;05ak 756) ~ (W55 x5 059" E T 67) A M(W, X, 0)
= (M| E[5(v(e1))]) § <= (M| E[6(7v(e2))]) })
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3.3 Logical Relation

NOTE: We used curr-S(W) € X as shorthand for currentMR(W (igtk)) €w X and curr-R(W) € X as
shorthand for currentMR (W (ireg)) €w X in the accompanying paper. This shorthand does not appear in
this technical report.

Worlds and Auxiliary Definitions Worlds consist of a sequence of islands that describe the current
state of the memories (and how they are related) of the two computations we wish to relate. The essential
idea here is that the islands 6 in the sequence © will specify constraints on disjoint parts of memory. We
obtain constraints on the entire memory via a disjoint union of the memories specified by the islands.

Therefore, we begin with some simple definitions for memory objects that we will make use of in islands.
We need to be able to lift various pieces of memory to a full program memory M = (H, R, S). In many
cases, we may not want to impose a constraint on the register file and stack, so we allow L to appear in
those positions. Since disjoint heap fragments can be merged, the heap can be left unconstrained just by
using an empty heap.

def
=1Ly
def
Regs, = {R}u{l} HI =(H,L1,1)
def
Stack, = {S}u{L} R = {-},R,1)
def
ST = ({}7 1, S)

A world W consists of a step index k, a pair of heap types W1 and W, and a sequence © of islands 6.
Each island expresses invariants on certain parts of memory by encoding a state transition system and a
memory relation MR that establishes which pairs of memories are acceptable in each state. (See Dreyer et
al. [2] for details.)

The first three islands in © are distinguished: they track the register file, the stack, and the immutable

contents of the heap, respectively. We assign these islands the indices iycg, istk, and ipox, respectively. Further
islands can be added to a world to encode invariants about mutable data.

World, W =(k,¥;,7,,0) |k<n A Im>3. 0 ¢cIsland]* A
(Fsreg- Oireg) = islandreg (Sreg, k) A W1 b Speg.Ri:Sreg. X1 A Wa b Seg. Rt S1eg-X2) A
(Fsstk- Olistk) = islandgex (Sstk, £) A W1 F Sik-S1: 8stk-01 A Wo b Sgx.Sa: Ssk-02) A
(Fsbox- O(ibox) = islandpox(Sbox, &) A \If’ief F Sphox.-Hi1: \Illl’ox A \Ilgef F Sphox.-Ha: \I’gox)}
Island, % {0=(s,5,6mMR,bij)| s€S A SeSet A 5CSxS A TC3A

d, wreflexive A ¢, 7 transitive A MR € S — MemRel,, A bij € S — P(Val x Val) }
MeInAtomndéf {(W,M1,M5) | W € World,, A M, M5 € Heap x Regs, x Stack, }
MemRel, % { o € MemAtom,, | Y(W, My, Ms) € @pr. YW/ I W. (W', My, Ma) € o }
The transition systems for 6, and 6y encode the current contents of each side’s register file and stack,

respectively. They may transition freely between states, since the register file and stack are fairly free in how
they can change during program execution. The states of 8},,x encode the contents of the immutable part of
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the heap on each side. This island is allowed to transition only by adding more immutable data to the heap.

Z'reg =1
Sreg ={(R1,x1,R2,x2) }
island,eg (s, k) = (S, Sregs Sreg X Sregs Sreg X Sregs AS.{(W,s.R1[,s.Ral) | W € Worldy }, Xs.0)

Z'stk 2
Sstk {(81701782502)}
islandstk(s, k) (S Ssth stk X Sbtk’ Sstk X Sstk; AS. {(VV, S.Sl f s S.Sz{) ‘ W e Worldk}, )\S@)

Thox =3
Shox ={(Hy,Hz)}
Obox = {((Hy, Hz), (H,17H/2)) | Hy C Hll AHz C H/}

islandpox (s, k) = (8, Sbox, Oboxs Oboxs AS-{ (W, (s. H1)[, (s. H2)[') | W € Worldy }, As.0)

Two memory objects that describe disjoint parts of memory can be merged into one compound memory
object via the ® operator.

where My, M, € ({H} x Regs, x Stack, )

(Hlﬂ‘JHz,R,S) WhereR:R11fR2:J_,R:R21fR1:J_
(H1,R1,81) ® (Hz,R2,S3) = S=8S; ifSy=1;8S=8, ifS; =1

undefined otherwise

oM @y = {(W,M1 @ M}, Mz @ Mj) | (W,M1,Mz) € opr A (W, M/, M}) € o)/ }

These are standard operations for dealing with step indexing: we can approximate a world or relation to
a given number of steps with |-]x, and we can expend a step using the > operator (read “later”).

(01, 0) |1 E (k- O )

(s, 8,8, 7, MR, bij) [z % (s,8,8,, [MR]s,bij)

MR 2 Xs. [MR(s) ]

Lot I C (W, My, My) € our | Wik <k}
k41,0, 0, 0) X (v, ¥, (0]

> @e L {(Wer,e) | Wik >0 = (W, e1,e2) € 0 }
>0y C L (Wvp,00) | Wk >0 = (5W,01,00) € 0, }
B C L (Wwy,wy) | Wik >0 = (W, wy, wa) € ¢y }

Future worlds W’ of a given world W, written W’ 3 W, may differ from W in any or all of the following
ways: they may have expended steps, allocated additional memory, added new islands, or taken transitions
in existing islands. Public future worlds W’ J,,, W are similar, but must have taken public transitions
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from the island states in W.

(K, W, W, 0 3 (k, Ty, Ty, 0) <k AT, DT, AU,D0, A OT[0)
N (k,Wq,¥5,0) € World A (K, ¥, P, 0") € World

@,....6.) 3 (61,...,00m) Cm' >m A Vje{l,...,m}. 0,26
(s',8", 8 ', MR',bij’) 3 (s, 8,6, 7, MR, bij) % (8,8, 7', MR, bij’) = (S, 8,7, MR, bij) A (s,5') €5
W' aw YW k<Wk AW IW
R <k AT DU A T,DT, A O Dy |O)

N (k,Wq,P5,0) € World A (K, ¥, P, 0") € World
©,,...,0 ) Dpup (61,-..,0m) m' >m A Yje{l,...,m} 0 Dpu, 6
(s',8, 6, 7', MR/, bij") Dpup (s, S, 9, 7, MR, bij) = et (8,0’ 7', MR’, bij’) = (S, 6,7, MR, bij) A (s,s') €n

(k/7 ‘I’,la \I’,27 @/) gpub (k7 ‘I’ly ‘I’Zv @)

def

Given a world W, we often need to talk about future worlds of W where the only change is that new
immutable memory has been allocated. We use this notation to capture this:

W 28] (H17H2) def (Wk‘ W‘I’l G} ‘I’l, W‘I’z ] ‘1’2, W@[Zbox — ISIaHdbOX(W(ibOX).S ] (I‘Il7 Hz), Wk‘)])
WO FH;: ¥y A W@y FHy: Uy A boxheap(Py) A boxheap(Ps).

The following are convenient shorthands for frequently-used pieces of a world:

currentMR/(6) = Ly, MR(6.s) W(i) = f W.O(i)

WR: < WO(ieg)-s. Ry WSy W WO(ign).5.81  Woxs = WO(ireg)-s.x1  Woor L W.O(ign).5.01

WRy & WO (ieg)-sRa WSy € WO(igw).5.52  Wixa & WO(ireg)-5.x2  Wooz L W.O(isere).5.02

W.o, & (Ww,, W, Weor) Wby & (W, Woxa, Weos)

Atoms are well-formed worlds together with a pair of components or values that are well-typed at the
indicated type under the appropriate memory type of the world.

TermAtomy,[(q1 - 71501), (g2 F 723 02)] o

{(W,e1,e2) | W € World,, A WU s Wox1; Wor;q1 Fer:m;or A
WWos s Woxa; Woasqa Feaim;oa }

ValAtom,, [T1, 7] def { (W, v1,v2) € TermAtom,[(out - 71; W.o1), (out - m; W.o2)] }
WvalAtom,, [71, T2] éf{(W wl,W2)| W e World,, A Wy -Fwiimy A WWsge- b wa:iTo}
StackAtom, [0, o2] def {(W,S1],S2]) | W e World,, A W&, FSy:01 A Wy FSs:05}
HvalAtom, [t1, 2] % { (W, hl,hz) | W e World, A Wy Fhy:¥thy A Wy - hy:¥as }

ContAtom[(qy F 71501), (Q2 F 125 02)] ~ [(a) F 11507), (a5 - 155 04)] def

{(W,Ey,E9) | W € World A
EE: (W Wxas Woosan b riyon) ~» (W55 Woxas Woos g B 7i307) A
FEy: (WWa; s Woxe; Woa;qa - o5 02) ~ (WWa; o5 Waxa; Woossq) F 19505)}
ContAtom[(qy - 71301), (da - 7o502)] =
{(W, By, E3) | 3d, a3, 71, 75,01, 0.
(W, Ey, Ey) € ContAtom[(qy F 71501), (2 F 123 02)] ~ [(d) F 11507), (a5 = 755 05)]}
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WvalRel [y, 72] o {w € WvalAtom|[11, 72] | V(W, w1, w3) € @, VW I W. (W' w1, wW2) € @y}
TValRel LAVR = (11, 72, 00) | uw € WvalRel[r1, 2] }
StackRel[oq, 0'2] = {gps C StackAtom|[o, 03] }

TStackRel L LSR = (01,02,05) | ps € StackRel[o, 2] }

The set D[A] ensures that an environment p mapping type variables to value relations is well-formed.

D[] = {0}

DA, o] % {pla— VR]| pe DJ]A] A VR € TValRel }

DA, ¢] L {p[¢—SR]| peD[A] A SR e TStackRel }

DlA ] = {ple— (a1, a2)]| peDIA] A ftv(ar) =0 A fiv(az) =0}

We use p; and ps to denote the substitutions formed by mapping variables in dom p to the first and
second components, respectively, of the tuples they map to.
We also use some shorthands for referring to atoms of a particular type in terms of an environment p:

TermAtom[q b 75 ]p = TermAtom|(p1(a) = p1(7); p1(0), (p2(a) - pa(7); pa(0)]
ValAtom[T]p f ValAtom|[p (7), p2(7)]

WvalAtom|[7]p def WralAtom|[p; (7), p2(7)]

HvalAtom[v]p o HvalAtom[p1 (), p2(1))]

ContAtom[q - 73 0]p ~ [o' b 7';0']p = ContAtom|(p(q) = p1(7); p1(0), (pa(a1) - p2(7); p2(0))]

~ [(p1(a") F P (7); p1(e), (pa(a’) = po(7'); pa(0))]

The following relation says that a memory relation pj; satisfies the constraints imposed by a memory

relation ¢, in all worlds accessible from W.

def

v Ew Py VW, My, My) € opr. W IW = (W, My, M,) € @y,

V[unit]p ={ (W, (), ()) € ValAtom[unit]p }
V[int]p = { (W, n,n) € ValAtom[int]p }
Vipo.t]p = { (W, foldycx.7 v1, fold .+ v2) € ValAtom[pce.7]p |

(W,v1,v2) € V[ [pa.T/a]]p}
V[{T1yeeosma)]lp ={ (W, {vi1, ...y v1n), (V21, ..., V2,)) € ValAtom[(T1, ..., 7a)]p |
Vie{l,...,n}. (W,vqj,vy) € V[1i]p}
VI[(T)— m']p = { (W, v1,v2) € ValAtom[(T) — 7']p |
YW’ J W. VSR € TStackRel. Y/, v).
let p' = p[¢ — SR] in
currentt MR(W' (i) €wr S[C]p" A (W7 V], v5) € V[T]p
= (W ,v1V},vav}) € E[out F 7/;¢]p" }
lp = {(W,v1,v2) € ValAtom[(T) —> ¢l’¢° p |
VW' J W. VSR € TStackRel. Y], v).
let o' = p[¢ — SR] in
currentMR(W’(istk)) Ew: S[s = C]p N (W' v, v)) € V[T]p
= (W v1V],vav}) € E[out - 775 ¢, :: CJp' }

V[F) 2% PisPo

95



Wila]p = p(e)-pu

Wlunit]p ={ (W, (), () € WvalAtom[unit]p }

Wlint]p = {(W,n,n) € WvalAtom[int]p }

W[3a.7]p = { (W, pack(r,w1) as p1(Ja.7), pack({T2,w3) as pa(Ja.7)) € WvalAtom[Ta.7]p |
Jpw € WvalRel[r1, 72]. (W, w1, wa) € W[T]pla = (71, T2, pw)] }

Wlpeoet]p ={ (W, foldp1 (povt) Wis f(’ldpg(ua.r) wo) € WvalAtom[pa.7]p |
(W,w1,w2) € pW[r[pa.7/allp}

W]ref ¢]p ={ (W, 44, €2) € WvalAtom|ref ¢]p | Ji. VIWV/ T W.

(£1,£2) € W'(i).bij(W'(i).s) A
Jpps. currentMR(W' (7)) = opr ®
{ (W, {€y — hy}, {€s — hy}]) € MemAtom | (W, hy, ho) € HV[])p}}
Wlbox (11, ..., m)]p = { (W, Ei&) € WvalAtom[box (711, ..., Tn>]£/|
Y(W, My, M) € currentt MR(W (ipox)). W I W
= (W, My(£1), Ma(£2)) € HV[(71, ..., ma)]p}
Wlbox V[A].{x; o }p = {(W, ElLTl],Ez [@2]) € WvalAtom[box ‘V’[A]/.ix; o}p|
Y(W, My, M) € current MR(W (ipox)). W 2 W
= (My(£1) = code[B1, Al{x1;01}%.I; A
p(X) = x1[w1/B1] A pi(o) = o1[w1/Bi] A pi() = aulwi/Bi] A
M, (£2) = code[Bz2, Al{x2;02}92.15 A
p2(X) = Xz2[w2/B2] A p2(0) = o2[w2/B2] A p2(q) = azlwz/B2] A
(W, (code[A]{x1; 01} 1) [w1 /B1],
(code[A]{x2; 02}%.12)[w2/B2]) € HV[V[A].{x;0}p) }

HV[V[A]{x; o }]p =
{(W, code[A]{p1(x); p1(0) }P1{W) 11, code[ Al {pa(x); p2(c) }#2(Y) 1) € HvalAtom[V[A].{x; o }]p |
VW' JW. Vp* € D[A]. V7,0’ let p' = pUp* in 7;0" =, ret-type(q, x,o) A
current MR(W/ (e )) €Ew R[x[p" A currentMR(W' (istk)) Ewr S[o]p’
= (W', (pi(L1), ), (p3(I2), ")) € E[atT:0']p" }
10’ =, ret-type(a, x, o) = p1(1); pi(o”) = ret-type(pi (), p1(x), pr()) A
p2(7); p2(0’) = ret-type(pz(a), p2(x), p2(7))

HV[(11ye oo s ma)]p={ (W, {(W11y.. s Win), (Wa1s..., Wayn)) € HvalAtom[(T1, ..., T)]p |
Vie{l,....,n}. (W, wyj,wo;) € W[ri]p}
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(M1, M,) : W LM WD, A My WDy A

(Wk>0 = (>W,Mq,M3) € @{ currentMR(0) | § € W.0})

def

running(k, (M | e)) = IM’,e’. (M | e) —F (M’ | ¢’)

O={(W,e,ea) | V(My,Mz): W. ({(Mj |e1)d A (Mz|ea)l)V
(running(W.k, (M4 | e1)) A running(W.k, (Ma | e2)) }
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NOTE: Our continuations are untyped. See the operational semantics (3.1.7) for more detail.

Klout - r;0]p ={(W,E1, Es) | VW vq,va.

W' Jpue W A (W vi,va) € V[r]p A currentMR(W (isek)) €wr S[o]p

— (W', Er[v1], Ea[wi]) € O}

Klat7ielp  ={(W,E1, Ep) [VW', d, 11,75
WY S W A (4= = end{ria} v

(Fr.d’ =r A ret-addr;(W, p1(q)) = W/.Ri(r) A ret-addre(W, p2(q)) = W .Ra(r) A

ret-reg, (W', r) =11 A retregy(W’,r) =r2)) A

(W W' R1(r1), W .Ra(rz)) e W[r]p A currentt MR(W'(isx)) €Ew+ S[o]p

= (W', Exl(ret pr(d) {r1}, )], Ex[(ret pa(d’) {r2},)]) € O}

a=,9 = pi(a) =p1(d) A p2(a) = p2(d’)

ret-addry (W, r) = W.R4(r) ret-addry (W, 1) = W.Sq (i)
ret-addrg (W, r) = W.Ra(r) ret-addrg (W, i) = W.S,(i)

ret-reg, (W,r) =’ if Wox1(r) = box V[].{r': 750’ }4
ret-reg, (W, r) = r’ if Woxa(r) = box V[].{r': 750’ }4

Elar r;o]p = { (W, ey,e9) € TermAtom[q F 7;0]p |

VEl,Eg. (VV, El,Eg) S K[[ql_ T; D']]p — (I/V,El[el],Eg[eg]) S 0}

Gl-p E{(W.0) | W € World }
gIr,x:7lp  E{ Wiyl (vi,v2)] | (W) €GIMp A (Wovi,v2) € V[rlp}
H[{-}] = World

H[P, L:7¢fp]  =H[P]N{W € World | (W,£,£) € W[ref 4]0}
H[W, £:Py] = H[T]N{W € World | (W, £,£) € W[box 4]0}

Rlx]p ={(W,Ral,Rz[) | V(r:7) € x. (W,R1(r),R2(r)) € W[r]p}

S[<lp = p(C)-ps

Sle]p ={(W,nil|,nil]) | W € World }

Sl = o]p ={(W,(wy :: S1)[,(wa :: S2)]) | (W, wq,w2) € W[r]p A (W,S1],S2
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W:A;T;x;0;qF e mey:1;0 def U AsTsxsosqber:imof AW AT x;o;qbes:m0" A
YW, v, p. W e H[®] A peD[A] AN(W,v) €G[lp A
current MR(W (ireg)) €w R[x]p A
current MR(W (istk)) €w S[o]p
= (W, pr1(n(e1)), p2(72((e2))) € ElatT;0']p

3.3.1 Other Logical Equivalences

To simplify the structure of the Lemmas in subsequent chapters, we define the following notions of logical
equivalence for heaps, values, and instruction sequences:

Definition 3.1 (Logical Equivalence for Heaps)
CFH g Hy: O S O - H 0 A OFH,: O A V(Y 9) € . 0, 0 F Hy (£) ~y Ha(£): V)
Uk hy ~py ho VY W -hy:Yyp A UFho:Yyp A YW € H[P]. (W, hy, hy) € HV[]0

Definition 3.2 (Logical Equivalence for Small Values)
U A Fwy Ry szTdéf\Il;Al—wlz‘r AN W AFwWy:T A
VYW € H[¥]. Vp € D[A]. (W, p1(w1), p2(w2)) € W[r]p
U A;x Fuy =y u2:Td§f‘Il;A;xl—u1:T AN Ax Ui A
YW e H[P]. Vp € D[A]. currentMR(W (ireg)) €Ew R[X]p
— (W, W.R1(p1(m1)), WR2(pa(u12))) € W[r]p

Definition 3.3 (Logical Equivalence for Instruction Sequences)

TA T xoalh L S O AN o qlT A B AN X 05q T A
YW € H[P]. Vp € D[A]. Vv € G[p.
currentt MR(W (ireg)) €Ew Rx]p A currentMR(W (isx)) Ew S[o]p
= (W, p1(n((I1,4))), p2(12((I2, +)))) € E]a - ret-type(q, x, o)]p
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3.4 Basic Properties
3.4.1 Operations on Worlds

Lemma 3.4 (World Extension is Reflexive and Transitive)
For any W, W', W" € World, we have

1. WaIWwW

2. W Dpup W

3. W’ IW and W I W, then W’ 3 W

4. f W Jpu W and W’ Jpup W, then W7 Jpy, W
Proof

1. By definition of 3 for worlds and islands, and by the reflexivity of transition relations § in the
definition of World.

2. By definition of Jyyp, for worlds and islands, and by the reflexivity of public transition relations
m in the definition of World.

3. By definition of J for worlds and islands, and by the transitivity of transition relations § in the
definition of World.

4. By definition of Jyy, for worlds and islands, and by the transitivity of public transition relations
7 in the definition of World.

O

Lemma 3.5 (Properties of H)
1. If (M1, M3) : W and M{ = (Hq, L, 1), M} = (Hs, L, L), then

(M1 @M{,Mg L*JMé) W H (Hth).

2. (WH (H,,Hy))B (H{,H))=WH (H,WH{,Hy & H}).
3. If W € World and (W H (Hy, Hs)) is defined, then (W H (H;, H2)) I W and (W B (H1, Hz)) Jpun W.
Proof

1. By definition of W (ipey).
2. By definition of W (ipox)-
3. By definition of 3, Jdy,,1,, and islandpey.

Lemma 3.6 (Properties of > and 1)
For any W € World, we have

1L.oWaw
2. W Jpu W
3. If (My, Ms) : W, then (My, My) : >W.
4. W' 3 W, then W/ I W.
5. If W 3 W, then W’ J >W.
Proof

1. By definition of > and J, it suffices to show that |0 |w.x—1 3 |@]w.x—1 for each island § € W.O.
But this relation is reflexive, so we are done.
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2. Similar.

3. Note that if W.k = 0, there is nothing to show. Otherwise, the claim follows from the definitions
of MemRel and | ]k-

4. Immediate from the definition of .
5. From the definition of 3 we have W’.k < W.k and W’ 3 W. The latter implies that W’ € World,

which gives us 0 < W'.k. Hence, 0 < W.k.
Let W = (k+1,¥;, U5, 0). We have that:

(W' ke, W' 0y, W Wy, W.0) T (k+ 1,0, Ty, ©)
We must show that:

(W' ke, W' 0y, W W, W'.0) T (k, Uy, Us, |O])

It suffices to show the following:

o W'k < (>W).k: this follows from W'.k < W.k and (>W).k = Wk — 1.

o W' .U, DU;: by (4) we have W’ J W, from which this fact is immediate.

e W'.0 1 ||O|k]wk: From above we have that W’.©" J |O];s. Furthermore, since W'.k <
(>W).k = W.k — 1 =k, we have that ||©]x]|w’r = [©]w .k so we are done.

O

3.4.2 Properties of the Observation Relation

Lemma 3.7 (O Closed under Anti-Reduction)
Given W/ I W, if Wk < W'k + ki, Wk < W'k + ka, and

V(My, My) : W. 3(M{, M) - W' (M | er) —=F (M7 | €}y N (M | eq) —F2 (M} | €)),

then
(W' e, ey) €0 = (W,eq,es) € 0.
Proof

Let (My, M) : W. Then, by our assumption, (M; | e;) —=*1 (M] | €}) and (Ms | eg) —F2 (M} | €})
for some (Mj, M4) : W’. Since (W', e,eh) € O, we have either that (M7 | €}) | and (M} | e}) | or
that running(W'.k, (M7 | €})) and running(W'.k, (M | €5)).

In the former case, we have (M; | e1) | and (Ms | e3) | by assumption. In the latter case, we have
running(W’'.k+ky, (M7 | e1)) and running(W'.k+ ke, (M2 | e2)). Since we have assumptions that both
of these are more steps than needed, we have the result. O

3.4.3 Monotonicity and Reduction

Lemma 3.8 (Monotonicity)
Let p € D[A], where AF 7, AF 1, and A+ 7. If W 3 W, then

1. (Wy,wi,wa) € W[r]p = (W', wq,wsz) € W[T]p

2. (W,hy,hy) € HV[¢]p = (W', hy,h) € HV[7]p.

3. (Wyvi,v2) € V[r]p = (W', vi,v2) € V[7]p.
Proof

1. Proved by induction on W’.k and on the structure of 7, simultaneously with Claim 2.

In each case, we will need to show (W', wy,wa) € WvalAtom[7]p. This amounts to showing that
W' U, w7 for i € {1,2}. We have by assumption that W.U;;- - w;: 7. By definition of
world extension, W/.¥; D W.¥,, so this property holds.
To complete the proof, consider the possible cases of 7:
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Case o Follows from p(a).pl € WvalRel[p(c).71, p(c).72], which holds by p(cr) € TValRel.
Case unit Immediate.

Case int Immediate.

Case da.7’ Follows from the induction hypothesis for the type.

Case pa.7’ Follows from the induction hypothesis for the step index.

Case ref 1) We need to show that (W', €4,£2) € W[ref ¢]p. Let W’ J W'. By transitivity
of world extension, W” 3 W. Thus everything we need holds by our assumption that
(W, £1,£2) € W[ref ¢]p.

Case box (71,...,T,) We need to show that (W', £1,£2) € W[box (T1,...,Tn)]p-

Let (W, M, M}) € currentMR(W’(ipox)) such that W 3 W’'. By definition of islandyex,
M{ = (W'(ivox).s.H1)| and M4 = (W' (ipox).s.H2)[ . By our assumption, to show

(W, M{(£1), Mj(£2)) € HV[(71, ..., Tu)]p

it suffices to find some M; and M such that (W, My, Ms) € current MR(W (ip0x)), M71(€1) =
M (£1), and My (£2) = M}(£5), noting that W 3 W follows from W 23 W' J W.

We claim that My = (W (ibox)-s.-H1)[ and My = (W (ipox).s.Ha) | are suitable. The first
condition holds immediately by definition of islandpey. Since W’ 3 W, we know that
W (ibox) 2 [W (ibox) | w.k- Thus ((Hy, Ha), (H., H})) € Spox, that is, H; C H] and Hy C H}.
Since £1 and £5 must be in the domain of H; and Hsy, we have the desired property that
Ml(ﬁl) = M{(El) and Mg(eg) = M§(€2)

Case box V[A].{x; o} Let (W, My, M) € current MR (W (ipoyx)) such that W 3 W' Tt suffices

to find some M; and M, such that (W, My, Ms) € currentt MR(W (ipox)), M1(€1) = Mi(£41),

and My (€2) = Mj(€2), noting that W 33 W. This can be done exactly as in the previous
case.

. Proved simultaneously with Claim 1.

In both cases, we need to show that (W’ hy, hy) € HvalAtom[)]p. This amounts to showing that

W', F h;: V) for i € {1,2}. We have by assumption that W.U; - h;:¥1). By definition of world

extension, W'. ¥, D W.¥,, so this property holds.

Consider the possible cases of 1):

Case V[A].{x;0}9 We need to show that (W’ hy,hy) € HV[V[A].{x;0}9p. Let W" 3
W'. By transitivity of world extension, W 3 W. Thus everything we need holds by our
assumption that (W, hy,hy) € HV[V[A].{x; o }9]p.

Case (71,..., ) Follows from Claim 1 using the induction hypothesis for the type.

. Proved by induction on W'.k and on the structure of 7.

In each case, we will need to show (W' 6vi,vo) € ValAtom[r]p. This amounts to showing
that W/ W« W .xi; W.oi;out B ovi: ;W for i € {1,2}. We have by assumption that
W.Ws; - - Woxy; Weoy;out F v 7; W.oi. By definition of world extension, W’/.¥; D W.¥;. How-
ever, note that W’.x; and W’.o; may be arbitrarily different from W.x; and W.o;. But note that
the only place where there are non-trivial dependencies of the typing on either of those are past
the 7FT -boundaries. Note first that at the boundary, what is inside is restricted to type under
the empty register file typing, so any changes to the typing outside the boundary is irrelevant.
Note secondly that since we are dealing with values, the only place an "F7 - boundary can occur
is within a lambda. The typing rule for lambdas requires that the body types under a fresh ¢
variable for the stack typing, both in and out, which means that any changes that are made to
the stack typing outside of the lambda are irrelevant.

To complete the proof, consider the possible cases of 7:

Case unit No proof obligations beyond what was shown above.
Case int No proof obligations beyond what was shown above.
Case poa.7 This follows from the induction hypothesis.
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Case (7) This follows from the induction hypothesis.

Case (T)— 7’ The obligations in this case follow trivially from the transitivity of world exten-
sion, since with any future world W* J W’ we can instantiate what we are given.

Case (7) ¢i;—¢)>o 7/ This case is the same as the other arrow case.

Lemma 3.9 (Monotonicity for Heaps)
W 3W and W € H[¥], then W’ € H[P].

Proof

We use induction on the structure of W. If ¥ = {-} then there is nothing to show.

If & = W/, £:7%4) then by the induction hypothesis, W’ € H[¥’], and it remains to show that
(W', £,£) € W[ref 1](. But this follows from W € H[¥’, £: **'+)] and Lemma 3.8.

If & = W' £:P°%4 then by the induction hypothesis, W’ € H[¥’], and it remains to show that
(W', £,£) € W[box 1]. But this follows from W € H[¥’, £:P°*3)] and Lemma 3.8. O

Lemma 3.10 (Monotonicity for F Evaluation Contexts)
If W Jpup W, then

(W, E1, E>) € K[out +7;0]p = (W', Ey, Es) € K[out - 75 0]p.
Proof
Follows from the transitivity of Jpyp. O

Lemma 3.11 (Monotonicity for T Evaluation Contexts)
If W' Jpup W oand if either q =, ' =, end{7;0} or ret-addri (W, p1(q)) = ret-addr;(W’, p1(q’)) and
ret-addra (W, p2(q)) = ret-addra (W’ p2(q’)), then

(W,Ey,E2) € K[at m;0]p = (W', Ey, E2) € K[d' = 7;0]p.
Proof
Follows from the transitivity of Jp,u, and our hypotheses about the relationship between q and q’. [

Lemma 3.12 (£[qF 7;0]p Closed under Type-Preserving Anti-Reduction)

Let (W, eq,e2) € TermAtom[q F 7;0]p. Given W' Ty, W, Wk < W'k + ki, Wk < W'k + ko, and
itq =, q =, end{r;0} or q =, ' =, out or if ret-addr; (W, p1(q)) = ret-addri(W’, p1(q’)) and
ret-addra (W, p2(q)) = ret-addra (W', p2(q’)), and if

V(M My) s W 3(MG, M3) s W (M | ex) 5 (M | &) A (M | ea) 2 (M | €),

then
(W' el,es) € Eld Frio]p = (W,er,er) € E[at m;0]p.

Proof

Now let (W, E1, Es) € K[q F 7; 0] p. We need to show that (W, E1[e1], E2[es]) € O.

We can use Lemma 3.11 and Lemma 3.10 to conclude that (W', Ey, E3) € K[q' F 7; 0] p. Instantiating
the latter with (W', e}, ¢e5) € E[d" F 7;0]p gives us (W', Ey[e}], Ezleb]) € O.

By inspection of the operational semantics and by assumption, for any (M, Ms) : W, there is an
(M7, M3) : W' such that

(My | Erled]) %1 (M | Ere}]) and (M | Ealea]) —™ (Mj | Eqles)).

The rest of this case follows by Lemma 3.7.
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Lemma 3.13 ([qF 7;0]p Closed under Memory-Preserving Anti-Reduction)
Let (W, e1,e2) € TermAtom|[q F 7; 0]p.

If
V(M Ma) : W (My | er) —" (My | ey) A (My|ez) —" (M | e3),
then
(W,el,ey) €ElatTo]lp = (W,er,e1) € E[at 7;0]p.
Proof
This follows from Lemma . O

3.4.4 Substitution

The next lemma is a simple property, but its proof shows the induction structure by which properties of the
mutually-dependent parts of the logical relation can be proved.

Definition 3.14
§ s=a|C|e
AR := VR | SR | QR

Lemma 3.15
[Weakening] If p[¢ — AR] € D[A,£] and & & ftv(7), £ &€ ftv(T) € & ftv(o), £ € ftv(x), & & ftv(¢)), then

L. S[e]p = S[o]pl¢ — AR]

2. Rx]p = R[x]pl¢ — AR]

Wir]p = W[r]pl¢ — AR]

HV[¥]p = HV[¢]pl§ — AR]

Elat m0]p=Elat 7;0]p[§ — AR]

-~ W

ot

KlaF m;50]p = Klat 7;0]p[€ — AR].
V[7lp = V[7]pl¢ — AR]
Elak 1;0]p = ElatF 1;0]pl€ — AR]

© . N o

Klak m;0]p=Kla F 7;0]p[€ — AR].
Proof

Assume € ¢ ftv(7) and € & ftv(o). We will need to prove the following:
W,S1,S2) € S[o]p = (W,S4,S2) € S[o]pl¢ — AR]

1. (a

(a) (
(b) (W,S1,S2) € S[o]plé — AR] = (W,S1,S2) € S[o]p
2. (a) (W,R1,Rz) € R[x]p = (W,R1,Rz) € R[x]p[{ — AR]
(b) (W,R1,Rz) € R[x]pl§ = AR] = (W,R1,Rz2) € R[x]p
3. (a) W, wy,wa) € W[r]p = (W,w1,ws) € W[r]p[¢ — AR]
(b) (W, wq,wz) € W[r]pl§ = AR] = (W, w1, w2) € W[T]p
4. (a) (W,hy,hy) € HV[Y]p = (W, hy,ha) € HV[Y]p[é — AR]
(b) (W,hy, ha) € HV[Y]pl§ = AR] = (W, hy,h2) € HV[¢]p
5. (a) (W,er,e2) €€[qt m;0]p = (W,eq,es) € E]Jat T;0]p[€ — AR)
(b) (W,eq,e2) € E[qF T;0]p[¢ — AR] = (W, eq,e2) € E]at T;0]p
6. (a) (W,E1, Es) € K[ak Ti0]p = (W,E1,E>) € K[q+ 7;0]p[¢ — AR]
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b) (W, Eq, Es) € K[at 1;0]pl§ = AR] = (W, Ey, E») € K[qt+ 7;0]p.

a) (W,vi,v2) € V[r]p = (W,v1,v2) € V[r]p[{ — AR]
b) (W,v1,v2) € V[T]pl§ = AR] = (W, v1,v2) € V[7]p

(b) (
7. (a) (
(b) ( )
8. (a) (W,er,e2) € E[qF m;0]p = (W,e1,e2) € E[atF 7;0]p[¢ — AR]
(b) ( )
- (a) (
(b) (

b) (W,e1,e2) € E[aF m;0]p[§ — AR] = (W,e1,e2) € E[qt T;0]p
W,E1, Es) € K[ab m;50]p = (W, E1, Es) € K[aF T;0]p[€ — AR]
W, Ey, E3) € Kl[a b m;0]pl§ = AR] = (W, Ey, Es) € K[a - 7;0]p.

9. (a

b
We will prove all these claims simultaneously, by induction on W.k and .

1. We use an additional induction and case analysis on the structure of o.

Case ( Immediate, since £ # (.

Case e Immediate.

Case 7 :: o For part (a), we have S; = wy :: S, Sy = wp 2 S, (W, wq,ws2) € W[r]p, and
(W,8,8%) € S[o]lp. We need to show that (W, wq, w2) € W[T]p[¢ — AR] and (W, S/, S)) €
Slolplé — AR]. The latter holds by the induction hypothesis for o and the former holds by
claim 3.

Part (b) is similar.
2. Follows from claim 3.
3. Consider the possible cases of 7:

Case o Immediate, since o # €.

Case unit Immediate.

Case int Immediate.

Case da.T By the induction hypothesis for 7.

Case pa.1 By the induction hypothesis for W.k.

Case ref (11,...,m,) Follows from claim 4.

Case box (71,..., ) Follows from claim 4.

Case box V[A].{x;c’}¥ Follows from claim 4.

4. Consider the two possible cases of :

Case V[A].{x; 0’} Follows from claims 1 and 2 (using the induction hypothesis for 7) and
from claim 5 (using the induction hypothesis for W.k).

Case (71,...,7n) Follows from claim 3 (using the induction hypothesis for 7).
5. Follows from claim 6.
6. Follows from claims 1 and 3.
7. Consider the possible cases of 7 that are defined in V[-]p:

Case () Immediate.

Case int Immediate.

Case pa.m By the induction hypothesis for W.k.
Case (7) By the induction hypothesis for 7.

Case (T)— 7 Follows from claim 1 (using induction hypothesis for 7), and from claim 8 (using
induction hypothesis for W.k.

Case (7) ¢ﬁ>° 7 Same as other arrow case.
8. Follows from claim 9.

9. Follows from claims 1 and 7.
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Lemma 3.16 (Substitution)
Let pe D[A], a € A, AL 7', and A,ab 7, A,ab o, A,at x, A,k 1. Then

L S[elpla = (pr(77), p2(7"), WIT'1p)] = Slo [’/ a]]p

Rlxplec = (pi(77), p2(77), WIT'p)] = Rx[7'/allp

WIrlplee = (pa(77), p2(7), WIT'[p)] = WIr [’/ a]lp

HY[Slple = (pr(77), p2(77), WIT )] = HV[ [/ ]]p

5. Elat Tialpla = (p1(77), p2(7), WIT'lp)] = Elalr’ /el F 7"/ alia[r"/a]]p
6. KlaF7;a]pla = (pr(7"), pa("), WT'lp)] = Klalr’/a] = 7[r' /a]; o[t /a]]p.

Proof

> W N

Follows the structure of the proof of Lemma 3.15, aside from the cases about source types, since they
cannot have free type variables. The only case that depends on p is in claim 3, in the case where

7 = 3. But the needed equality is immediate in this case, whether o = 3 or not.

Lemma 3.17 (Substitution for Stack Types)
Let pe D[A], (€A, Ab o’ and A, (H7, A, (o, A, (X, A, CF ). Then

L S[o]plC = (pi(a’), p2(a”),S[o’]p)] = S’ /C]]p
R[x]pl¢ = (p1(c”), p2(c”), S[o']p)] = R[x[o’ /<]]p
WIrlplC = (p1(c”), p2(c”’), S[a']p)] = Wlr[o' /C]]p
HV[Y1plC = (p1(c”), p2(a”’), S[o']p)] = HV[¥[o”/C]lp
Elat 7;0]pl¢ = (p1(a’), p2(a’),S[o’]p)] = Elala’ /¢l - Tl /(T oo’ /C]lp
Klat 7;0]pl¢ = (p1(c”), p2(0”), S[o']p)] = Klalo" /] = r[o’ /¢l oo’ /C]]p.
Elatmiolp=Elat T;0]p[C = (p1(a’), p2(c”), S[o”]p)]
8. Klak m;0]p=Klat m;0]p[¢ = (p1(a”), p2(c”), S[o']p)].
Proof

A T e

O

Follows the structure of the proof of Lemma 3.15. The only case that depends on p(¢) is in claim 1,

in the case where o = ¢’. But the needed equality is immediate, whether ¢ = ¢’ or not.

Lemma 3.18 (Substitution for Return Markers)
Let p e D[A], A q',and A,eb 7, Ayet o, Ajeb x, A,et tp. Then

L. S[o]ple = (p1(d"), p2(a”))] = S[o[d'/€]lp
R[x]ple = (pr(ad’), p2(a’))] = R[x[a’/€llp
Wlrlple = (pi(a’), p2(d))] = WIr[d'/€]lp
HV[V]ple = (p1(d'), p2(a’))] = HV[[d' /€]lp
Elak r;alple = (pr(d’), p2(a’))] = E[ald’/e] - 7]d /e]; o[’ /e€]]p
Klat 7ia]ple = (pr(d’), p2(a))] = Klald' /€] = [d’/e]; o[d/€]]p-
Elat 7;a]ple = (p1(a), p2(a”))] = Elald’ /€] = T3 0(d’ /€]lp

8. KlaF 7;olple = (pi(a’), p2(a"))] = Klala'/e] F m50[d’ /€] p.
Proof

Ll

N -
=z
|

Followed the structure of the proof of Lemma 3.15. There are no interesting cases.
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3.4.5 Properties of Semantic Interpretations

Lemma 3.19
If p € D[A] and A F 7, then W[r]p € WvalRel[p1(T), p2(7)].

Proof
Follows from monotonicity. O

Lemma 3.20
If p € D[A] and A I o, then S[o]p € StackRel[p1 (o), p2(0)].

Proof
Proceed by induction on the structure of o.

Case ¢ From A F o we have that ¢ € A. Since p € D[A], it follows that S[(]p = p({).0s €
StackRel[p1(C), p2(¢)].

Case e In this case, S[e]p = { (W,nil | ,nil[) | W € World } € StackRel[e, o] is immediate from the
definition of StackRel.

Case 7 :: o Forany (W, wy :: S1[,wy :: So|) € S[7 :: o]p, we need that WU, b w; :: Sy p;i(7 2 o).
From the definition of S[7 :: o]p we have (W, w1, ws) € W[r]p and (W, S1[,S2]) € S[o]p, from
which we have that W.0;; - F w;: p;(7) and W0, F S;: p; (o), which gives us what we need.

O

Lemma 3.21 (Register File Subtyping Implies Inclusion)
Let p € D[A] and A F x < x’. Then R[x]p C R[x']p-

Proof
Consider arbitrary (W, M1, Ms) € R[x]p. Note that M; = Rq] and My = Ra[. We must show that
(W, My, M) = (W, R1[,Ral) € R[X]p-

Consider (r : 7) € x’. We must show (W, R (r),Ra(r)) € W[r]p. From the hypothesis A F x < x/,
it follows that r : 7 € x. We use the latter to instantiate (W, R1],Ra2]) € R[x]p, which gives us
what we needed to show. O

Lemma 3.22 (World Updates that Respect Register-File Relation)
Let currentMR(W (ireg)) €Ew R[x]p and W' I W.

1. If W (ireg) = W(ireg), then currentMR(W (ireg)) €wr R[x]p-

2. Let W = (Wk, W.W1, WUy, W.Olireg + island,eg (s, W.k)]), where
s=(WRi[ra — wi],Wixi[ra : p1(7)], WRa[rq — wa]|, W.xa[ra : p2(7)]). If (W w1, wa) € W[T]p,
then current MR(W (iyeg)) €Ew+ R[x[ra : T]]p-

Proof

1. Consider arbitrary (W, My, My) € current MR(W'(41g)) such that W 2 W’. We must show that
(W, My, Ms) € R[x]p.
Instantiate the first premise with (W, My, M), noting that the latter is in current MR(W (ireg )
since W' (iveg) = W (ireg), and noting that W 3 W by transitivity of 3. Hence, (W,Ml,Mg) €
R[x]p as we needed to show.

2. Consider arbitrary (W, My, My) € current MR(W'(i1eg)) such that W 23 W’. We must show that
(W,Ml, Ms) € R[x]p. Note that M; must be of the form R;[ and R; = W'.R;.
Consider arbitrary (r:7’) € x[rq : 7]. We must show that (W,Rl (r),Ra(r)) e W[r']p.
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Case r =rg: Then 7/ = 7 and R;(r) = w;, which means that it suffices to show (W, W1, Wa) €
W]r]p. This latter is immediate from the premise (W', w1, w2) € W[7]p using monotonicity
(Lemma 3.8).

Case r # rgq: Then R;(r) = W' .Ri(r) = W.R;(r), which means that it suffices to show
(W,W.R4(r), W.Ry(r)) € W[']p. Instantiate the first premise with (W, W.Ry [, W.Rx])
noting that the latter is in currentMR(W (ieg)) by the definition of island,es. Also note
that W 3 W by transitivity of J. Hence, we have that (W,WRl IWRx ) € Rlx]p-
Instantiating the latter with (r:7’) € x gives us (/VIV/,WRl (r), W.Ra(r)) € W[r']p as we
needed to show.

O

Lemma 3.23 (World Updates that Respect Stack Relation)
Let currentMR(W (i) €Ew S[o]p and W I W.

1. If W/ (istx) = W(istk), then currentMR(W' (istk)) €wr S[o]p.
2. Let W.S1 = wyg 2 -+ it wyy = Sy, WoSo = woy i+ i wey,, 2 Sy, 0 =7 o0 7, oo’ and

W' = (W.k, WU, W.¥y, W.O[igek — island,eg (s, W.k)]), where
s=(8,0',85 ). current MR(W’ (isxc)) €w S[o’]p.

3. Let W/ = (W.k, WUy, WUy, W.Oigy + island,eg (s, W.k)]), where
s = (w11 = ooov i Wi, o ST, e i Ty o O,Wap ocee i Wap i So, Ty nocee n Ty o). If
(W', wii, wai) € W[T:]p, then curret MR(W” (igty)) €@wr S 22 -+ - 22 1 2t o]p.

4. Let W.S1 = wyg = -+ it wyy = Sy, WaSe = woy 2 -+ i way 2 Sh, 0 =7 -+ ity ool and
W' = (Wk, WU, WUy, W.Oigy — island,eq (s, W.k)]), where
s=(wig s W1 mwy ST e Ty w7 ol wey e Wy wh  Sh T e

Tpo1 =7 o). IE(W' w!,wh) € W[r']p, then currentt MR(W' (itx)) €wr S it ++ it T 22 7722 o] p.

Proof

1. Consider arbitrary (W, My, M) € current MR (W (istx)) such that W 3 W’. We must show that
(W, My, Ms) € S[o]p.

Instantiate the first premise with (W, M, Ms), noting that the latter is in current MR(W (ig))
since W/ (istk) = W (istk), and noting that W J W by transitivity of J. Hence, (W,Mh M) €
S[o]p as we needed to show.

2. Consider arbitrary (W, My, M) € current MR (W (igtx)) such that W I W'. We must show that
(W, My, M) € S[o']p. Note that M; must be of the form S!I and S! = W'.S;. The desired result
follows directly from monotonicity (Lemma 3.8) after unfolding current MR (W (ist)) Ew S[o]p.

3. Consider arbitrary (W, My, Ms) € currentMR (W' (istk)) such that W 3 W’. We must show that
(W,Ml,Mg) € Sy - i1y, = olp. Note that M; must be of the form wijp :z « -« 22 Wy, 2 Sj

and wijp :t « -+ i Wiy 2 Sj = W’.S;. The desired result follows directly from monotonicity (Lemma 3.8)

after unfolding currentMR(W (isik)) €w S[71 :: -+ 2 Ty it o]p and premise (W', wq;, wo;) €
W[rilp-
4. Let ¢/ = 79 2 -+« it 17y, it 0. Consider arbitrary 1 < k < |o’| such that such that (o’(k) = 7.
We must show that (W, W’.S; (k), W’.S,(k)) € W[r]p.
Case k = n:  Then 7/ = 7 and W'.S;j(k) = wj, which means that it suffices to show
(W,W’I,W’Z) € W[r']p. This latter is immediate from the premise (W', wq, ws) € W[T]p
using monotonicity (Lemma 3.8).

Case k # n: Then W'.S;(k) = W.S;(k), which means that it suffices to show (W, W.S1(k),W.S5(k)) €

W[rk]p. Instantiate the first premise with (/V[7, W.S1],W.S21) noting that the latter is in
currentMR(W (iyeg)) by the definition of island,es. Also note that W 3 W by transitivity
of J. Hence, we have that (W,VV.Sl [,2W.S3|) € Rlo]p. Instantiating the latter with
(1) = o (k) gives us (W, W.S1(k), W.S2(k)) € W[n]p as we needed to show.
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Lemma 3.24 (Heap Interpretation Extension with Boxheap)
If W e H[P], ¥+ Hy =g Hy: ¥/, and boxheap(P’), then W B (Hy, Hy) € H[P, T’].

Proof

By induction on W.k.
To show W H (Hy,Hz) € H[¥, '], it suffices to show

V(£ p) e (P, ¥). (WH(Hy,Hs), 2,0) € Wy 4]0

where v is box or ref.

Consider arbitrary (€ :* ) € (¥, ®’). If £ € dom(¥), for any value of W.k, it follows from the
first premise that (W, £,£) € W[v ¢]0. By Lemma 3.5 we have that W B (H;,Hy) J W, so by
monotonicity we have (W B (Hy,Hs),£,£) € W[v v]0.

Therefore, it remains for us to show that if £ € dom(¥’) then (W B (H;,Hs,), £, £) € W[box v]0.

Case W.k = 0: Consider arbitrary (W,Ml,Mz) € currentMR((W B (Hy,H3))(ibox)) such that

= (WH(H;,Hs,)). But the latter implies W.k < W.k = 0 which leads to a contradiction since
W € World which requires that W.k > 0. So we are done.

Case W.k=n+1 for n > 0: By the induction hypothesis we know that the lemma we wish to prove
holds for any W such that W.k = n. We must prove it for any W such that W.k =n + 1.

We have that £ € dom(¥’) and must show that (W 8 (Hq, Hz), £, £) € W[box ]0.

Consider arbitrary (W, My, M) € currentMR((W B (Hy, Hs))(ipox)) such that W 3 (W B
(Hq,Hs)). Note that it must be the case that My = (W (ipox).s-H1WH1)[ and My = (W (ibox).s. HoW
Hs)[. Also, since £ € dom(¥’), from the second premise it follows that £ € dom(H;) and
£ € dom(Hs,). Regardless of whether v is a code type or tuple type, it suffices to show:

(W, My (€), M2 (£)) € HV[]0
= (W, H; (£), Hy(£)) € HV[]0

From the second premise, since (£ :P°* 1)) € W', it follows that:

W, ' - H,y () ~py Ha(€): PO%op, (20)
Since >W € H[¥] by heap monototonicity (Lemma 3.9) and since (>W).k = n, by the induction
hypothesis we have that (W B (H;,Hz)) € H[¥, ¥’']. Thus, we can instantiate (20) with
>W B (Hq,H,), which allows us to conclude that

(W B (Hy,Hy),H (), H2(£)) € HV[]0

Now, since W 3 (WH (Hy,Hs)), we can use by Lemma 3.6 to conclude = >(WH (Hq, Hy)).
Hence, by monotonicity, we have (W, H; (£), H2(€)) € HV[]0 as we needed to show.

O
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3.5 Bridge Lemmas

Lemma 3.25 (F Values are F Expressions)
If (W,v1,v2) € V[7]p and currentMR(W (istk)) €Ew S[o]p then (W, vi,v2) € Efout - 7; o].

Proof

Consider arbitrary E1, Eo such that (W, Ey, Es) € KJout F 7;0]p.
We need to show that (W, Ey|vi], Fa[v2]) € O. But we can instantiate the K[-] relation with our
hypotheses, noting W Jpu, W by reflexivity, to get the result. O

Lemma 3.26 (Monadic Bind F To F)
If (W,ei,ez) € EJout - 7;0]p, (W, Eq, Es) € ContAtom[out - 7;0]p ~» [out = 7%;0*], and VW' Ty
WNv1, va. (W v, v2) € V[7]p A current MR(W (igtx ) €wr S[o]lp
= (W', E1[v1], E2[vs]) € EJout F 7*; 0*] p*, then
(W, Ele1], Exlesz]) € E[out F 7% 0% p*

Proof

Consider arbitrary Ef, EY such that (W, EY, Ef) € KJout F 7*; o*]p*.
It suffices to show that (W, E{[F1], E5[F2]) € K[out F 7; a]p.

In order to do that, consider arbitrary W', vi,vo where W/ o W, (W, vi,v2) € V[7]p and
current MR(W' (istx)) €wr S[o]p. We need to show that (W', Ef[Eq[v1]], E5[E2[v2]]) € O.

From the hypothesis, we know that (W', Eq[v1], Ea[v2]) € EJout - 7*;0*]. We can then instantiate
that with (W', E{, EY), which, appealing to Lemma 3.10, we know are in KJout - 7*; o*]p*, which
yields the result that we need.
O
Lemma 3.27 (Monadic Bind T to F)
If (W,eq,ez) € E[end{77;0} + 77;0]p, (W, Ey1,FEs) € ContAtom[end{r7;0}  77;0]p ~ [out F
T;01),
and
YW’ qub erl, I‘2.(>W’, W’.Rl (I‘l), W’.R2(r2)) S W[[TT]]p A currentMR(W’(iStk)) CEw S[[U']]p
= (W', Ei[retend{p:(77);0}{r1}], Ez[retend{p=(77); 0} {r2}]) € EJout  7;01]p, then
(W, Eile1], Exlez]) € EJout b 1;01]p

Proof
Consider arbitrary F7, Ef such that (W, 1, E}) € KJout F 7;01]p.
It suffices to show that (W, E}[E1], B4[Es)) € K[end{77;0} F 77 ;c]p.
In order to do that, consider arbitrary W', ¢/, r1,r5 such that the following hold, noting that based on
the form of the return marker, ¢’ =, end{77; o'}, rather than possibly being a register.
o W Jdpu, W
(W', E}[E1], ES[Es]) € ContAtom|g’ - 775 0]p ~ [q* - 7%;0%]p*
¢ =, end{r7;0}
(>W! W' Ry (r1), W .Ra(ra)) e W[r T ]p
currentMR(W (isek)) €Ew- S[o]p

8iven the above, we must show that (W', (E{[E1i[ret p1(d") {r1}]],-), (B5[Ez[ret pa(d”) {r2}]],-)) €

From the hypothesis, we know that

(W, Bufret py (end{r T3 o}) {r1}], Balret pa(end{rT; o}) {r2}])
= (W', Erlret p1(q’) {r1}], Ez[ret p2(d’) {r2}])
€ Elout - ;0]
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We can then instantiate that with (W', Eq, Ef), which, appealing to Lemma 3.10, we know are in
K[out F 7;01]p, which yields the result that we need.

O

Lemma 3.28 (Bridge Lemma)
Let p € D[A] and A+ 7.

1. (a) If (W,e1,e3) € E[end{77;0} 77 ;0]p then (W, (DFT e1,2(NFT es) € Eout - ;04 p.
(b) If the following hold

e VSR € TStackRel.(W,e1,ez) € Efout = 7377« -+ 22 1) 2 (Jp[¢ — SR]
e Ao

eo' =T1)u T iog

e g=i>jorqg=end{7;5}

o W e H[¥]

o current MR(W (ist)) €Ew S[o’]p

o U:A;T;x[rq:77];0';inc(q, k —j) F I, ~p Iy

e ret-type(q, x,0) = 7;6

then (W, import rq, P17 T Fr1(7) eg; pi (1;), import rq, P2(TO) T Fr2(7) ey: py(Is)) € E[q - 7 6]p.

2. (a) If the following hold
o (W,wi,ws) e W[r7T]p
(Mq, My) : W
POFT((wy, My)) = (v, My & M)
o P2(TFT((wa2, Mz)) = (vo, Mo & Mj})
then (W B (M, M}),v1,v2) € V[7]p
(b) If the following hold

o (W,vi,v2) € V[7]p

o (My,My): W

e TF”(T)((v,My)) = (w1, My & M])
o TF2(T)((vy, My)) = (wa, My & M})

then (W B (M, M5), w1, w2) € W[T7]p
Proof

1. (a) Appeal to Lemma 3.27, letting E; = #«(TFT[].
From 3.27 we are given registers rq,rs, and world W’ J,,, W such that

o (W W Ry(r1), W.Ra(rs)) € WrT]p
o currentMR(W'(isx)) Ew- S[o]p

and need to show that

(W', FT ret end{p1 (7 ); 0} {r1},”?DFT ret end{p2(77); 0} {r2}) € E[out - T;01]p

In order to do that, consider arbitrary Fj, Es such that (W, Ey, Es) € KJout F 7;01]. We
need to show that

(W, E1[P*FT ret end{p1 (77 ); 0} {r1}], Eo[P*DFT ret end{p2(v7); 0} {r2}]) € O

Consider arbitrary (My, M5) : W. We take one step
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(M; | 4 [pl(T)]:'Tret end{p1(77);0} {r1}]) — (M; & M{ | E;[vi])
where TFT(Mi-R(I'i), Ml) = (Vi7Mi ] M{)
From part 2(a) we have that (>W'B(M/, M), v1,v2) € V[7]p, noting from Lemmas 3.4,3.5,3.6,
that
(My, My) : W’ and >W' 8 (MY, M%) Jpur W’

This means we can instantiate F1, Fs to get that

(W' B (M), M}), Ei[v1], B2[v2]) € O

which is sufficient to prove that

(W', By [pl(T)fTret end{p1(77);0} {r1}], E> [p2(T)fTret end{p2(77);0} {r2}])) €O

since each took exactly one reduction step.
We must show that

(W, import rq, P* (@) TFr1(T) e1: p) (11), import rq, P2(TO) T Fr2(T) ey po(15)) € E[q F 7;6]p

In order to do that, consider arbitrary E;, Es, such that (W, Ey, Es) € K[q F 7;0]p.
We are required to show that

(W, Eq[import ra, P (@) TFr(7) eq; py(11)], Baimport rq, #2(70) TF2(7) ey; py(I2)]) € O

Consider arbitrary (M7, M3) : W. From the premise, we know that there exist S; and So
such that (W, S1[,S2[) € S[o’]p
Since o/ = T :: -+« i1 Ty it 00, there exist S19 and Sz such that (W, S10, S20 € S[oo].

We can instantiate the first premise with SR = (p1(00), p2(00), ps) where pg = {(W, S10,S20)| W I
Let p* = p[¢ — SR]. Hence, (W, e1,e;) € Eout F ;0] p*.
We can instantiate this with evaluation contexts

o E| = E[import ra, P1(O0)TFT [];14]
e Ll = Fs[import rq, pg(UO)T}"T []; I2]
It now suffices to show that

(W, E1, E}) €) € K[out - 7;0']p*
Consider arbitrary W’ vi,vp such that (W' vi,va) € V[7]p*, curretMR(W'(isx)) Ewr
Slo']p*.
We need to show that
(W', B} [vi], Eylva]) = (W', Ex[import rq, P1(70) TF™ vy; 1], Bylimport rq, P2(70) TF™ vy 1)) € O
Consider arbitrary (IMy, Ms) : W’. We first take one step
(M; | E;[import rd,pf(UO)T]:" vi; Ii]) — (M W M | E;[mv ra, wi; Li])

where TF7 (v, M;) = (w;, M; W M!) Noting from part 2(b), we have that (W/B(M/, M), w1, w2) €
W[r7]p*, and from Lemma 3.5, W' 8 (M, M%) Jpu, W'
Then we take another step

<Mi &7 M{ | E,-[mv I‘d,Wi;Ii]> — <Mi (& M;[I‘d — (Wl,Wg)] | EZ[LD
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We now apply our hypothesis about I;, noting that the results above and choice of p* fulfill
the requirements for the stack and heap.
We can now instantiate the resulting £[-] with Ej, E2, which gives us that

(W/ HM; w M;[I‘d — (Wl,Wz)], Fy [Il},EQ[I2]) e

from which the result follows, since in

(W', Ey[import rq, pi(oo)TFr vi; I4], Es[import rq, p3(o0) T FT vo;I2]) € O
each took exactly two steps to reach the above.
Proceed by induction first on the step index W.k and then on the structure of 7.
Case unit Follows trivially from the value translation and W[unit]p and V]unit]p.

Case int Follows trivially from the value translation and W([int]p and V[int]p.
Case pa.T We're given that

(W, fold o 77 W1, fold ;o 77 w2) € Wlpa.mTp

which is translated to (fold .~ vi, M; & M!).
From this, we know that

(W, w1, ws) € W[t [pa.r” /a]]p

Since we are inducting on the step index W.k, we can use this, along with the value
translations that we have from the hypothesis to get that

(W B (M, M), v1,v2) € V[T [pa.” /a]]p

which, when combined with the typing rules, yields the required result.
Case (7i,...,T) From the definition of W[box (71, ..., )]p we know that

(W, My (w1), My(w2)) € HV[(T T, ..., 7 )]p

where M;(w;) = (Wi1,..., Win).
From the definition of HV[-] we know that

(W, w1j, wa;) € WIriT p
By the value translation, #«("FT((wi;, Mj;)) = (vij, Mj; & M;), where
[ ] MiO = M
° Mij = Mi(j—l) ] M;(j—l)
° M: = UjM;j
We know that (My,, May,) @ W since (My9,Mao) : W and the only changes to the

memory are additions.
We can use the inductive hypothesis to conclude that

(W 8 (M, M}), vij,va;) € V[7i” [p

which combined with the typing rules, yields what we need.
Case (T)— 7' Given some W’ J W H (l1cnd — hend, £2end — hend), where
heng = code[¢]{r1:7'7; C}end{"JT; C}ret end{7'7; ¢} {r1}
SR € T'StackRel
p' = pl¢ — SR
current MR(W” (is)) €wr S[C]p’
(W', v15,v95) € V[r]p for j € {1..n}
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we need to show that

(I/V/7 ViViQ...Vip,V2V20 ... Vzn) S 5[[0ut ~ T,; C]]p

where

vi = A(Xn: Tn).T’J:T (protect -, ¢;import r1, T F™ x1;salloc1;sst0,r1;5...;
import r1, ST F™ xp; salloc 1;sst 0, r1;
mv 13, Lena[¢]; jup w[¢][end{'7; ¢}, ")

We proceed by appealing to Lemma 3.4.3.
Consider arbitrary (M7, Ms) : W’. We first take one step

(M; | vivig - . - Vin) — (M | TI}'T(protect -, 3 import r1, ST F™ vip; )
salloc1;sst0,rl;...;
import rl, ST F™ vi,; salloc 1;sst 0, rl;
mv 8, fonalC]; Jmp w(C][end {75 C}), )

To show that this is in E[out F 77; (], it suffices to show that what is within the boundary
is in E[end {7’75} F 7/7;(], as part 1(a) will then yield the result.

We now appeal to Lemma 3.4.3 again, noting we can take 3n + 1 steps:

(M; | (protect -, ; import r1, STF™ vi; ) — 3"(M;" | (mvra, Lend[C]; )
salloc1;sst0,rl;...; jmp wi[¢][end{7'T;¢}],")
import r1, ST F™ vi,; salloc 15 sst 0, ri;

mv ra, Lena[¢]; jup wi¢][end{7'7; C}], )

Where

o Mipa = Mj

o TF7(vij, Mjja) = (Wij, Mip)
° Mijc = Mijb[rl —> Wij]

* Mjja = Mije[() =]

[ ] Mije = Mijc[wij ::]

* Mig+1)a = Mije

o M; = M,
We take one more step, resulting in:

(M [ra - £enalC]] | (Gup wilCllend{r'T; ¢}, ))
We know
(W, w1, ws) € W[box V[(, €].{ra: V[].{rl: T, Y032 p

where o/ =0/ =7,7 i im T 2 (L
This means that

(W, w1[¢][end{7'7; ¢}], w1[¢][end{T'T; }])
€ W[box V[].{ra: V[].{r1: T, C}end{T,T; C}’ o' }p
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And thus wy; is a location that points to code[(, e]{ra:V[|.{r1:7'7;}¢; 0’ V2015
This means that the next reduction step results in:

(M [ra — £ena[C]] | (Ii, -))
From W[box V[|.{ra:V[].{r1:7'7; C}end{T,T3 ¢t o’ }*2]p we know that

T.
(W, code[]{ra: V[].{r1: 7'7; C}end{T’ ’ C}, o'}y,
T.
code[|{ra:V[].{r1:7'7; C}end{r’ iCh o’'}.1,)
T.
€ HV[V[{ra:V[.{r1:7'7T; C}end{‘r' ’ C}, o’ }2]p
This means that for any W’ 3 W, fulfilling the stack and register requirements, in
particular, W* = W’ B (M;\Mi, M3\M,), we have that (W*, (I1,-), (I2,)) € E[ra -
7_/’7'; O',H,D.
Recall that what we need is that the reduced expression is in E[end{7'7; ¢} - 7/7; (]p.
In order to show that, consider arbitrary E;, Es such that (W', Ey, Fy) € K[end{7'7;¢} F
7'T:¢]p. We need to show that (W', Ei[e;], Ex[es]) € O where e; are the reduced ex-
pressions. Note that this is equivalent to showing that (W*, E4[eq], Exlez2]) € O, since
w* 3w’
Since we know that (W*, e, es) € E[rat 77 ;'] p, we know that for any continuations
E} and Ey in K[ra - 7'7;0']p, (W*, E[e1], Ebles]) € O.
We argue that E; and Es are suitable choices for F{ and Ej. By the definition of
the K[-] relation, we need that (W*, Ey[(retra{ri},-)], Ezx[(retra{ri},-)]) € O.
T.
Since current MR(W* (ireg)) Ew- {ra:V[].{rl:T’T;C}end{T, ,C}}, this reduces, by
the operational semantics, to (W*, E1[(I7, )], E2[(I5, -)]), where (W*, (I7,-),(I3,-)) €
Elend{r'T;¢}H7'T:¢p
But this exactly means that (W*, E1[(I7, -)], E2[(I5, -)]) € O, as (W*, Ey, E») € K[end{7'7;(} +
7'T¢]p, so we are done.
Case (7T) Pido s
Given some W’ JWH (elend = hend; Loena hend)y where
T.

hena = code[¢]{r1:7'7; C}end{T’ iCYret end{7'7;¢} {r1}

SR € T'StackRel

p' = pl¢ — SR

currentMR(W” (igtk)) €wr S 2 C]p’

(W', v15,v95) € V[m]lp’ for j € {1..n}
we need to show that

(W' vivig ... Vin, VaVag ... V2,) € Efout b 775 o 22 (]p
where

Vi = Ag; (Xn: Tn).T/]:T (protect ¢, ¢; import r1, ST F™ x1;salloc 1585t 0,r1;.. .3
import ri, CT F™ xn3 salloc 1;sst 0, ri;
mv ra, Lend[Po :: €5 jmp w[¢][end {77 ; po :: C}],+)

We proceed by appealing to Lemma 3.4.3.
Consider arbitrary (M, M) : W'. We first take one step

(M; | vivig - . - Vin) —> (M | “FT (protect ¢, ¢; import r1, ST F™ viy;salloc1;sst0,r15...3)
import r1, ST F™ viy; salloc 15sst 0, ri;
mv 13, £end[Po :: €5 jmp W[(] [end{T'T; $o :: C}Hs0)

115



To show that this is in EJout F 775 ¢, :: (], it suffices to show that what is within the
boundary is in

Elend{T'T;¢o :: ¢} F T o i q|

as part 1(a) will then yield the result.
We now appeal to Lemma 3.4.3 again, noting we can take 3n + 1 steps:

(M; | (protect ¢, ;import rl, T F™ viy;salloc 1585t 0,r1;...3)
import r1, ST F™ vi,; salloc 1;sst 0, rl;
mv ra, Lend[Po 2 (]; mp wi[(] [end{TlT§ ®o 2 C}y)
L 3n<M;k | (mv ra, Eend[¢o o C]a >
jup wi[¢][end {77 ¢ :: C}], )
Where M. = M;
TF7 (vij, Mija) = (Wij , Mijb)
Mijc = Mijb[rl —> Wij]
Mija = Mije[() 3]
Mije = Mijc[wij ::]
Mj+1)a = Mije
M = M,
We take one more step, resulting in:
(Mf[ra — £onalo :: C]] | (jup wi[¢][end {7’75 ¢ :: C}],-))
We know

(W, w1, wz) € W[box V[(, €].{ra:V[].{r1: 7'7; ¢o :: C}¢;0'}*]p

where o/ =o' =71,7 i uim 7 i gy i (L
This means that

(W, wi[¢][end {775 ¢ :: C}],
wi[C]lend{7'7; ¢o :: C}])
€ Wlbox V|[|.{ra: V[.{r1:7'T; ¢, :: C}end{T,T; bo :: C}, o’} ]p

And thus w; is a location that points to code[(, €]{ra: V[].{r1: 77 ; ¢, :: (}¢; 0’} 215
This means that the next reduction step results in:

<MT [ra — Lenaldo = C]] | (Tis-))
From W[box V[|.{ra:V[].{r1:7'7; ¢, :: C}end{TlT; bo :: C}, o’}72]p we know that
(W, code[|[{ra: V[].{r1: 7'7; ¢o :: C}end{"'lT; bo 1t C}, o’'}r1y,
code[|{ra:V[].{r1: 7'7; ¢o :: C}end{T,T; bo C}, o’}r21,)
e HVV[|{ra:V[]{r1: 77T ; ¢, :: C}end{T,T; bo 1 C}, o’ }?)p

This means that for any W’ I W, fulfilling the stack and register requirements, in
particular, W* = W' B (Mj]\My, M5\Ms), we have that

(W™, (11,-), (I2,) € E[ra - 7'7507]p

Recall that what we need is that the reduced expression is in
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Sﬂend{T’T; ¢o :: C}E T’T; bo :: C]p

In order to show that, consider arbitrary Ei, F5 such that

(W', Ey, Ey) € Klend{7'7; ¢y :: C} T b i Clp

We need to show that (W', Ey[e1], Ez[ez]) € O where e; are the reduced expressions.
Note that this is equivalent to showing that (W*, E1[eq], Exlez]) € O, since W* J W’
Since we know that (W*, ey, es) € E[rat 77 0']p, we know that for any continuations
E} and EY} in K[rat 7'7;0']p, (W*, E}[e1], Ey[e2]) € O.

We argue that E; and Es are suitable choices for Ef and Ej. By the definition of the
K[] relation, we need that

(W*, Ey[(retra{ri}, )], Ba[(retra{ri},-)]) € O

Since

current MR(W* (ireg)) Ew= {ra:V[.{r1:7'7; ¢, :: C}end{T, j o i C}}
this reduces, by the operational semantics, to (W*, E1[(I7, -)], E2[(I3, -)]), where

(W*, (15, ), (I3, ) € Elend{r'T5 6o 12 C}F /T3 b0 12 Clo

But this exactly means that

(W=, Ea[(T7, )], E2[(13,)]) € O

as

(W*, Eq, Bs) € Klend{7'7 ;o :: (Y 77 5p6 :: C]p
so we are done.
(b) Proceed by induction first on the step index W.k and then on the structure of 7.

Case unit Follows trivially from the value translation and the definitions of W[unit]p and
V[unit]p.

Case int Follows trivially from the value translation and the definitions of W(int]p and
V[int] p.

Case pa.t
This case proceeds analogously to the pa.7 case in the other direction.

Case (Ti,...,T) To show that that (W, £, £3) is in

WI{(T1s.- -, Tn>T]]p =W[box (17 ,...,m)]p

we need to show that

(VVv M; (61)7 M, (£2)) € HV[KTIT? ERE) TnT>]]p

for any M; satisfying the box memory relation.
This, in turn, requires that for each j, (W, w1j, wa;) € W[ 7 ]p.
We’re given that

(W, (v10;5 + - -5 Vin), (V105 - -+ s V1n)) € V{71, ..., Ta)]p

which means that (W, vy, vo;) € V[7i]p.
From the value translation, we know that
o TF7 () ((vyj, Myj)) = (wy

e Mj; W MI_])
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where

e Mo = M;

o My = Mg-1) ¥ Mi; )
° M: = UjM;j

This follows from the fact that

TP (70 7)) (v, M) = (wi, M & M)

Since (My;, Mp;) : W, as they are extensions of M; and M, we can use the induction
hypotheses and conclude that (W B (M}, M)), wij, wa;) € W[r;7 Jp. This, combined
with the value translation placing these values in a tuple on the heap, yields the required
result.

Case (7)) — 7/
To show that that (W, £q,£5) is in

WI(F) — 77 ]p = Wlbox V[(, €].{ra: box V[|.{r1: 7’7 ; ¢} 0’ }2]p

where o/ = 7,7 - o- T i (L we need to show that for any future world W 3 W,
and any memories M;, My such that (W, My, M3) € current MR(W (ipox)), the following
conditions hold:

* M;(6) = code[(, e]{ra: V[].{r1: pi(T'T); ¢} pi(a”) YL
o (W,M(£1), My(£3)) € HV[V[C, €] {ra:box V[].{r1:7'T;(}¢5 0"} 2]p

The latter requires that, in a further future world W’ I /V[v/, with p* € D[, €], letting
o = pUp*, such that the world fulfills the following restrictions:

o current MR(W/ (ireq)) €wr R[ra : box V[|.{r1: pi (7'7); C}<]p’
o current MR(W'(is)) Ew- S[o’]p’
We must show that

(W', (i (10), ), (p3(12), ) € E[rat 775 (]’

Where I; and I, are defined by the value translation.
In order to do that, consider arbitrary F7, F5 such that

(W', E1, Eq) € K[rat 7'7;¢]p
The definition of &[] dictates we show that
(W', Ex[(p1(T1), )], Ba[(p5(T2),)]) € O

Expanding I;, we are considering;:

E;[(salloc1;sst 0, ra; import rq, Pi QT FPi(T) g5 s1d ra, 0; sfree nt+1; ret ra {r1},)]

where

ei = vi? (MFT ((sldrl,n—j;ret end{p}(r)";0} {r1}),-)

and o
o=pf(V[]{rt:7"T;¢}e 7T 2 ()

Consider arbitrary (Mj, Ms) : W’. From the definition of O, we need to show that either
both terms terminate or are both running after W.k steps. From Lemma 3.7, we can take
two steps and consider M which is like M; but has stack with type o instead of o/, and
W* which has a corresponding stack island, noting that the values in the register ra are
related from the condition on W', which means that currentMR(W*(igtx)) Ew« S[o]p’.
Summarizing, we must now show:
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(W*, E1[(import 11, Pi QT Fri(m) )5 s1d ra, 0; sfree n+1;ret ra {r1},")],
Es[(import rq, P2 (OTFri(m) ey; s1d ra, 0; sfreen+1;ret ra {ri},-)]) € O

Consider the sequence of evaluation contexts

Ei (import ry, pf(C)T]_‘p:(T/) Vi’LT,E
T]:T([']’ )

PEOFT ((s1drt, nj ret end i ()7 p}: (0) (13, )
sldra,0;sfreen+1;retra{ri},-)

and target of reduction
sldri,n—j;retend{p;(1)7; p}; (o) {r1}

where VTI starts empty and accumulates argument values in subsequent contexts. In order
to step the target, we note that after one step the M;s have, in register r1, related values
wj; which have type pf (‘rj)T. This means that

P DFT ((ret end{pf ()75 p}1 (o) {r1}), )

reduces in another step to a v/, defined and in V[[TjT]]p’ by appealing to 2a on the
structurally smaller type ;.

After 2n steps, we are in a world similar to W*, denote W** but with the register island
having type 7,17 for register r1. We now must show that:

(W**, E1[(import rq, P T Fr(T) vlﬂ; sldra, 0;sfreen+1;retra{ri},-)],
Es[(import rq, P2 (T Fr2(7) vyv); sldra, 0; sfreent1;ret ra{ri},-)]) € O

From v; in the V[] relation, we know that
viv{ € Efout k7' Jp[¢ = (0,0, S[[]o]p)]
This means that for any chosen continuations E] and E} drawn from

Klout = 7/;(]p[¢ — (o,0,8[[]e]p)] = K[out - 775 0]p

we will have that o o
(W™, By [vivi], Ea[vavs]) € O

In particular, we will argue that
E! = E;[(import 1, PO Fpr(r) [-]; sld ra, 0; sfreen+1;ret ra{ri},-)]

are such continuations, which will complete the proof.
To show this, for any future world W/ J W** such that

current MR(W/ (it ) €ws S[o]p’

and any values (W/, vy, vs) € V[7']p’, we must show that
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(W7, Ei[w1], B3[va]) € O

In order to do that, consider (My, Ms) : W, The first step results in related values wq
and ws being placed in register r1, appealing to the inductive case of 2b for structurally
smaller type 7’.

The next instruction results in register ra having, based on the stack island, related values
with type V[].{r1:7/7;(}e.

The next instruction results in the stack being composed of just ¢, which combined with
the register typing means that we can appeal to the definition of E; and get the desired
result.

Case (7) ¢ib>° T/
To show that that (W, £1,£02) is in

WI[(T) ¢i;—¢>o ' T]p = W[box V[¢, €].{ra: box V[|.{r1: 7' T; ¢o :: (}¢;0'}2]p

where 0/ = 7,7 i oo 7T gy i C .
we need to show that for any future world W 2 W, and any memories My, M3 such that
(W, My, M3) € currentMR(W (in0x)), the following conditions hold:

o M;(ts) = code[C, el{ra: V[|-{r1: pi(r'T )i b0 1 (Y pi(0”) 1y
o (W, Mi(£1), Ma(£5)) € HV[V[C, €] {ra:box V[|.{r1: 773 ¢, :: C}50'}2]p

The latter requires that, in a further future world W’ 3 W, with p* € D[, €], letting
o' = pUp*, such that the world fulfills the following restrictions:

o currentMR (W' (ireg)) € R[ra : box V[|.{r1: pi(7'7); po :: (}]p’
o currentMR (W' (istk)) €@wr S[o’]p’
We must show that

(W', (i (L0), ), (p3(12), ) € E[rat 775 o = (]!

Where 17 and I are defined by the value translation.
In order to do that, consider arbitrary F7, F5 such that

(W', E1,Es) € K[ratF 77 ¢o 22 C]p'
The definition of &[] dictates we show that

(W', Erl(pi(11), )], B2[(p3(12),-)]) € O

Expanding I;, we are considering;:

E;[salloc 1+4|¢;|; sst ||, ra;
sldri,|¢i| + nysst1,rl;...;sldrl, || + n + |¢i| — 1;sst ||, r1;
import r, STF™ e;
sldra, |¢ol;
s1ldr2, |¢po|—1; sst |po|+n+]|¢i| — 1,r2;...;51d 12, 0; sst |po|+n+|pi| —|pref,|, r2;
sfreen+|¢o|+1;ret ra {ri}]

where

e = vipi*(’"l)]:’T((sld rl, |¢i|+n—j; ret end{p’ (‘l’j)T; o} {ri}),-)

and -
o=pf (i = V[ {r1: 7' T5¢}e 0 7T 2 Q)

120



Consider arbitrary (Mp, M) : W’. From the definition of O, we need to show that
either both terms terminate or are both running after W.k steps. From Lemma 3.7, we
can take 2 + 2 x |¢;| steps and consider M! which is like M; but has stack with type o
instead of o/, and W* which has a corresponding stack island, noting that the values
in the register ra are related from the condition on W', and the rest of the instructions
are moving related values from one point of the stack to another. This means that
currentMR(W* (isix)) €Ew~ S[o]p’. Summarizing, we must now show:

(W*, By[(import r1, PAOTFAI(™) e ...sret ra{ri}, )],
Es[(import rq, P2 (OTFri(m) ep; .sretra {ri}, )]) € O

Consider the sequence of evaluation contexts

Eif(import r1, AT OTFPC) wyTFT ([-], ) (OFT ((sld.,..;ret end{p} () 7; p} (o)} {r1}),);

..sretra{ri},-)]

and target of reduction

sldrl, |¢;|+n—j;retend{p’ ()7 ; p}; (o) {r1}

where VT/ starts empty and accumulates argument values in subsequent contexts. In order
to step the target, we note that after one step the M;s have, in register r1, related values
wij; which have type pi*(7;)7. This means that

PEMFET ((ret end{p} (1) 7; p}; (o) {r1}),")

reduces in another step to a v/, defined and in V[r;” ]y’ by appealing to 2a on the
structurally smaller type 7.

After 2n steps, we are in a world similar to W*, denote W** but with the register island
having type 7,7 for register ri. We now must show that:

(W**7 El[(import ri, Pl(C)TfPl(T/) qu; ...;jretra {rl}, .)]7
Es[(import rq, p2(O) T Fra(7) Vzg; .;retra{ri},-)]) €O
From v; in the V[-] relation, we know that
wivl € Efout F /5 o = ClplC - SR)

for any SR, and in particular, for SR = (¢, 0", S[o"']p) where 0" = V[|.{r1: 7'7;(}c 2 77 2 C.
This means that for any chosen continuations Ej and E} drawn from

Klout - 775 ¢o :: (]p[¢ — (6", 0", S[o"]p)] = K[out b 775 ¢ :: o ]p
we will have that
(W**, Bj[v1vy], E3[vavj]) € O

In particular, we will argue that

E} = Ey[(import rq, PO T Fr (™) [.];
sldra, |¢ol;
s1dr2, |po|—1;sst |po|+n+|di| — 1,12;...; 81d r2, 05 sst |@o|+n+|¢i|—|pref,|, r2;
sfree n+|¢o|+1;ret ra{ri}, )]
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are such continuations, which will complete the proof.
To show this, for any future world W/ J W** such that currentMR(W 7 (ig)) €pys
Sl¢o = ”]p’, and any values (W, vy, vz) € V[7']p’, we must show that

(Wfa Ei[Vl], Eé[VZ]) €0

In order to do that, consider (M;, M) : W7. The first step results in related values w
and ws being placed in register r1, appealing to the inductive case of 2b for structurally
smaller type 7.

The next instruction results in register ra having, based on the stack island, related values
with type V[].{r1:7'7;(}e.

The next 2 * |¢,| + 1 instructions result in the stack being composed of ¢, :: ¢, based on
the related values on the stack specified by the constraint on the world, and the freeing
of part of the stack.

Combined with the register typing, this means that we can appeal to the definition of F;
and get the desired result.

O
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3.6 Compatibility Lemmas

NOTE: The proofs for TAL terms in the multi-language F+T are elided below since they are essentially the
same as the proofs for the corresponding compatibility lemmas for T.

Lemma 3.29 (Component)
If O+ Hy ~g Hy: W’ boxheap(¥’), ret-type(q, x,0) = 7;0’, and (¥, ¥'); A;T;x;0;q9F I &~ I, then
;AT x;05q - (In, He) = (I, He) : 7507

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.30 (Heap Fragment)
Let - F b1, ..., --- b ap, and O/ = £y :71)q, ..., L, Y1), such that dom(P) N dom(P’) = . If for each
i7 we have ‘I’, U/ - hli Ry hzilyi’(/)i, then W I Kl —> hll, . .En —> hln ~H El —> h21, . .En —> hgnZ\I’/.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.31 (Code Block)
If - - V[A]l.{x;0}% and ¥; A;-;x;0;qF I; &1 Iy, then
W F code[A]{x; 0}9.I; ~p, code[A]{x; o }9.I5: POXV[A].{x; o }4.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.32 (Tuple)

If for each i, we have W; - = wy; &2y Wo;:7i, then W F (Wig, ...y Win) Ry (W20, oy Wan )t (Tos e ooy Tn).
Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.33 (Unit)
U: A+ () =y (): unit.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.34 (Integer)
¥: A+ n = n:int.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.35 (Mutable Location)
If £:7f4)p € W, then ¥; A F £ ~,, £:ref 1.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.36 (Immutable Location)
If £:P°%e)p € W, then ¥; A | £ ~,, £:box ).

Proof

Analogous to proof of corresponding compatibility lemma for T. O
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Lemma 3.37 (Pack)
If ;A Fwymy wa: T[T /], then ¥; A F pack(r’,w1) as Ja.T ~, pack(r’,w2) as Ja.7: . 7.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.38 (Fold)
If ;A F wy =y wo:T[pa.7/a], then ¥; A+ fold,q.r W1 =y folda.» Wa: po.T.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.39 (Word Type Application)
If U; AFwy ry wo:box Ve, A’l.{x;0}9 and A} 7, then

W5 A F wi[r] ~y walr]:box VIA']. {x[r /s o7 /a] yal7/2],
Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.40 (Stack Type Application)
If U; A b wy rey wo:box V[, A'].{x;0}? and A F o/, then

U; A+ wy[o'] &y walo']:box V[A'].{x[o’/¢]; oo’ /] }alo /4,
Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.41 (Return Marker Type Application)
If U; A wy ~y wa:box Ve, A.{x;0}9, ftv(q’) € A, and A F V[A’].{x[d/€]; o[a’/€]}39 /€], then

U5 A Fwiq'] & wald]:box V[A'].{x[d'/e€]; o[d’ /e] yala /<],
Proof

Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.42 (Word Value)
W, AFwy) &y wo:T, then U; A x Fwy &=y wo:T.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.43 (Register)
Ifr:7 € x, then ¥; A; x Fra,r:7.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.44 (Pack)
If O; A;x b ug &=y ug: 7[7"/a], then ¥; A; x b pack(r’,u;) as Ja.7 =, pack({r’,uz) as Ja.7: Ja. 7.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.45 (Fold)
If O; A;x Fuy =y ug:T[pa.T/a], then ¥; A; x F fold,q.r w1 =y fold,q.r uz: po.r.
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Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.46 (Word Type Application)
If U5 Ay x Fug =y uz:box Ve, Al {x;0}% and A F 7, then

W A;x Fug[1] =y uz[7]:box V[A'].{x[T/a]; o[T/a]}al7/,
Proof

Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.47 (Stack Type Application)
If O Ay x Fug =y uz:box V[, A’ {x; 0} and A+ o/, then

U; A; x b ug[o’] = uz[o’]:box V[A'].{x[o’ /¢]; oo’ /¢] yalo’ /4l
Proof

Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.48 (Return Marker Type Application)
If O Ay x Fug &y uz:box Ve, A’l.{x; 0} ftv(q’) C A, and A F V[A'].{x[d /¢€]; a[q'/e]}q[q’/e], then

;5 As x Fui[q] &, uz[d]:box V[A'].{x[d'/€]; o[q’ /e] yala /<],
Proof

Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.49 (Arithmetic Operation)
If O;A;x F rsp &y rea:int, U;A;x F ug &, uz:int, q # rq, and ¥; A x[rq:int];o;q F Iy =g 1o,
then ¥; A;T;x; 059 F aop ra, rs1, ui; Iy =y aop rq, rsz, uz; In.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.50 (Branch)
If ;A x Fry &y ratint, U;A;x F ug &y uz:box V[.{x’;50}9, A F x < x/, and ¥;A;T;x;0;q9 F
I; =1 I3, then W; A;T; x;0;qF bnzry,u;;I; =1 bnzrg, us;Is.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.51 (Load from Mutable Tuple)
If W Asx Frsg my repiref (1o,..., ), 0 <i<mn,q#rg, and U;A;T; x[ra: 7], 059 F Iy =1 I, then
W; A;T;x;05q - 1dra, rai[if; I =1 1d ra, rez[i]; T2

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.52 (Load from Immutable Tuple)
If W; A;x b reg =y rea:box (1o,..., ™), 0<i<mn, q#rg, and ;A;T; x[ra:711];0;9F Iy =1 I, then
W; A;T;x;05q - 1dra, rai[i]; I &1 1d ra, rez[i]; T2

Proof

Analogous to proof of corresponding compatibility lemma for T. O

125



Lemma 3.53 (Store to Mutable Tuple)
If W:A;x Frg; &~y raz:ref (1o,...57n), 0 < i< mn, ¥;A;x F rgp &y re2: 75, and U;A; T x;0;q F
I; =1 I, then W; A;T;x;0;qF strai[i], re13 11 =1 st razli], rs2; Io.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.54 (Allocate Mutable Tuple)
If len(7) = n, q # rq, and ¥; A;T;x[rq:ref (7)]; o;dec(q,n) F Iy ~p I,
then W; A;T;x;7T :: 0;qF rallocryg, n;I; =1 rallocrg, n;Is.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.55 (Allocate Immutable Tuple)
If len(T7) = n, q # ra, and ¥; A;T; x[rq: box (7)]; o;dec(q,n) F Iy =g 1o,
then W; A;T;x;7T :: 0;qF ballocrg,n;I; =1 ballocrg, n;Is.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.56 (Move)
W A;xtFuy myue:7,q#rg, and U;A;T; x[ra: 7];0;q9 F I =1 1o,
then ¥; A;T;x;0;,qF mvrg, up;I; =ymvrg, us; Is.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.57 (Move Return Address)
If x(rs) =7 and O; A;T; x[ra: 7];0;rq b I1 =1 I, then ¥; A;T;x; 0515 Fmvrg, re; In &1 mvrg, rg; In.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.58 (Unpack)
If ;A x Fup =y uz:Ja.t, q #rg, and ;A o; T x[ra: 7];05q F I =5 1o,
then W; A;T;x;0;qt unpack (o, rq) ug;I; /1 unpack (a,rq) uz;Is.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.59 (Unfold)
IfW; A;x Fugp &y uz:pat, g #rg, and W; AT x[ra: T[pa.m/a]];0;q F Iy = 1o,
then ¥; A;T;x;0;qF unfoldrg,us; 1y =1 unfoldrg, us;Is.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.60 (Allocate Stack Space)
If O; A; T x; unit :: - - - i unit :: o;inc(q,n) F Iy =1 I, then ¥; A;T;x; 0;q F sallocn; I; =1 sallocn;Is.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.61 (Free Stack Space)
IfW; A;T;x;0;dec(q,n) FI; =y Iy, then ¥; A;T;x;70 it -+ 22 Th—q :: 0;q b sfreen; I; = sfreen;I,.
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Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.62 (Load from Stack)
Ifo(i) =7,q #rg,and O; A;T; x[ra: 7i];0;q F I =1 I, then W; A;T; x;0;q F sldrg, i5I; &1 sldrg,i; Io.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.63 (Load Return Address from Stack)
If o(i) = 7; and W; A; T x[ra: 7i];05ra F I =1 I, then W; AT x;0;i F sldrg,i; I =1 sldrq,i;Ia.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.64 (Store to Stack)
W, A;xbFrsy &greo:7, q#d and ;AT x;70 -+ - it iy 2 7t o;q b Iy =p 1o,
then W; AT x;70 22 -+ it Ty it o;q - ssti,rgr; I =1 ssti,rgo;Is.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.65 (Store Return Address to Stack)
If x(rs) =7"and W; A5 x;70 22 -+ - s 1img 1 77 i oik I = I,
then W; AT x;70 22 -+ it Ty it o v Fssti,rg; I =y ssti,rg; Lo,

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.66 (Return from Call)
If x(r) = box V[].{r’: 7;0}9 and x(r’) = 7, then ¥; A;T;x;0;r Fretr {r'} =~ retr {r'}.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.67 (Return at End)
If x(r) =7, then ¥; A;T;x;0;end{T;0} Fretend{r;0} {r} =1 retend{r;0} {r}.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.68 (Jump)
If W5 A;x - ug =y uz:box V[].{x';0}4, A+ x <X/, and -[A];x;0 I q,
then U; A; I x;0;qF jmpu; =y jmp us.

Proof
Analogous to proof of corresponding compatibility lemma for T. O

Lemma 3.69 (Call)
Given the following;:

o U A;x Fu; =y uz:box V[¢, €].{x; 5}9,
o ret-addr-type(q, x,6) = V[].{r: 7; 5"},
o AF 0o,
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A R V[ {x[oo/ClG +k — j)/els 5loo /NG + k — j) /€] }4,
Ak x < x[oo/Cll(i+k —j)/€l,

® O =Tg "+ 1TjiOp,

e G=Tgu-r Ty (,

o G =T1fur T,
we have that W; A; T x; 031k calluy {o9,i+ k — j} =1 calluz {o9,i+ k — j}.
Proof
Analogous to proof of corresponding compatibility lemma for T.

Lemma 3.70 (Call from Top Level)
Given the following;:

o U, A;x Fuy Ry uz:box V[¢, €].{x;5}9,

o ret-addr-type(d, ¥, &) = V[].{r: 73 6},

o At oy,

A FV[]{xloo/Cl[end{T*;0*}/€]; &[00/{][end{T*; 0"} /€] }9,
At x <x[oo/C]lend{7;0"}/¢],

T it 0p,

[ ] [ ) [ )
q
[

Q»
Il

. T ¢, and
=7,

we have that ¥; A;T; x;0;end{7*;0*} - call uy {0g,end{7*;0*}} =1 callus {og,end{7*;0*}}.

e &/

q

Proof
Analogous to proof of corresponding compatibility lemma for T.

Lemma 3.71 (Import)
Given the following;:

e AN ;70 -7y Coutbermex:Ty7g - Ty i G,

e o=10: Tj it 00,
o o' =71): T, it 00,

e q=1i>jor q=end{7;5},

e ¥ A;x[ra: 77]; 05 inc(q, k—j) F 11 =y I,
we have that ¥; A;T;x;0;qF import rq, 70T F7 eg; 1 ~p import rq, 70T F7 ey; L.
Proof
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Consider arbitrary W, p, and v such that W € H[¥], p € D[A], v € G[I], currentMR(W (ireg)) Ew
R[x]p, and currentMR(W (istx)) €Ew S[o]p.

‘We need to show

(W, pr(m1((import rq, 70T F7 e1;11,+))), p2(v2((import rq, 70T F7 ez; 12, +))))
= (W, (import rq, PO TFP () pi(yy(e1)); p1(11(11)), -), (import rg, P2(TO)TFP2(T) py(y5(e2)); p2(12(12)), +))
€ &[q - ret-type(q, x, o)]p-

The result follows from Lemma 3.28, 1(b), using what is given in the hypotheses.

Lemma 3.72 (Protect)
Given the following:

eoc=¢:0o

e WIAGx; ¢ Galb I =r I,
we have that W; A; I x;0;q - protect ¢, (; 11 =1 protect ¢, (;15.
Proof

Consider arbitrary W, p, and v such that W € H[¥], p € D[A], v € G[I'], currentMR(W (ireg)) Ew
Rlx]p, and currentt MR(W (is1x)) Ew S[o]p.

‘We need to show

(W, p1(mi((protect ¢, (314, 1)), p2(r2((protect ¢, (;12,+))))
= (W, (protect p1(9), p1(¢); p1(71(11)), ), (protect p2(d), p2(C); p2(72(12)), )
€ &[q - ret-type(q, x, o)]p-

Let p' = p[¢ — S[o’]], noting the latter exists due to last given. We can then instantiate the second
hypothesis, since p’ € D[A, (], and S[o]p = S[¢ :: o']p = S[¢ :: {]p’ due to substitution. This gives
us that:

(W pr(71((T15))), p1 (01 (11, )))) € E]g - ret-addr-type(q, x, ¢ == ¢)]p’

With which the result can follow from Lemma 3.4.3, since the protect ¢, ¢ instruction reduces without
any operational consequences.

O

Lemma 3.73 (F Variable)
If x: 7 €T, then ¥; A;T; x;0;0ut - x = x:7;0.

Proof

Consider arbitrary W, p, and «y such that W € H[¥], p € D[A], v € G[I, currentMR(W (iveg)) Ew
Rlx]p, and currentMR(W (istx)) €Ew S[o]p.

We must show that (W, p1(y1(x)), p2(72(x))) € EJout k- int; 03]

This follows immediately from the definition of G[I'] and Lemma 3.25.

O
Lemma 3.74 (F Unit)
W AT x;o;0ut - () = () :unit; o.
Proof
Immediate from Lemma 3.25. O
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Lemma 3.75 (F Integer)
U A;lx;0;0ut Fn=n:int;o.

Proof
Immediate from Lemma 3.25. O

Lemma 3.76 (F Arith Op)
If ; A;T;x;00;0ut -ty = ta:int;oq, and ¥; A;T; x; 015 0ut - t] = t):int; o2,
then W; A;T; x;00;0ut -ty p t] =tz p ty:int; o2.

Proof
Consider arbitrary W, p, and «y such that W € H[¥], p € D[A], v € G[I, currentMR (W (iveg)) Ew
Rlx]p, and currentMR(W (istk)) €Ew S[oo]p-
We must show that

W, pl%]%(tl pt))), p2(72(ta p t5))) = (W, p1(71(t1)) p p1(71(t])), p2(r2(t2)) P p2(72(ty))) € Efout F
int; oo

We proceed by applying Lemma 3.26 twice, first with evaluation contexts E; =[] p p;i(vi(t!))
and then with with E; = v; p [].
We then must show that (W, vy p vi,vz p vj) € E[out F int; o3].

The result then follows from Lemma 3.13 and Lemma 3.25.

Lemma 3.77 (F If0)
If ;A;T;x;00;0ut -ty = t]:int;oq, U;A;T; x;01;0ut -ty = t): 7502,
and W; A;T;x;01;50ut Ft3 = t:7; 02,
then W; A;T; x;00;0ut Hif0t; tp tz3 = if0t] t) t]:7;02.
Proof
Consider arbitrary W, p, and «y such that W € H[¥], p € D[A], v € G[I, currentMR(W (iveg)) Ew
Rlx]p, and currentMR(W (istk)) €Ew S[oo]p-
We must show that
(W, p1 (71 (if0 t1 t2 3)), p2(72(if0 t] t) t3))) € E[out - 75 05].

After pushing in the substitutions, we apply Lemma 3.26 three times, which requires us to then show
that:

(W,if0 vy vz v3,if0v] vj v}) € E[out - 7;02]

Where (W, vy, v]) € V[int]p,(W,v2,v5) € V[7]p, and (W, v3,v]) € V[7]p.

Inspecting the V[int]p, we can see that vi and v{ are integer values which are either 0 or not.

In either case, we proceed by combination of Lemma 3.13 and Lemma 3.25. O
Lemma 3.78 (F Pure Function)

If ;AT X7 x; Cout F g ~ to: 775 ¢,
then ; A;T; x;0;0ut F A7)t = A(Xi7).t1: (F) > 750

Proof

Consider arbitrary W, p, and v such that W € H[¥], p € D[A], v € G[I], currentMR(W (ireg)) Ew
Rlx]p, and current MR(W (is1x)) €w S[o]p.

We need to show that

130



(W, p1 (1 (A (RTF).11)), p2((12(A (XT7)..12))
= (W, A Gz p1 (9 (7))-p1(1 (t1)), A (%2 p2(72(7)))-p2(72(2))) € E]out F (7) = Tolo

Using Lemma 3.25, it suffices to show that (W, A(x: p1(7y1(7))).p1(71(t1)), A(x: p1(71(7))).p2(12(t2))) €
VI(T)— 7']p.

This means we must consider arbitrary W’ J,,, W, SR € TStackRel, Ti, Té such that current MR(W” (isx)) Ew
S[¢]p" where p’ = p[¢ — SR] and (W', vi,v)) € V[7]p'.

Our obligation is to show that (W', A(x: p1(71(7))).p1(y1(t1))V], A(x: pa(72(T)))-p2(y2(t2))V)) €
EJout 75 C]p .

We appeal to Lemma 3.13, which means we must show that

(W', pr(mi(ta))[vi/x], p2(72(t2)) vz /x]) € Eout =775 C]p".

Let o' = v[x — (v, v})]. Note that 7 € G[I',Xx:7]p, and that, appealing to substitution, the above is
equivalent to (W’, p} (v1(t1)), pa(73(t2))) € Efout =73 CJp"

Which follows from our first hypothesis.

Lemma 3.79 (F Stack Modifying Function)
IfU; A G, X7 x; ¢ i Gout Ety = ta: 77506 22 €,
i?d)o

then W; A;T;x;0;0ut - )\ii (xz7).t1 =~ )\gi (xz7).t1: (7) ¢—> o
Proof

Consider arbitrary W, p, and « such that W € H[¥], p € D[A], v € G[I'], currentMR(W (iveg)) Ew
Rlx]p, and currentt MR(W (i) €w S[o]p.

We need to show that

(Wepr(n (NG (577).40)), p2(12(A]) (x77).12)))

= AP (i) o1 (1)), A2 (5 222 (7)) - 12)) € Ellout - (7) = 7ol

Using Lemma 3.25, it suffices to show that (W, )\Zigil)) (x:p1(71(7)))-p1(m(t1)), Azzgg‘)) (x: p2(72(7)))-p2(72(t2))) €
VI(m) % .

This means we must consider arbitrary W’ Jp,u, W, SR € TStackRel, v}, v} such that current MR(W' (isi)) €wr

S[ps == CJp" where p’ = p[¢ — SR] and (W', v],v5) € V[7]p'.

Our obligation istoshow that (W, A7" (9 G pr G (7)) -1 (1 (6)VE, AZ2 (57 5 pn (a (7)) - a12))VE) €
Elout 775 ¢ 22 C]p'.

We appeal to Lemma 3.13, which means we must show that

(W, pr(ya(t)[vi /%], p2(r2(t2))[va/x]) € E[out = 775 o 2= (] p".

Let 7/ = V[W] Note that 4" € G[I,x:7]p, and that, appealing to substitution, the above is
equivalent to (W’, p(71(t1)), pa(15(t2))) € EJout = 775 ¢o 2 (]’

Which follows from our first hypothesis.
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Lemma 3.80 (F Pure Application)

If O;A;T;x;00;0utFtt':(m--- 1) — 7500,

and W; A; T x;oi_q;out Fty = tl:mo; fori e {1,...,n},
then ;AT x;00;0ut Htty -ty =t/ t] -t : 75 0n.

Proof
Consider arbitrary W, p, and «y such that W € H[¥], p € D[A], v € G[I, currentMR(W (iveg)) Ew
Rlx]p, and currentMR(W (istk)) €Ew S[oo]p-
We need to show that

(W, pr(ya(tty -« ty)), pa(y2(t/ t] -« - t))))

= (W, p1(m (1)) pr(va(t1)) - - - pr(v1(tn)), p2(2(t)) p2(v2(t])) - - - p2(r2(t;)))
€ Elout - 7504]p

We proceed by applying Lemma 3.26 n + 1 times, with the first evaluation contexts being
Eo=[]p1(n(t1))- - pr(n(ta)) and

Ey =[] p2(r2(t])) - - - p2(r2(ty))

And the ith being

Ei=vovi---vi_1[]- - p1(71(ta)) and

Ef = vy pa(y2(vy)) - - Vi [ -+ p2(72(t]))

Where (W, vg,v() € V[(71 -+ 7) — 7']p and (W, v, v]) € V[7r]p.

Once we show that
(W, Enlva), E}[VL])) = (W,vgvy -+ - v, v vy - - -v)) € E[out - 77504]p

all prior applications of Lemma 3.26 follow.
We instantiate (W, vo,v)) € V[(71---7n) — 7']p with W', SR = (p1(ov), p2(on), S[onlp), Vv, v/ to
yield the desired result.

O

Lemma 3.81 (F Stack Modifying Application)

If ;AT x;00;0utFt=t/:(m---7) (bﬁf’ 7’500,

and W; A; T x;oi_q;out = tl:m;o; fori € {1,...,n},
where o, = ¢; :: 6 and o’ = ¢, :: G,
then ;AT x;00;0ut Ftty -ty =t/ t] - t): 750

Proof

Consider arbitrary W, p, and «y such that W € H[¥], p € D[A], v € G[I', currentMR(W (iveg)) Ew
Rlx]p, and currentMR(W (istk)) €Ew S[oo]p-

‘We need to show that

(W, pr(ya(tty -« ty)), pa(y2(t' t] -« - t))))
= (W, p1(n(t) pr(n (1)) - - - pr(01(ta)), p2(72(t)) p2(72(t1)) - - - p2(2(t})))
€ EJout - 71"50']p

We proceed by applying Lemma 3.26 n + 1 times, with the first evaluation contexts being
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Eo = []p(m(t1)) -+ pr(m(ta)) and

Ey =[] p2(r2(t])) - - - p2(r2(t}))

And the ith being

E;=vovi---vi_i[]---p1(71(ta)) and

Ei =vgpa(r2(vy)) -+ viiq [+ p2(72(t)))

Where (W, vo,v() € V[(71---7)— 7']p and (W,v;,v]) € V[7r]p.

Once we show that
(W, Enlva], B} VL)) = (W,vgvy -« - v, vy vy« - -v!) € E[out - 77507 ]p
all prior applications of Lemma 3.26 follow.
We instantiate (W, vo,vg) € V[(71---7n) qbi;—qzo 7'p with W', SR = (p1(on), p2(on),S[on]p) (noting

that o, = ¢; :: ¢), v, and v/ to yield the desired result.
O

Lemma 3.82 (F Fold)
If O;A;T;x;00;0ut Ft; = ty: T[pa.7/al; o1,
then W; A;T; x;00;0ut F fold o .~ t1 = fold,q.r t2: po.7;01

Proof
Consider arbitrary W, p, and v such that W € H[¥], p € D[A], v € G[I'], currentMR(W (ireg)) Ew
Rlx]p, and current MR(W (istx)) €Ew S[oo]p-
We proceed by applying Lemma 3.26, with evaluation contexts F; = fold,,q.~ [].
Given (W, v1,v2) € V[7[po.7/a]]p, we must show (W, fold,,q.+ vi,fold,q. - v2) € EJout - po.7;04].

From Lemma 3.8, noting that >W J W, we have that (W,v1,v2) € >V[7[pa.7/a]]p, which means
(W, fold .+ v1,fold,,o .+ v2) € V[poe.T]p and the result follows from Lemma 3.25.

O

Lemma 3.83 (F Unfold)
If U; A;T;x;00;0ut Ft; = ty: pa.7; 071,
then ¥; A;T; x; 00;0ut - unfold t; =~ unfold ty: T[pa.7/al; 01

Proof
Consider arbitrary W, p, and v such that W € H[¥], p € D[A], v € G[I'], currentMR(W (ireg)) Ew
Rlx]p, and current MR(W (istx)) Ew S[oo]p-
We proceed by applying Lemma 3.26, with evaluation contexts E; = unfold [].
Given (W,vy1,v2) € V[pa.7]p, we must show (W, unfold vq,unfold vy) € EJout F 7[pa.7/al;o1].

From the definition of V[pa.7] p, we know that the above is equivalent to (W, unfold fold .- v{, unfold fold . - v}) €
Elout - 7[pa.T/al; o1] where (W, vi,v5) € V[T [pa.7/a]]p.

And we can then appeal to Lemma 3.4.3, noting that Lemma 3.25 provides us with the needed condition
once we take one reduction step.

O
Lemma 3.84 (F Tuple)
If W; AT x;05-1;0ut -t =t/ 705 for i € {1,...,n},
then W; AT x;0n—1;0ut F (ty, ... th) = (t],...,t}): (T1,. .., Th);On.

Proof
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Consider arbitrary W, p, and v such that W € H[¥], p € D[A], v € G[I], currentMR(W (ireg)) Ew
R[x]p, and currentMR(W (istk)) Ew S[on—1]p-

We must show that

W, p1(r1((ta, - - -5 ta))), p2(2((t], - - -5 1)) € E[out Fint; o5]
We proceed by pushing the substitutions in and applying Lemma 3.26 n times, with ¢th evaluation

contexts Eli = (V], ceey [], .o ,pl(’}/l(tn)» and Egi = <Vi, ceey [], csey pg(’yg(t;)»
Where (W, v;,v!) € V[ri]p.
We then must show that (W, (vi,...,vn), (vi,...,v})) € E[out - (T1,...,7n);0.]p.

But this follows from Lemma 3.25.

Lemma 3.85 (F Projection)
If W; A;T;x;00;0ut Fty =t (T1y...5Tn); 01,
then W; A;T;x;00;0ut F mi(t1) = mi(t2) : 13501

Proof
Consider arbitrary W, p, and « such that W € H[¥], p € D[A], v € G[I], currentMR(W (ireg)) Ew
Rlx]p, and current MR(W (istk)) €Ew S[oo]p-
We must show that
(W, pr(m (mi(t1))), p2(2(mi(t2)))) = (W, mi(p1(11(t1))), mi(p2(12(t2)))) € E[out - 7i504]p
We appeal to Lemma 3.26, with E; = m;([-]). We must show that
(W, mi(v1), mi(v2)) € E[]p given that (W, vi,v2) € V[{T1,..., Ta)]p

We appeal to Lemma 3.13, noting that the definition of V[{(7, ..., )]p and Lemma 3.25 yields the
desired result.

O
Lemma 3.86 (FT Boundary)
If U;A;T;-00;end{77 501} el ~ex: 77504,
then U; A;T;x;00;0ut - "FT e~ "FT ex:T;07.
Proof

Consider arbitrary W, p, and v such that W € H[¥], p € D[A], v € G[I], currentMR(W (ireg)) Ew
R[x]p, and currentMR(W (istx)) €Ew S[o]p.

We need to show that

(W, p1(n("FT e1)), p2(72("FT e2))) = (W, OFT pr(7a(er)), > FT pa(r2(ez))) € E[out - 7504]

From the hypothesis, we know that (W, p1(v1(e1)), p2(12(e2))) € E[end{r” 0, } - 77 04].

The result is then immediate from Lemma 3.28, 1(a).
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3.7 Fundamental Property and Soundness
Lemma 3.87 (Fundamental Property) o If U:A;l;x;0;q9 F e:7;0" then W; Al x;0;9 F e =
e:T;0’

o f W H:W then V- H ~y H: &/

o If Uk h:Ys then ¥k h ~yy h:Vyp &

e W Abw:T U; AWy, WiT

o If U: A;xFu:7 then U; A;x Fus,u:r

o If U: A;lN;x;0;qF Ithen W AT x;o;qF T~ 1
Proof

We prove all the claims simultaneously, by induction on the typing derivations, using the compatibility
lemmas. O

Lemma 3.88 (Weakening)
If W, A;l;x;o;qkF e =exy:m;0/ and W C W' ACA  TCI, x Cx/, then ;A" T":x":0:;qF e1 =
ex:T;0.

Proof
Let W € H[P'], p' € D[A'], (W,7') € G[I"]p’ such that currentMR(W (ireg)) Ew R[x']p’ and
currentMR(W (i) €w S[o]p’.
Let p = p'| o and v = '|f. Note that W € H[¥] and p € D[A] immediately.

We must further show:

o currentMR(W (ireg)) €w RX]p
o current MR(W (isik)) €w Slolp
o (Wy) eglrlp
Since the free type variables in x are in A, R[x]p’ = R[x]p, after which the first follows from the
definition.
Similarly, the free type variables in o are in A, after which the second follows.
Finally, we must show that (W,v) € G[[]p. But clearly (W,~) € G[[p’ and since the free type
variables in I are in A, G[[]p’ = G[[]p, so we are done. O
Lemma 3.89 (Congruence)
If U AT x;05qkep mex:m0’ and - C: (W AT xs o5 F 1507) ~ (B AT x5 009" B 75 01), then
WAL x 0059 F Clea] = Cleg]: 7501

Proof

This follows by induction on the type derivation for C, using Lemma 3.88 for the cases when C is
empty, and the compatibility lemmas in the rest of the cases. O

Lemma 3.90 (Canonical World)
IfFM= (H,R,S) : (¥,x,0), then for any k,3W. Wk = kAW € H[Y] A currentt MR(W (i1eg)) Ew
Rx] A carret MR(W (isx)) €w S[o] A (M, M) : W.

Proof
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Say that W = W’ ¢, ¥ by ... £, :*°f 4, where boxheap(¥’). Let

01‘ = (0, {0}, {}, {}, )\S{(W’, 1\/[17 Mz) S MemAtomk|(W’, Ml(ﬁi), Mz (ﬁl)) S HV[[’(/JI]]@, )\S.{(Ei, fl)})

for 1 < i < n. We construct

W = (k, ¥, W, (island,eq (R, x5 R, X), k), islandse ((S, 0, S, o), k), islandpox (H| g7, H| 7). k), 01, - - ., )

We need to show the following:

For each £ :P* o € W' (W, £,£) € W[box 9]0,
For each 4, (W, £4;,£4;) € W[ref )]0
currentt MR(W (ireg)) €Ew R[X]

currentMR(W (isek)) €w S[o]

o (M,M): W

All of these follow from the respective definitions and the Fundamental Property for word and heap
values.

O

Lemma 3.91 (Adequacy)
If O x;0qk e mex:m0’, M : (W, x,0), then (M | e1) | if and only if (M | es) |.

Proof

We show that (M | eq) | implies (M | e2) |, and the converse holds by an identical argument.

Suppose (M | e1) [F. By Lemma 3.90, there is some W € H[¢] with current MR(W (ireg)) Ew
R[x] A currentMR (W (istx)) €w S[o] such that (M, M) : W and W.k > k.

So by our assumption, (W, ey, ez) € E[q F 7;0']0. We claim that (W, E, E) € K[q F 7;0']0, where

E{[-] r=1
(L) 7=7

If the claim holds, then (W, E[e1], E[es]) = (W, e1,e2) € O. Since running(W.k, (M | e1)) contradicts
our assumption, we must have (M | e3) |, as desired.

To prove the claim, we must consider the two types of continuations, depending on whether 7 = 7 or
T=T.

In the first case, let W’ Jpup W and consider (W', vy, v2) € V[7]0, such that carrent MR(W' (istx)) €w
S[o]d. In that case

(I/V/7 E[Vl], E[Vz]) cO

trivially.
In the second case, the result is essentially as trivial, since while value forms are more complex in T,
they are similarly observationally equivalent.

O

Lemma 3.92 (Logical Equivalence Implies Contextual Equivalence)
If O; AsT;x;0;qF ep &~ ex: ;0 then
U AT x; 059k e &% eg: 7507
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Proof
Let H C: (T AT x; 059 b 736) ~ (U555 x50’ H7/567) and E M: (87, x/, o).
By congruence (Lemma 3.89), W’ -;-:x;0;qF Cler] = Cles]: 1507
By adequacy (Lemma 3.91), (M | Cle]) | if and only if (M | Cles]) |, as desired.

3.8 Completeness

Lemma 3.93 (Contextual Equivalence Implies CIU Equivalence)
If O;A;T;x;059F e; =% eg: 7507 then
W AT X 05 Fep =% e 07

Proof

We have that W; A;Tsx; 05 er:i0/, WA Tix; 059 b ep: 7307, and

VC,M, ¥, x', o', ¢, 7",6". FC:(¥;A;T;x;0,qF 7;6) ~ (¥'555x50';9' F736") A FM:(¥,x,07)
= (M| Cle1]) | <= (M | Cle2]) 1)

‘We need to show that

Vo, v, E,M, ¥y, d, T, 6. -F0:A A Wi eouthy:Me A
FE(Y;5 X509 b 736) ~ (U5 X050 B TR 65) A FM: (¥, X, 0)
= (M| E[6(v(e1))) = (M| E[6(v(e2))]) 1)

Assume all the premises in the implication. It suffices to find a C' such that co-termination of (M | Cle1])
and (M | Clez]) is equivalent to co-termination of (M | E[d(v(e1))]) and (M | E[d(v(e2))]).

We need a C such that:

FC:H( 85T o3 b 756) ~ (U5 X3 ORi g - 7R3 OF)

This amounts to constructing a syntactically valid C' that accomplishes what E[d(y([-]))] would do,
were it a valid context, which is essentially an eta-expansion with boundaries inserted appropriately.

Let

o [-] ifr=r
e TFT ] ifr=17
Coamma = (A(dom(T)).Cinner) v(dom(I))

Caetta = (jmp £[6(dom(4))],
£ — code[A]{; o} import 74, ?TF" Cyammas3)
ret g {rq}
Co = { Clelta ifr=r
TFT Ceita ifT7=1
C = E[Couter]

By inspection of the operational semantics,
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(M | Clei]) = (M | E[Couter[import ra, 7T F7 ((7(Cinnerlei]))); ret a {ra}]])

Since this is just a fixed sequence of boundary terms added to E[d(y(e;))], we can see that this co-
terminates as desired.

O
Lemma 3.94 (CIU Equivalence Implies Logical Equivalence)
If ;AT x;0;qF eq =% ey:7; 0 then
W:A;T;x;0;qF e mey:T;07.
Proof

We have that W; A;T;x;0;qbF e :m0’, W AT x; 059k ea:m;07, and

V8, v, E,M, ¥4, a5, T, 6. -E:A A Uhiee0uthy:Me A
FE (P sx;09F 756) ~ (W55 X054 F75365) A FM: (P, x,0)
= (M| E[6(y(e1))]) 4 <= (M| E[6(v(e2))]) |)

We need to show that

VW, p. W € H[¥] A pe D[A] A
current MR(W (ireg)) €w R[x]p A
currentMR(W (igx)) €w S[o]p
= (W, p1(er), p2(e2)) € E[at1:0"]p

Assume all the premises of this implication.
Let (W, E1, E3) € K[q F 7;0']p. We need to show that (W, E1[p1(71(e1))], Ea[p2(12(e2))]) € O.
Let (My, M) : W. It suffices to show that

(My | Er[pri(vi(e1)]) == (M2 | Ex[p2(y2(e2))]) 4 -

By the Fundamental Property, ¥; A;x;0;qF e; = e1: 7;0’. Therefore,

(W, pr(ma(er)), pa(r2(e1))) € Elat 7507 p

and thus

(My | Er[pr(m(e)]) L = (Mz | Ea[p2(12(e1))]) -

It remains to show that

(M | Er[pi(mi(e1)]) &= (M2 | Ez[p2(y2(e2))]) | -

But this follows from our hypothesis that ¥; A;T;x;0;q - e; =~ ey:7;0".
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3.9 Examples

In some of the following examples, we will use the following syntactic shorthands to improve readability:

let x = e; in ey means (A(x:t).ex)e; whereep:t
e1; e means (A(ignored: ty, result: ty).result)e;e; where e;:t1 and e;: t

Noting that for any well-typed term we can mechanically synthesize its type, so elliding them in this
context introduces no ambiguity.

3.9.1 Calculations with Different Number of Basic T Blocks
fi = A(x:int). (") = ET (ny 1 £ ret end{int7; -} {r1}, H;) x
where
H; () = code[(, €]{ra: V[].{r1:intT; ¢} int7 :: (}2.
sldr1,0;+4 ri1,r1, 134+ ri,rl, 1;sfree l;retra {ri}
fo = A(x:int). ()= ntET (nyr1 £ ret end{int” 5 -} {r1}, Hy) x
where
H,(£) = code[C, €]{ra: V[].{r1:int7; ¢} intT :: (}.
sldri1,0;+ r1,rl, 1;sst 0, r1; jmp £'[C][€]
H2(¢') = code[(, €]{ra: V[].{r1:intT; ¢} intT =2 ¢}
sldr1,0;+ ril,rl, 1;sfreel;retra{rl}

Claim 3.95
The two functions are equivalent, ie, «;+;+;-; ; out b f1 = fy: (int) — int; -, which shows that we can reason

L A A

about assembly components that have similar externally visible behavior but different structure and control
flow.

Proof

Expanding the definition of ~, we see we need to show first that the terms are well-typed. This follows
from the typing rules, noting in particular that:

(int) > intZ7 (my r1, £; ret end{int7; -} {r1}, H)
Requires that the inner component have translation type
(int) = int” =box V[(, €].{ra: V[].{r1:int7; ¢} intT :: ¢}
And the heap must be well-typed, at the type that we’ll denote W:
-FH: @

For program fy, checking that the heap is well-typed involves checking the jmp €'[][€] instruction. At
that point, the register file typing is the following:

x = {rl:int,ra:V[].{r1:int;(}<}
The full typing rule that we must satisfy at this point is:

W; ¢, e;x 2 [C][€]: box V[].{ra: V[].{rl:int; (}¢;int :: {}™
CrelF x < {ra:V[.{rl:int;}°} ¢, €];x;int i C F ra
W; ¢, € x;int :: ¢srak jmp £[C][e]
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Which can easily be seen to be true.

We further must show that given a suitable world W,

(W, f1,f2) € EJout F (int) — int; -]

For this, we must show:

(B1, E2) € K[out F (int) — int;-] = (W, Eu[f1], Ez[f2]) € O

From the definition of related contexts, it suffices to show (W, fi, f2) € V[(int) — int].

In order to do this, given

e SR € T'StackRel

p=[C— SR]

integer v (for which (W, v,v) € V[int]p trivially)

World W’ such that W/ J W and currentMR(W’ (isek)) €w- S[C]p

We must show:

(W' fiv, fav) € Eout +int; (]p

As before, to do this we must show:

(W', B, E}) € KJout & int; (]p = (W', E{[f1v], E5[fav]) € O

In order to do this, consider arbitrary memories (M, M) : W’.
We will then show that

(My | frv) — (M | v1)
(Mg | fov) — (M | v2)
Where (M, M) : W* for some W* 3 W', which we can lift to contexts to show that:
(M | Eq[fiv]) — (M1 | Eqfvi])
(Mg | Effav]) — (M | Ejva])

We can then instantiate the contexts to show that (W*, E[v1], F4[v2]) € O, which we can then compose
together to show that (W', E{[fiv], E5[fav]) € O.

We argue the central reduction by appealing to the operational semantics, which will show that:

(My | fiv) — 71(M] | vy)

(Mg | fov) — 72(M, | v2)

Consider the first program, letting My = (H, R, S). That is, we want to show that:

(M | fiv) — 71 (M | vq)

For some v;.
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First we combine the heap fragment, reduce and then carry out the value translation for the T' codeblock
to an F function.

(H,R,S) | fiv) — *(HWHy,R,S) | A(x : int)."FT (protect -, (; v)
import ri, ST Fnt x;
salloc 1;sst0,r1;
v 13, Lena[C]; jup £[¢] [end{int; (Y], -)

This further reduces:

(HWHy,R,S) | A(x : int)."FT (protect -, (; v)
import ri, ST F" x;
salloc1;sst0,r1;
mv ra, Lenq[C]; jmp £[¢][end{int7;¢}], )
oy
(HeHy,R[rl = v,ra > Lepg[C]], v i S) | ™FT (jmp £[¢][end {int7 ; ¢}, +))

At which point the top of the stack contains the argument v, the register ra contains the address of
the return continuation created by the value translation, and we can jump to the code at £.

This reduces as:

(HWHy,R[rt = v,ra > Lepa[C]],v 2 S) | ™FT (5mp £[¢] [end{intT; ¢Hy N

by *
(HYHy,R[rl = v,ra > LepalC]],v 2 S) | ™MFT (sldri, 0; )
+ ri,rl,1;
+ ri,rl1,1;
sfree 1;

retra{ri},:)

Which we can then see will load the value v off the top of the stack, add two to it, and return:

(HWHy,R[rl = v,ra > Lepa[C]],v 2 S) | ™FT (sldri, 0; )
+rl,rl,1;
+ ri,r1,1;
sfree 1;
retra{ri},:)

N

(HWHy,R[rt = v+2,ra = £enalC]],S) | M™FT (ret ra{ri},-))

At which point, we jump to the return continuation, which then steps to ret end{int; ¢} {r1}, which
allows the boundary to cancel:
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(HWHy,R[rt = v+2,ra > £enalC]],S) | M™FT (ret ra{ri},-))

N

(HWHy,R[rt = v+2,ra > £enal¢]],S) | M™FT (ret end{int”; ¢} {r1},-))
AN

(HWHy,R[rl = v+2,ra > £onalC]],S) | v+2)

Which completes the reduction of the first program.

The proof for the reduction of fov proceeds similarly at first, but the first block jumps to the second
with v+1 stored at the top of the stack (replacing v). The second block is analogous to the first
function, except it only adds 1 once, so the reduction proceeds as (here letting My = (H, R, S)):

(H,R,S) | fav) — (HWHz, R[rl — v+2,ra — Lepa[C]],S) | v+2).

v+2 and v+2 are trivially related, which means in the world W* that the final memories fulfill (which
only varies in private merged heaps and registers from the original W),

(W*, Ej[v+2], E{[v+2]) € O
This can then be composed with the above reduction lifted to contexts (ie, E.[f'v] — El[v+2]) to

yield the result.
O

3.9.2 Factorial Two Ways

facte = A(x :int).(F fOIdu,a.(a)—Hnt F) x
where
F=XA(f:pa.(a)— int) A(x :int).if0x 1 ((unfold ff) (x — 1)) * x

factt = A(x:int).(") =it (g o H)x
where
H(lgact) = code[C, €]{ra: V[.{r1:intT; ¢} intT 2 ¢}
sldrn, O;mv rr, 1;bnz rn, Laux[(][€]; sfree 15 ret ra {rr}
H(£.ux) = code[C, €]{rr : int, ri : int, rn : int, ra: V[].{r1:int7; ¢} int7 2 ¢}
® IT,Tr,rn; — rn,rn, 13bnz rn, £,,x[(][€]; sfree 1;ret ra {rr}
Claim 3.96
Here we again claim equivalence, this time showing how a high-level functional implementation can be
shown equivalent to a low-level implementation implemented with direct jumps and register mutation. This
is interesting because the the first program uses recursive types but the control flow mechanisms in 7" make

this not necessary in the second program.
ere s sout B ofactp & factr: (int) — int;-

Proof

To prove this equivalence, we use the same general approach as the (much simpler) programs with
different numbers of basic blocks shown equivalent in the previous section.

First we note that both terms are well-typed, which follows from the typing rules.

We must next show that given a suitable world W,
(W, factg, factt) € EJout F (int) — int; -]
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For this, we must show:

(E1, E2) € K[out I (int) — int;-] = (W, E;[factg], Ex[facty]) € O

From the definition of related contexts, it suffices to show (W, factg, factt) € V[(int) — int].

In order to do this, given

e SR € T'StackRel

p=[¢ SR]

integer v (for which (W, v, v) € V[int]p trivially)

World W’ such that W/ 3 W and currentMR(W' (istk)) €Ew- S[C]p

‘We must show:

(W', factev, facttv) € Efout F int; (]p

As before, to do this we must show:

(W', B, E}) € K[out Fint;(]p = (W', E}[factev], Ey[facttv]) € O

At this point, deviating from the previous example, we consider two cases. In the case that v > 0, we
will prove this in a similar manner to the previous example, showing that:

(M, | factev) — (M, | vi)
(M, | fact7v) — (M | vp)

Where vi and vy are related (in particular, are the same integer), at which point we will show that
(M, M) : W* for some W* J W', from which the rest follows as in the previous example.

If, on the other hand, v < 0, both programs will diverge, so for arbitrary W.k we will show that
running(k, (M | factgv)) A running(k, (Mo | factrv))

Which is equivalent to

running(k, (M, | E}[factgv])) A running(k, (M5 | Ej[facttv]))

Which is sufficient to show membership in O.

We will prove the first case in a similar way to the previous example, by appealing to the operational
semantics.

(M, | factgv)

Ly

(My | (A(f: pa.(a) = int) . A(x : int).if0x 1 (unfold f f) (x — 1) * x ) (fold .. (a)—sint F) V)
N

(M |if0v 1 (unfold (fold,.(a)—int F) (fold,o.(a)sint F) (v — 1)) % v)

If v is 0, we can see this will reduce to 1, and otherwise it will step further:
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(M |if0v 1 (unfold (fold,,«.(a)—int F) (fold,q.(a)sint F) (v — 1)) * v)
—
(M | if0 (v — 1) 1 (unfold (fold,.(a)—int F) (fold,o.(a)sint F) (v — 2)) * (v — 1) % v)

Since we know v > 0, this will eventually reduce to:

(M | if0v 1 (unfold (fold,,q.(a)sint F) (fold,q.(a)sint F) (v — 1)) * v)
—
(M |1%2%..% (v—2)%(v—1)%v)

We now consider the second program, again for the case when v > 0.

Let (HQ,RQ, 82) = Mg.

As in the previous example, first we combine the heap fragment, reduce and then carry out the value
translation for the T codeblock to an F' function, stepping to the point of jumping into the first code
block.

<(H2, RQ, S2) | fact-r V>

L
((Hz wH, R2,S2) | A(x : int)."FT (protect -, (; v)

import ri, ¢T Fint x;

salloc 1;sst0,r1;

mv 1, Lend[C]; Jmp Liact[C] [end{intT; ¢}s-)
Ly

(Hz WH, Ra[rl = v,ra > Lena[C]],v :: S2) | ™FT (jmp £sact[C][end{int” 5}, -))

Once we jump, we load the argument off of the stack and then branch on it being zero.

(Hz WH, Ra[rl = v,ra > Lena[C]], v S2) | ™FT (jmp £fact[¢][end{int” 5}, -))
oy
((Hz wH, Ra[rl — v,ra > £enalC]],v : S2) | ™FT (sldrn, O;mv rr, 1; )
bnz rn, Laux[C][€]; sfree 15 ret ra {rr})
Ly
(Hz wH,Ra[rn > v,rr = 1,11 =5 v,ra +> Lona[C]], v i1 S2) | ™FT (bnz rn, Laux[C][€]; sfree 1;ret ra {rr}))

As in the high-level version, if v = 0 we can see that this reduces, via the same jump through the
return continuation shown in the previous example, to 1.

Otherwise, we jump to the £,,x codeblock:

(Hy W H,Ra[rn > v,rr +— 1,11 > v,ra = Lena[C]], v 2 S2) | ™FT (bnz rn, Laux[¢][€]; sfree 15 ret ra {rr}))

Ly

(Hz wH,Ra[rn — v,rr > 1,11 5 v,ra > Lona[C]], v :: S2) | ™FT (% rr,rr,rn; — rn, rn, 1; )
bnz rn, Laux[(][€]; sfree 15 ret ra {rr})

This then steps by updating the return value register (rr) by multiplying it by v and then decreasing
v by 1, before branching again on the updated value being 0.
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(Hz wH,Ra[rn +— v,rr = 1,11 =5 v,ra > Long[C]], v :: S2) | ™FT (% rr,rr,rn; — rn, rn, 1;)
bnz rn, Laux [(][€];
sfree1;
retra{rr})

oy

(Hz W H,Ra[rn — v—1,rr = 1xv, 1 = v,ra > Lena[C]], v :: S2) | ™FT (bnz rn, Laux [¢][€];)

sfree1;

retra{rr})

Since we know that v > 0, this test will eventually succeed, at which point we will step to a return:

((Hz wH, Ra[rn = 0,71 = Lkvx(v — 1)*...%3%2, 71 > v, ra > Lena[C]],v 2 S2) | MFT (bnz rn, Laux [¢][€]5)
sfree1;
retra{rr})

oy

((Hz wH, Ra[rn +— 0,71 = Tkvk(v — 1)#...%3%2, 71 > v, Ta = Lena[C]],S2) | ™FT (ret ra {rr}))

This steps through the return continuation to evaluate to:

((Hy wH, Ra[rn + 0,71 = 1kvk(v — 1)#...%3%2, 71 = v, ra = Lena[C]], S2) | ™FT (ret ra {rr}))
— "
(Hy W H,Ry[rn — 0, rr — Ixvs(v — 1)*...%3%2, 11 — v,ra = Leng[C]], S2) | 2%...%(v—1)xvx1)

Which is the same as the value that the other program evaluated to.

Note that since the only changes to the memory were additions to the heap and register modifications,
there exists a world W* 3 W', which was the last piece we needed in this case.

In the second case, when v < 0, we must show that for any k, we can show that both programs are
still running after k steps.

We do this by noting that, based on the operational semantics, after the first 3 steps (which get to
the if), the first program will call itself recursively with an argument 1 smaller every 4 steps. This
means that for any k, after ceil(k — 3)/4 4 1 iterations we will have taken more than k steps, which is
sufficient.

The second program will jump to £,,x after a small constant number of steps and then again every 3
steps, with rn decreased by 1 every time. This means that for any k, after ceil(k/3) 4+ 1 jumps to Laux
we will have taken more than k steps, which is sufficient to show the claim, and thus prove equivalence
between the two programs.

O

3.9.3 Implementing a Mutable Reference

We can use inline T' code to implement a basic mutable reference for use it F' code. While the basic multi-
language allows global mutable tuples, leading to trivial mutation of a statically defined value, in this case
we show how we can dynamically allocate a new reference and access it from the functional language. While
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multiple can be created, the stack-based nature means that only the most recently created can be accessed
until the continuation for it returns.

withref = A(init : int, ).

ks ((Gint) 00y

() M Gy

OFT (protect -, ¢;salloc1; ;
import ri1, ST F" init;
sst 0,rl;rallocrc, 1;
salloc 13sst0,rc;mvrl, ();
ret end{unit; (int) :: ¢} {r1},-)
letr =k ()\828 (x:int). )
OFT (protect (int), ¢;
sldri, O;
import r2, {int):Cg Fint .
str1[0],r2;mvri, ()
ret end{unit; (int) :: (} {r1},")
Al O
intTT (protect (int), ¢;
sldri, 0;
1dr2,r1[0];
ret end{int; (int) :: ¢} {r2},")
in
OFT (protect (int), ¢;sfree1; ;
mvrl, ();ret end{unit; } {r1},")

3.9.4 Higher Order

In this example we demonstrate how the multi-language supports higher order calls between languages.
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7 = ((int) — int) — int
g = A(h: (int) — int).h1
e= ("FT (mvri, ¥ g
retend{(7) — int”; e} {r1},
)
H(¢) =
code[(, e]{ra: V[.{r1:intT; ¢} 77 o (.
sldri,0;salloc 1;sst 0, £;sst 1, ra;
nv ra, Lgret[C]; call vt {V[].{r1:int7;(}¢ :: ¢, 0}
H(fn) =
code[(, €]{ra: V[.{r1:intT; ¢} intT == (}2.
sldril,0;sfree 13mul ri,r1,2;retra{r1}
H(egret) =
code[¢]{r1:int;V[.{r1:int7; C}end{int; ¢} ¢}o.
sldra, 0;sfree l;retra{rl}

3.9.5 Calls

This example shown the call/return structure of the call instruction.

f = (mvra,liyet; call £1 {o,end{int; e} } H)
H(¢4y) =
code[(, €]{ra: V[].{r1:int; {}; ¢}
salloc 15sst 0, ra;mvra, foret;
call €y {V[].{r1:int;{}c :: ¢,0}
H(£41ret) = code[]{rl:int; .}end{int; °}.
ret end{int; e} {r1}
H(¢2) = code[(, e]{ra:V[].{r1:int;(}*; (}™.
mvrl, 1; jmp €2aux
H(lzaux) = code[(, €]{ra:V[].{rl:int;}*;}™.
mult ril,r1,2;retra{ri}
H(£aret) =
code[]{r1:int; V[].{r1: int; .}end{int; °} . o}O.
sldra, 0;sfreel;ret ra {ri}
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