
Linking Types: Specifying Safe Interoperability and Equivalences
Daniel Patterson

Northeastern University
dbp@ccs.neu.edu

POPL 2017 Student Research Competition Extended Abstract

Note: This abstract will be easier to read if printed in color.

Introduction All programs written in high-level lan-
guages link with libraries written in lower-level lan-
guages, often to expose constructs, like threads, random
numbers, or automatic serialization, that aren’t possible in
the high-level language. This linking usually takes place
after compiling both languages to a common language,
possibly assembly. In this sense, reasoning about cross-
language linking means reasoning about compilation.

While most languages include cross-language linking
(FFI) mechanisms, they are ad-hoc and can easily break
the semantic equivalences of the source language, making
it hard for source programmers to reason about correct-
ness of their programs and hard for compiler writers to
reason about correctness of their optimizations.

In this work, I design and motivate linking types,
a language-based mechanism for formally specifying
safe linking with libraries utilizing features inexpress-
ible in the source. Linking types allows programmers
to reason about their programs in the presence of behav-
ior inexpressible in their language, without dealing with
the intricacies of either the compiler or the particular lan-
guage they are linking with.

Fully Abstract Compilation A key aspect of safe link-
ing is fully abstract compilation, where any two compo-
nents that are indistinguishable in the source language are
indistinguishable in the target. This is accomplished by
using static typing to rule out linking with bad contexts
(e.g. [1], [2]) or by dynamic assertions to prevent con-
texts from breaking equivalences (e.g. [3]).

Fully abstract compilation enables equational reason-
ing and allows for safe optimizations, but only for li-
braries that extensionally behave like source libraries,
which alone is too restrictive. For example, a fully ab-
stract compiler from an exception-less language could
link with libraries using exceptions internally, but could
not link with a library implementing exceptions, as excep-
tions crossing the linking boundary violate full abstraction
(see Figure 1).

Linking types are a minimal extension of source lan-
guage types with the desired but inexpressible behav-
ior. Fully abstract compilers then allow source programs
to be linked with any library that is extensionally express-
ible in the linking-type extended language, while allowing
source programmers to reason solely in terms of that ex-

e1 = λf.λg. f 1; g 2; 3
e2 = λf.λg. g 1; f 2; 3
Cexc([·]) = [·](λx. throw x)(λy.y)

Cexc[e1] → throw 1

Cexc[e2] → throw 2

Figure 1: Exceptions violating full abstraction

tended language.

Languages of Study While this work will eventually
consider more complex source and target languages, ini-
tially I study three simple languages, with syntax in Fig-
ure 2 and selected static semantics in Figure 3. There are
two source languages: the source programmer’s language
λ and the library writer’s λref, which includes mutable
references. Linking will occur after compilation to a tar-
get language λrefexc, which also has exceptions, and is en-
riched with an effect type system with an exception type
and a store-using marker (cf. a single static region in the
effect system in [4]). The three languages share syntac-
tic forms, which in more realistic settings corresponds to
having the same calling convention, memory layout, etc.

λ τ ::= unit | int | τ → τ
e ::= () | n | x | λx : τ. e | e e

e + e | e ∗ e | e− e

v ::= () | n | λx : τ. e

λref τ ::= . . . | ref τ
e ::= . . . | ref e | e := e | !e
v ::= . . . | `

λrefexc τ ::= 0 | unit | int | ref τ | τ → Eρτexc τ
ρ ::= • | ◦
e ::= () | n | x | λx : τ. e | e e | e + e

e ∗ e | e− e | throw e
catch e with val x⇒ e ; exc y⇒ e

ref e | e := e | !e
v ::= () | n | λx : τ. e | `

Figure 2: Syntax for λ, λref, and λrefexc.

Linking Types Specification The linking-type specifi-
cation κ for λ, shown in Figure 4, includes the same

1

Γ ` (): E◦0unit

Γ, x: τ ` e: Eρτexnτ
′

Γ ` λ x: τ.e: τ → E
ρ
τexnτ

′

Γ ` e1: τ → E
ρ1
τexnτ

′ Γ ` e2: E
ρ2
τexnτ

Γ ` e1 e2: E
ρ1∨ρ2
τexn τ ′

Γ ` e: Eρτexn τ
Γ, x: τ ` e2: E

ρ2
τ ′
exn
τ ′ Γ, y: τexn ` e1: E

ρ1
τ ′
exn
τ ′

Γ ` catch e with val x⇒ e1 ; exc y⇒ e2: E
ρ1∨ρ2
τ ′
exn

τ ′

Γ ` e: τexn ` τ
Γ ` throw e: E◦τexn τ

Γ ` e: Eρτexn τ ` τ
Γ ` ref e: E•τexn refτ

Γ ` e1: E
ρ1
τexn ref τ Γ ` e1: E

ρ2
τexn τ

Γ ` e1 := e2: E
•
τexn unit

Γ ` e: Eρτexn ref τ

Γ ` !e1: E
•
τexn τ

Figure 3: Selected static semantics for λrefexc.

simplified reference effect typing as in λrefexc, where a
τ -producing computation R•τ may mutate references
whereas a computation R◦τ may not.

λκ τ ::= unit | int | ref τ | τ → Rρ τ
e ::= () | n | x | λx : τ . e | e e | e + e

e ∗ e | e− e | ref e | e := e |!e
v ::= () | n | λx : τ . e | `

κ+(unit) ::= unit
κ+(int) ::= int
κ+(τ1 → τ2) ::= κ+(τ1)→ R◦ κ+(τ2)
κ−(unit) ::= unit

κ−(int) ::= int

κ−(ref τ) ::= κ−(τ)
κ−(τ1 → Rρ τ2) ::= κ−(τ1)→κ−(τ2)

Figure 4: Linking types specification κ on λ.

λκ types need only be related to λ types via embed-
ding κ+ and projection κ−, such that embed followed by
project yields the original type. The terms of λκ, which
are only used for the proof of fully abstract compilation,
must include λ terms, such that a λ program can be trans-
formed into a λκ program by replacing τ with κ+(τ).

Note, in particular, that the types of λκ are not the union
of types from λ and λref, as neither track effects. This
is expected, as λ and λref are inputs to the linking-types
design, so in general they may not contain rich enough
types to describe the aspects relevant to linking.

Using λκ for Linking In Figure 5, we have a function
fun annotated with κ-linking types which is compiled
(the compiler is ellided, but its type translation is shown in
Figure 6) to JfunK and linked against library lib written
in λref and compiled to JlibK (which in this case happens
to be syntactically identical to lib), after which they are

fun = λmk : int→ R• ref int.
λset : ref int→ R• int→ R• unit.
λget : ref int→ R• int.
let x = mk 0 in set x 10; set x 20; get x

JfunK = λmk : int→ E•0 ref int.
λset : ref int→ E•0 int→ E•0 unit.
λget : ref int→ E•0 int.
let x = mk 0 in set x 10; set x 20; get x

lib = [·] (λn: unit. ref n)
(λr: ref int. λn: int. r := n)
(λr: ref int. !r)

JlibK = [·] (λn: unit. ref n)
(λr: ref int. λn: int. r := n)
(λr: ref int. !r)

Figure 5: Example of λ linking against λref library.

〈〈unit〉〉 = unit

〈〈int〉〉 = int

〈〈ref τ〉〉 = ref 〈〈τ〉〉
〈〈τ1 → Rρ τ2〉〉 = 〈〈τ1〉〉→E

ρ
0 〈〈τ2〉〉

Figure 6: Type translation 〈〈·〉〉 for compiler J·K.

linked. Fully abstract compilers from λκ to λrefexc guaran-
tee that all of the interactions of JlibK with JfunK can be
explained in terms of λκ behavior.

Formal Properties In general, a source language λsrc
is enriched with a linking-type specification κ to create an
extended language λκ

src. The following must hold:

• λsrc type τ embeds into a λκ
src type by κ+(τ).

• λκ
src type τκ projects to a λsrc type by κ−(τκ).

• For any λsrc type τ , κ−(κ+(τ)) = τ .

• λsrc terms are a subset of λκ
src terms.

• λκ
src programs that only use λsrc terms co-diverge or

co-terminate with equivalent values as the λsrc pro-
gram obtained by applying κ− to all types.

Linking is then defined by a fully abstract compiler
from λκ

src, where all unannotated types in the λsrc pro-
gram are embedded with κ+. This allows λsrc language
programmers to link with components in arbitrary lan-
guages that have behavior only expressible within λκ

src,
without having to reason about the compilation target or
details of compilation.

Collaboration This work has been done in collabora-
tion with my advisor, Amal Ahmed. However, everything
presented in this abstract is my own.

2

References

[1] Amal Ahmed and Matthias Blume. 2008. Typed closure conversion preserves observational equivalence. In Pro-
ceedings of the 13th ACM SIGPLAN international conference on Functional programming (ICFP ’08). ACM,
New York, NY, USA, 157-168. DOI=http://dx.doi.org/10.1145/1411204.1411227

[2] Max S. New, William J. Bowman, and Amal Ahmed. 2016. Fully abstract compilation via universal embedding.
In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming (ICFP 2016).
ACM, New York, NY, USA, 103-116. DOI: http://dx.doi.org/10.1145/2951913.2951941

[3] Dominique Devriese, Marco Patrignani, and Frank Piessens. 2016. Fully-abstract compilation by ap-
proximate back-translation. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’16). ACM, New York, NY, USA, 164-177. DOI:
http://dx.doi.org/10.1145/2837614.2837618

[4] F. Henglein, H. Makholm, and H. Niss. Effect types and region-based memory management. In B. Pierce, editor,
Advanced Topics in Types and Programming Languages. MIT Press, 2005.

3

