
LINKING TYPES SPECIFYING SAFE INTEROPERABILITY
AND EQUIVALENCES

Daniel Patterson
dbp@ccs.neu.edu

We should not force programmers to use ad-hoc FFIs 1 or write entire
programs in a single “general-purpose” language 2 .

1 Consider languages S and R that compile to T . Linking

S and R components requires the programmer understand:

• the S-to-T and R-to-T compilers.

•how resulting T components interact.

We believe understanding S and R should be enough.

2 General purpose languages are usually either:

•too low level (increasing incidental complexity).

•too feature rich (harder to understand).

Embedded DSLs aren’t enough, since they require

understanding (usually complex) host languages.

To preserve source-level equational reasoning, we should not merely have
correct 3 compilers, but fully abstract 4 compilers.
3 A correct compiler, like CompCert or CakeML,

guarantees that compilation preserves source

semantics. But when building multi-language software,

we have no (multi-language) source semantics to

preserve.

4 Fully abstract compilers preserve & reflect equivalences.

e1 e2≈ctx
S

e1 e2≈ctx
T

compile compile

For e1, e2 in a language L,

e1 ≈ctx
L e2 iff for all contexts C

in L, C [e1] and C [e2]

coterminate.

But fully abstract compilers prevent linking with more expressive
languages, because such expressivity can violate equivalences 5 .
5 In a pure language λ (a simply-typed lambda calculus): λc. c() ≈ctx

λ λc. c(); c() : (unit→ int)→ int

But a more expressive impure language

λref can distinguish these two programs

with a context that uses a counter.

Ccounter = let v = ref 0 in

let c′ () = v := !v + 1; !v in [·] c′

c : unit→ int 6= c′ : unit→ int

Linking types allow writing types 6 for behavior inexpressible in a
language, enabling fully abstract compilers that allow linking 7 .
6 A linking types extension for a language λ is three parts:

•an extended language λκ, which has types and

representative terms that reflect new behavior.0

τ ::= unit | int | ref τ | τ → R◦ τ | τ → R• τ

•a λ-to-λκ type function κ+, the default embedding,

that preserves equivalences from λ. i.e.,

∀e1, e2. e1 ≈ctx
λ e2 : τ =⇒ e1 ≈ctx

λκ e2 : κ+(τ)

κ+(unit) = unit

κ+(int) = int

κ+(τ1→ τ2) = κ+(τ1)→ R◦ κ+(τ2)

•a λκ-to-λ type function κ− that we use to require

all λκ programs are λ programs. i.e.,

∀τ . e : τ =⇒ e : κ−(τ)

κ−(unit) = unit

κ−(int) = int

κ−(ref τ) = κ−(τ)

κ−(τ1→ Rε τ2) = κ−(τ1)→κ−(τ2)

7 λc. c() 6≈ctx
λκ λc. c(); c() : (unit→ R• int)→ R• int

Ccounter = let v = ref 0 in

let c′ () = v := !v + 1; !v in

[·] c′

c′ : unit→ R• int

* Linking types are all about equivalences.

program A− λf : int→ int. 1

program B− λf : int→ int. f 0; 1

program C− λf : int→ int. f 0; f 0; 1

linking prevented by compiler
Ccounter[λc. c()] ⇓ 1
Ccounter[λc. c(); c()] ⇓ 2

problem−→ pure↑ impure↑

computation type−→ pure↑ impure↑ linking allowed by compiler
Ccounter[λc. c()] ⇓ 1
Ccounter[λc. c(); c()] ⇓ 2

