LINKING TYPES Atoequivatences 00 dopoecs neea.

We should not force programmers to use ad-hoc FFls (1) or write entire

programs in a single “general-purpose”’ language 2).

(1) Consider languages S and R that compile to 7. Linking (2) General purpose languages are usually either:
S and ‘R components requires the programmer understand: etoo low level (increasing incidental complexity).

e the S-to-7 and R-to-7 compilers. e too feature rich (harder to understand).
e how resulting 7 components interact.

Embedded DSLs aren’t enough, since they require
We believe understanding & and ‘R should be enough.

understanding (usually complex) host languages.

To preserve source-level equational reasoning, we should not merely have
correct (3) compilers, but fully abstract (4) compilers.

(3) A correct compiler, like CompCert or CakeML, (4) Fully abstract compilers preserve & reflect equivalences.
guarantees that compilation preserves source ol| ~Sx [g2 |
: . . O For e;, & in a language L,
semantics. But when building multi-language software, ctx et -
. . - - €1 =, & ITf Tor all contexts
we have no (multi-language) source semantics to _1 L =
N L, C[el] and C[eg]
preserve. |
el %Eftx e? coterminate.

But fully abstract compilers prevent linking with more expressive
languages, because such expressivity can violate equivalences (5.

(®) In a pure language \ (a simply-typed lambda calculus): Ac. c() =~ Ac.c();c(): (unit — int) — int

But a more expressive impure language geounter _ 1o+ v — ref 0 in

linking prevented by compiler
/ . | . . /
let c () =V =1lv + 1, 'V 111 [] C Ccounter[)\c. C()] U’ 1

c:unit — int # c': unit — int coounterfy o ()- ¢ 5
problem pureT impure? | ()i cOl 4

Linking types allow writing types (6) for behavior inexpressible in a
language, enabling fully abstract compilers that allow linking ().

(6) A linking types extension for a language)\ is three parts: @ Mc.c() #5* Xc.c();c(): (unit — R®int) — R®int
e an extended language)\", which has types and geounter _ 1ot v — ref O in

representative terms that reflect new behavior.0 letc'()=v:=Ilv+1; lvin

o Unitl J;_Ilt |tref i xrfe{%T ‘ ifnxrfe{%T e linking allowed by compiler
COHIPHREHER P | ¢/: unit — R®int ceounterf\ ¢ ()] | 1
ea \-to-)\" type function T, the default embedding,
that preserves equivalences from). i.e.,

et can distinguish these two programs

with a context that uses a counter.

ceovnterfhc. c(); c()] U 2

~ CtX : ~ CIX . T .y .
Vei,ep. e R{T ey 7 = ey =N ey 1 (7) @ Linking types are all about equivalences.

/{+(unit) = unit programA — Af : int — int. 1
/{Jr(int) — int programB — Af : int — int.f0; 1
/{_|_(7_1 . 7_2) _ /i_|_(7_1)% RO K+(TQ) programC — Af : int — int.£0; £0; 1
ea)\'-to-) type function ~~ that we use to require (int — R°int)(int — R°int)(int — R®int)(int — R®int)
p . — R°int — R%int — R%int — R®int
all \" programs are)\ programs. i.e., I | I | . - .-
Ve = ein(7) yern (AB G {ABC A LALBLC
. . A >
rk (unit —unit
_(.) | k1 for A kT for *et
r(int) = int — N T
p(ret) =r(7) A A BC: et LAIBIIC
K_(Ti — R° 7’2) — K_(Tl)%li_(TQ) _____________________

(int — int) — int (int — int) — int

